Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(7): 1363-1373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38910920

RESUMO

Consumers seek healthy and sustainable products, whereas the food industry faces the challenge of processing by-products management. The application of fruit pomace as an additive could be a solution addressing the needs of both consumers and producers. The research objective has been to assess the effect of dried blackcurrant pomace powder (BP) and calcium ions in varied concentration on the physicochemical properties of multicomponent freeze-dried snacks as compared to the influence of low-methoxyl pectin (LMP). The snacks were prepared using varied content of BP (1, 3, 5%) and calcium lactate (0, 0.01, 0.05%). Water content and activity, hygroscopic properties, structure, texture, colour, polyphenols content (TPC), and antioxidant activity were analysed. The addition of BP resulted in lowering water activity and porosity. The microstructure of the snacks consisted of a large number of small and unevenly distributed pores. Consequently, the reduction of hygroscopic properties with the growing amount of BP was observed. Applied additives strengthened the structure and caused changes in compression curves indicating enhanced hardness and crispiness. The effect given by 5% of BP was comparable to that obtained with 0.5% of LMP. Additionally, blackcurrant pomace infusion increased TPC and enhanced antioxidant activity but it also caused significant changes in the colour of the snacks. Overall, obtained results have shown that dried blackcurrant pomace powder (BP) can be successfully applied as a food additive supporting stability, texture, and bioactive compounds content, thus fortifying the physicochemical properties of freeze-dried fruit and vegetable snacks.

2.
Food Chem ; 453: 139644, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761735

RESUMO

This work developed and characterized the physicochemical properties of a type A gelatin and amidated low-methoxyl pectin complex coacervate (GA-LMAP-CC) hydrogel and evaluated its suitability for preserving the viability of probiotics under in vitro gastrointestinal conditions. The formation of GA-LMAP-CC was achieved via height electrostatic attraction at pH 3 and a mixing ratio of 1, exhibiting thermoreversible gel behavior. The hydrogel had a porosity of 44% and a water absorption capacity of up to 12 times. Water absorption profiles were obtained at different pH values (2, 5, and 7). The influence of GA-LMAP-CC depended on the medium, which controlled the hydration and water absorption rate. GA-LMAP-CC promoted the viability of B. longum BB536 and L. acidophilus strains under simulated gastrointestinal conditions, thereby enhancing their potential for intestinal colonization. The hydrogel has suitable properties for potential application in food and pharmaceutical areas to encapsulate and preserve probiotics.


Assuntos
Gelatina , Hidrogéis , Pectinas , Probióticos , Pectinas/química , Gelatina/química , Probióticos/química , Hidrogéis/química , Viabilidade Microbiana/efeitos dos fármacos , Lactobacillus acidophilus/química , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Concentração de Íons de Hidrogênio , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia
3.
Int J Biol Macromol ; 269(Pt 1): 132099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710256

RESUMO

Iron deficiency anemia (IDA) is the most common nutritional disease worldwide. In this study, a low methoxyl pectin (LMP)­iron(III) complex was prepared. The physicochemical and structural properties were characterized by HPSEC, HPIC, CV, FTIR, 1H NMR, XRD, SEM and CD. The results showed that iron increased the molecular weight of the LMP­iron(III) from 11.50 ± 0.32 to 12.70 ± 0.45 kDa and improved its crystallinity. Moreover, the findings demonstrated that -OH and -COOH groups in LMP coordinate with Fe3+ to form ß-FeOOH. The water-holding capacity, emulsion stability, and antioxidant activities of the LMP­iron(III) were lower than those of LMP. Furthermore, the therapeutic effects of LMP­iron(III) on IDA were investigated in rats. Following LMP­iron(III) supplementation, compared with the model group, the administration of LMP­iron(III) significantly increased the body weight, hemoglobin concentration, and serum iron concentration as well as decreased free erythrocyte protoporphyrin concentration. Therefore, the LMP­iron(III) can potentially treat IDA in rats experiments, providing a theoretical basis for the development of a promising iron supplement.


Assuntos
Anemia Ferropriva , Ferro , Pectinas , Animais , Pectinas/química , Pectinas/farmacologia , Ratos , Anemia Ferropriva/tratamento farmacológico , Ferro/química , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Fenômenos Químicos , Hemoglobinas/química , Hemoglobinas/metabolismo , Peso Molecular , Peso Corporal/efeitos dos fármacos , Ratos Sprague-Dawley
4.
Carbohydr Polym ; 334: 122007, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553199

RESUMO

Pectins are dietary fibers that are attributed with several beneficial immunomodulatory effects. Depending on the degree of esterification (DE), pectins can be classified as high methoxyl pectin (HMP) or low methoxyl pectin (LMP). The aim of this study was to investigate the effects of pectin methyl-esterification on intestinal microbiota and its immunomodulatory properties in naive mice. Supplementation of the diet with LMP or HMP induced changes in the composition of the intestinal microbiota in mice toward Bacteroides, which was mainly promoted by HMP. Metabolome analysis of stool samples from pectin-fed mice showed a different effect of the two types of pectin on the levels of short-chain fatty acids and bile acids, which was consistent with highly efficient in vivo fermentation of LMP. Analysis of serum antibody levels showed a significant increase in IgG and IgA levels by both pectins, while FACS analysis revealed a decrease of infiltrating inflammatory cells in the intestinal lamina propria by HMP. Our study revealed that the structural properties of the investigated pectins determine fermentability, effects on microbial composition, metabolite production, and modulation of immune responses. Consumption of HMP preferentially altered the gut microbiota and suppressed pro-inflammatory immune responses, suggesting a beneficial role in inflammatory diseases.


Assuntos
Microbioma Gastrointestinal , Pectinas , Camundongos , Animais , Pectinas/química , Esterificação , Fibras na Dieta/farmacologia , Fibras na Dieta/metabolismo , Fermentação
5.
J Texture Stud ; 55(2): e12828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486415

RESUMO

Rheological analysis of citrus pectin at pH 3 and 7 elucidates its structural dynamics, revealing distinct behaviors influenced by pH. At pH 3, pectin exhibits shear-thinning, with solvent-independent unified rheological profiles identifying three concentration regimes: 0.5%-1.5%, 2%-3%, and 3.5%-4%. These regimes, alongside Cox-Merz superpositions, outline the semi-dilute (c*) and concentrated (c**) transitions at 1.5%-2% and 3%-3.5%, respectively. Moreover, a Morris equation exponent of 0.65 indicates flexible, mobility-restricted macromolecules. Conversely, at pH 7, increased viscosities and Morris plot linearity for p = .1 suggest rigid chain behavior due to electrostatic repulsion among ionized acidic groups. This rigidity leads to concentration-dependent self-assembly structures that diverge from expected unified rheological profiles, a deviation amplified by heating-cooling cycles. This study clarifies the impact of pH on citrus pectin's rheology and emphasizes the intricate relationship between polymeric chain rigidity, self-assembly, and viscosity. By providing a refined understanding of these mechanisms, our findings contribute to the broader field of polysaccharide research, offering insights critical for developing and optimizing pectin-based applications in various industries.


Assuntos
Citrus , Pectinas , Temperatura Baixa , Reologia
6.
Int J Biol Macromol ; 262(Pt 2): 130028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340927

RESUMO

Porous morphology and mechanical properties determine the applications of cryogels. To understand the influence of the ionic network on the microstructure and mechanical properties of pectin cryogels, we prepared low-methoxyl pectin (LMP) cryogels with different Ca2+ concentrations (measured as R-value, ranging from 0 to 2) through freeze-drying (FD). Results showed that the R-values appeared to be crucial parameters that impact the pore morphology and mechanical characteristics of cryogels. It is achieved by altering the network stability and water state properties of the cryogel precursor. Cryogel precursors with a saturated R-value (R = 1) produced a low pore diameter (0.12 mm) microstructure, obtaining the highest crispness (15.00 ± 1.85) and hardness (maximum positive force and area measuring 2.36 ± 0.31 N and 12.30 ± 1.57 N·s respectively). Hardness showed a negative correlation with Ca2+ concentration when R ≤ 1 (-0.89), and a similar correlation with the porosity of the gel network when R ≥ 1 (-0.80). Given the impacts of crosslinking on the pore structure, it is confirmed that the pore diameter can be designed between 56.24 and 153.58 µm by controlling R-value in the range of 0-2.


Assuntos
Criogéis , Pectinas , Criogéis/química , Fenômenos Mecânicos , Porosidade , Dureza
7.
Int J Biol Macromol ; 254(Pt 3): 127869, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939773

RESUMO

There is an increasing demand for obtaining pectin from new sources. Red radish (Raphanus sativus L.) pomace pectin extracted by alkali was low-methoxyl pectin with esterification degree of 10.17 %, galacturonic acid content of 69.71 % (wt), and average molar weight of 78.59 kDa. The pectin primarily consisted of rhamnogalacturonan I and homogalacturonan domains. The predominant monosaccharides of the pectin were galacturonic acid (46.32 mol%), arabinose (16.03 mol%), galactose (10.46 mol%), and rhamnose (10.28 mol%), respectively. The red radish pomace pectin solution exhibited a shear-thinning behavior. NaCl could induce gelation of red radish pomace pectin, and the gel properties of red radish pomace pectin were considerably affected by the NaCl concentration. As the NaCl concentration (0.25-0.50 mol/L) increased, the rate of gelation accelerated, and the time to gelation point appeared earlier. There was an optimal NaCl concentration (0.50 mol/L) for the pectin to form a gel with the greatest solid-like properties, gel hardness (33.84 g) and water-holding capacity (62.41 %). Gelation force analysis indicated gel formation mainly caused by electrostatic shielding effect of Na+ and hydrogen bonding. This research could facilitate the applications of the red radish pomace pectin in the realm of edible hydrocolloids.


Assuntos
Raphanus , Cloreto de Sódio , Pectinas/análise , Ácidos Hexurônicos/análise
8.
J Sci Food Agric ; 104(3): 1713-1722, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851851

RESUMO

BACKGROUND: This study aimed to determine the effect of various amounts of dried apple pomace (AP) powder and calcium ions on selected physicochemical properties of restructured freeze-dried snacks in comparison with products obtained with low-methoxyl pectin (LMP). The material was prepared using frozen carrot, orange concentrate, ginger, water, and various concentrations of AP (1, 3, 5%) and calcium lactate (0, 0.01, 0.05%). The reference samples were without additives, and with 0.5 or 1.5% of LMP combined with 0.01% of calcium lactate. RESULTS: The material was studied in terms of water content and activity, hygroscopic properties, structure, texture, color, and polyphenol content (TPC), and antioxidant activity. The addition of AP resulted in reducing water activity and porosity. As a consequence of the increasing density of the structure, the reduction of hygroscopic properties by up to 16% followed the increasing amount of AP. Apple pomace and calcium ions strengthened the structure. The addition of 3% and 5% of AP gave a hardening effect close to or better than 0.5% LMP. Because of the pigment dilution, LMP caused significantly greater total color change than AP. The incorporation of AP also increased TPC and enhanced antioxidant activity in comparison with the reference materials by up to 18%. CONCLUSION: The results showed that dried AP powder can be applied successfully as an additive enhancing stability, texture and bioactive compound content, thus fortifying the physicochemical properties of restructured freeze-dried fruit and vegetable snacks. © 2023 Society of Chemical Industry.


Assuntos
Citrus sinensis , Daucus carota , Malus , Zingiber officinale , Malus/química , Antioxidantes/análise , Pós , Cálcio , Lanches , Polifenóis/análise , Água , Íons
9.
J Food Sci ; 88(10): 4156-4168, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37623924

RESUMO

Improving total dietary fiber content while maintaining the texture/expansion of extruded products is a challenge. Pectin has a dual function; it is a source of dietary fiber and it also functions as a hydrocolloid, which could improve the texture of high-fiber extruded foods. The objective of this study was to evaluate the impacts of pectin types from citrus peel on the expansion characteristics of starch-cellulose extrudates. High and low methoxyl pectin (HMP and LMP) was added to the starch-cellulose mixtures and extruded using a twin-screw extruder. The pasting properties of raw mixtures, extrusion properties, microstructure, and dietary fiber contents of the extrudates were studied. The inclusion of HMP in raw material improved the peak viscosity (629.7 ± 8.1 to 754.7 ± 80.1 mPa s) and maintained the final viscosity compared to the control (starch-cellulose mixture alone), unlike LMP. HMP relatively maintained the extrusion process parameters such as torque, back pressure, and specific mechanical energy as the control. Interestingly, the addition of 7% of HMP had a similar expansion ratio (3.41 ± 0.08 to 2.35 ± 0.06) compared to the control (3.46 ± 0.08 to 2.32 ± 0.09) under the extrusion conditions studied. The total dietary fiber content improved from 12.22 ± 0.01% to 18.26 ± 0.63% (w/w). HMP maintained the expansion characteristic of starch-cellulose extrudates and improved its total dietary fiber content relative to LMP. Adding HMP to the mixtures improved the extensibility of the melt, favoring bubble growth and expansion of the starch-cellulose extrudates. Fourier transform infrared spectroscopy data suggested that there could be intermolecular interactions between starch, cellulose, and pectin, but the nature of these interactions needs further investigation. PRACTICAL APPLICATION: The study provides practical information on the influence of the addition of high and low methoxyl pectin on starch-cellulose extrudates. The results can help the industry to produce snack products that are more nutritious but are still well accepted by the consumers.

10.
Int J Biol Macromol ; 246: 125505, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355071

RESUMO

Inflammatory bowel disease (IBD) is a public health challenge and the use of pectin for symptom amelioration is a promising option. In this work, sunflower pectin has been extracted without (CHP) and with assistance of ultrasound (USP) using sodium citrate as a food-grade extracting agent. At optimal conditions (64 °C, 23 min) the highest yield was obtained with ultrasound application (15.5 vs. 8.1 %). Both pectins were structurally characterized by 1H NMR, HPSEC-ELSD, FT-IR and GC-FID. Unlike CHP, USP showed a lower molecular weight, higher galacturonic acid, lower degree of methyl-esterification and, overall, higher viscosity. These characteristics could affect the anti-inflammatory activity of pectins, evaluated using DSS-induced IBD model mice. So, USP promoted the defence (ICAM-1) and repair of the gastrointestinal mucosa (TFF3, ZO-1) more effectively than CHP. These results demonstrate the potential amelioration of acute colitis in IBD mice through USP supplementation. Taking into account the biomarkers analysed, these results demonstrate, for the first time, the positive impact of sunflower pectin extracted by ultrasound under very soft conditions on inflammatory bowel disease that might open up new possibilities in the treatment of this serious pathology.


Assuntos
Helianthus , Doenças Inflamatórias Intestinais , Animais , Camundongos , Pectinas/farmacologia , Pectinas/química , Helianthus/química , Espectroscopia de Infravermelho com Transformada de Fourier , Citrato de Sódio , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/tratamento farmacológico
11.
Crit Rev Food Sci Nutr ; 62(16): 4393-4417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33511846

RESUMO

Pectin hydrogel is a soft hydrocolloid with multifaceted utilities in the food sector. Substantial knowledge acquired on the gelation mechanisms and structure-function relationship of pectin has led to interesting functions of pectin hydrogel. Food applications of pectin hydrogels can be categorized under four headings: food ingredients/additives, food packaging, bioactive delivery and health management. The cross-linked and tangly three-dimensional structure of pectin gel renders it an ideal choice of wall material for the encapsulation of biomolecules and living cells; as a fat replacer and texturizer. Likewise, pectin hydrogel is an effective satiety inducer due to its ability to swell under the simulated gastric and intestinal conditions without losing its gel structure. Coating or composites of pectin hydrogel with proteins and other polysaccharides augment its functionality as an encapsulant, satiety-inducer and food packaging material. Low-methoxyl pectin gel is an appropriate food ink for 3D printing applications due to its viscoelastic properties, adaptable microstructure and texture properties. This review aims at explaining all the applications of pectin hydrogels, as mentioned above. A comprehensive discussion is presented on the approaches by which pectin hydrogel can be transformed as a resourceful material by controlling its dimensions, state, and rheology. The final sections of this article emphasize the recent research trends in this discipline, such as the development of smart hydrogels, injectable gels, aerogels, xerogels and oleogels from pectin.


Assuntos
Hidrogéis , Pectinas , Hidrogéis/química , Pectinas/química , Polissacarídeos , Impressão Tridimensional , Reologia
12.
Braz. J. Pharm. Sci. (Online) ; 58: e191009, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1394059

RESUMO

Nizatidine is an anti-secretogogue and a gastroprotective drug with a half-life of 1-2 h and is well absorbed in the stomach. This study aimed to optimize the process and develop floating microparticles of nizatidine that are based on low methoxyl pectin. Oil-in-oil dispersion method and Taguchi orthogonal array design were employed, and the prolonged residence time of the microparticles in the stomach was demonstrated. The constraints for independent variables, viz. A-polymer, B-internal solvent volume, C-surfactant, D-stirring rate and E-stirring time were set to generate the experimental runs. Particle size, percentage yield, micromeritic properties, entrapment efficiency, in vitro buoyancy and in vitro release were characterized. Surface morphology, zeta potential, in vitro release kinetics and in vivo floating performance of the optimized formulation was examined. The microparticles were free-flowing, irregular in shape and had a mean particle size distribution of 73-187 µ. Low methoxyl pectin played a predominant role in achieving buoyancy and optimum gastric retention for the modified release of the drug, suggesting Korsmeyer-Peppas model as the possible release mechanism. In vivo radiographic study in rabbits revealed that the drug was retained in the stomach for a period of 6 h. These results indicate that nizatidine floating microparticulate system provides modified drug release for the effective treatment of gastric ulcer


Assuntos
Animais , Masculino , Feminino , Coelhos , Estômago/efeitos dos fármacos , Nizatidina/antagonistas & inibidores , Eficiência/classificação , Solventes/efeitos adversos , Úlcera Gástrica/patologia , Técnicas In Vitro/instrumentação , Preparações Farmacêuticas/administração & dosagem , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Liberação Controlada de Fármacos
13.
Polymers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960974

RESUMO

Biocomposite hydrogels based on nanocellulose fibers (CNFs), low methoxy pectin (LMP), and sodium alginate (SA) were fabricated via the chemical crosslinking technique. The selected CNFs-based hydrogels were loaded with clindamycin hydrochloride (CM), an effective antibiotic as a model drug. The properties of the selected CNFs-based hydrogels loaded CM were characterized. The results showed that CNFs-based hydrogels composed of CNFs/LMP/SA at 1:1:1 and 2:0.5:0.5 mass ratios exhibited high drug content, suitable gel content, and high maximum swelling degree. In vitro assessment of cell viability revealed that the CM-incorporated composite CNFs-based hydrogels using calcium ion and citric acid as crosslinking agents exhibited high cytocompatibility with human keratinocytes cells. In vitro drug release experiment showed the prolonged release of CM and the hydrogel which has a greater CNFs portion (C2P0.5A0.5/Ca + Ci/CM) demonstrated lower drug release than the hydrogel having a lesser CNFs portion (C1P1A1/Ca + Ci/CM). The proportion of hydrophilic materials which were low methoxy pectin and sodium alginate in the matrix system influences drug release. In conclusion, biocomposite CNFs-based hydrogels composed of CNFs/LMP/SA at 1:1:1 and 2:0.5:0.5 mass ratios, loading CM with calcium ion and citric acid as crosslinking agents were successfully developed for the first time, suggesting their potential for pharmaceutical applications, such as a drug delivery system for healing infected wounds.

14.
Foods ; 10(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34574119

RESUMO

The addition of salts is an effective way to improve the properties of polysaccharide/protein complexes for use in foods. However, there is no comparative study on the effects of different ions on the complex system of low methoxyl pectin (LMP)/ sodium caseinate (CAS) complex. The effects of different concentrations of three salt ions (Na+, K+, Ca2+) on the physicochemical and rheological properties of the LMP/CAS complex were determined in this study, and the structure of LMP/CAS complex was characterized. The results showed that the addition of these three salt ions affected zeta potential, particle size, and turbidity of the LMP/CAS complex, and lead the LMP/CAS complex to form a more regular and uniform network structure, which helped improve its stability, solubility, and rheological properties. The particle size and turbidity value of the complex achieved with Ca2+ were higher than those obtained using Na+ and K+. Moreover, the secondary structure of the proteins in the complex changed to adding high concentrations of Ca2+. Our study provides valuable information for the application of the LMP/CAS complex in the food industry.

15.
ACS Appl Mater Interfaces ; 13(32): 38688-38699, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34346668

RESUMO

The industrial processing of avocados annually generates more than 1.2 million tons of avocado peels (APs) and avocado seeds (ASs) that have great potential in the production of active bioplastics, although they have never been considered for this aim until now. Separately, the APs and ASs, as well as a combination of avocado peels and seeds (APSs), were evaluated here for the first time for the preparation of antioxidant films, with application in food packaging. Films were prepared by casting, after their processing by three different methods: (1) hydrolysis in acid media, (2) hydrolysis followed by plasticization, and (3) hydrolysis and plasticization followed by blending with pectin polymers in different proportions (25 and 50 wt %). The results indicate that the combination of hydrolysis, plasticization, and pectin blending is essential to obtain materials with competitive mechanical properties, optical clarity, excellent oxygen barrier properties, high antioxidant activity, biodegradability, and migration of components in TENAX suitable for food contact applications. In addition, the materials prepared with APSs are advantageous from the point of view of the industrial waste valorization, since the entire avocado wastes are used for the production of bioplastics, avoiding further separation processes for their valorization.


Assuntos
Embalagem de Alimentos/métodos , Persea , Sementes/metabolismo , Antioxidantes/química , Pectinas/química , Persea/química , Persea/metabolismo
16.
J Agric Food Chem ; 69(22): 6281-6290, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34047549

RESUMO

Encapsulation is a common approach to improve the bacterial survival of probiotics. In this study, two new low-methoxyl pectins (CMP-6 and CMP-8) were used as coating materials to produce microcapsules (MCs) for the encapsulation of Lactobacillus acidophilus LMG9433T, Lactobacillus casei LMG6904T, and Lactobacillus rhamnosus LMG25859. A fermentation test showed that encapsulation did not influence the fermentation ability of lactobacilli. The biofilm formation of encapsulated lactobacilli was stimulated when an in situ cultivation was conducted on MCs, which was verified by cryo-SEM observation. The resultant biofilm-forming MCs (BMCs) contained high-density bacterial cells (∼1010 CFU/mL). Compared to planktonic lactobacilli, pectin-based MCs showed significant protection for encapsulated lactobacilli from heat shock and simulated gastric digestion. Especially, benefiting from the biofilm formation, BMCs provided higher protection with enhanced resistance to heat shock, freeze-drying, and gastrointestinal digestion than MCs. Our result highlighted the superior bacterial resistances of biofilm-forming probiotics encapsulated in pectinate microcapsules.


Assuntos
Pectinas , Probióticos , Biofilmes , Cápsulas , Digestão , Resposta ao Choque Térmico
17.
Food Chem ; 361: 129832, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023688

RESUMO

Resveratrol-loaded fish gelatin (FG)-low methoxyl pectin (LMP) composite films with different FG:LMP mass ratios were prepared and evaluated as food packaging materials. With increasing FG contents, the water solubility of the films decreased. Moreover, the UV (315-400 nm) blocking efficiency and opacity increased with increasing LMP contents. The elongation of the films at breaking and tensile strengths were adjusted using the ratio of FG and LMP. The lowest water vapour permeability was observed at an FG:LMP mass ratio of 2:1. All films exhibited good antioxidant properties and significantly delayed oil deterioration when used for beef tallow preservation. The release behaviour of resveratrol in 95% ethanol as a food simulant was determined by film composition. The fabricated films exhibit significant potential for beef tallow preservation applications. Furthermore, LMP can improve the stability of resveratrol-FG complexes and compete with resveratrol for binding FG to accelerate resveratrol release.


Assuntos
Embalagem de Alimentos , Gelatina/química , Pectinas/química , Resveratrol/química , Animais , Antioxidantes/química , Produtos Pesqueiros , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Concentração de Íons de Hidrogênio , Permeabilidade , Carne Vermelha , Resveratrol/farmacocinética , Solubilidade , Vapor , Resistência à Tração
18.
J Food Sci Technol ; 58(5): 2007-2018, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33897037

RESUMO

The stability of betalains (Bet) encapsulated in cryogels made with a mixture of albumin (ALB) and albumin-pectin (ALB-PEC) as wall materials were evaluated during storage at 32% and 83% relative humidity (RH) at several different temperature conditions (4 °C, 30 °C and 40 °C). The retention of betalains (betanin + isobetanin) and phenolic compounds and the antioxidant activity were determined by high-performance liquid chromatography, the Folin-Ciocalteu method and radical ABTS*+ capture methodology. The color parameters and images of the encapsulated betalains were obtained. Cryogels prepared with ALB at 32% RH and at 4 °C provided betanin and isobetanin retention of 72% and 82%, with half-life times of 108 and 165 days, respectively. The antioxidant activity and phenolic compounds showed retention greater than 70% during storage at 32% RH at all temperatures. Cryogels prepared with ALB-PEC also conferred high retention percentages of phenolic compounds at 83% RH, but this high RH caused a significant decrease in the retention of betalains. Both ALB and ALB-PEC improved betalain stability during storage compared with the extracts without encapsulating. Therefore, cryogels could be used as protection matrices for betalains.

19.
Food Res Int ; 140: 109851, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648169

RESUMO

The intake of diets rich in carbohydrates with a high-glycaemic load provides excessive energy consumption and low nutritional quality, contributing to cardiovascular diseases, type II diabetes and obesity, among other pathologies. Natural options such as the use of low-methoxyl pectin to develop sugar free formulations is growing since they form gel without sucrose, providing stability and viscosity of numerous foodstuffs. In this paper, we have reviewed the consumer habits of sugar intake and the potential of pectin in the elaboration of low-glycaemic index foods, as well as the structure, applications and sources of pectin. Special attention has been paid on the structure-function relationship of low-methoxyl pectins considering their effects on type I and II diabetes. It has been shown that these pectins reduce the post-prandial glycaemic responses and have an important and recognised potential for the treatment and prevention of diabetes. Rheological behaviour of pectin, impact on intestinal microbiota and on different biomarkers have been postulated as the potential involved mechanisms. As future trends, it is necessary to consider new sources and structures of pectin that present improved functionalities. For this purpose, the obtainment of pectin and derivatives should be placed in a framework of sustainable food systems.


Assuntos
Diabetes Mellitus Tipo 2 , Pectinas , Dieta , Humanos , Reologia , Viscosidade
20.
Carbohydr Polym ; 253: 117217, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278981

RESUMO

Cellulose nanocrystal (CNC) has tremendous potential in chemical, material, and food fields as an attractive green bioresource. We formulated viscoelastic hydrogels composed of anisotropic CNC using an extrusion-based 3D printing technology. We explored the rheological properties and printability of CNC hydrogels with different concentrations (0.5-25 wt%), and quantified the shear-induced self-assembly behavior of CNC during printing. The results showed that 20 wt% CNC hydrogels exhibited optimal print resolution and fidelity, with a high degree of orientation (72 %-73 %) of CNC alignment along the printing direction. It provides quantitative guidelines for the development of 3D printable materials with particle orientation. Furthermore, we prepared two composite hydrogels for 3D printing by blending CNC with high/low methoxy pectin (HMP/LMP). The results revealed that two hydrogels had favorable print fidelity at suitable ratios (CNC: HMP = 2:8, CNC: LMP = 10:5). This provided flexible and sustainable choices for the development of medical tissue engineering.


Assuntos
Celulose/química , Hidrogéis/química , Nanocompostos/química , Nanopartículas/química , Impressão Tridimensional , Reologia/métodos , Anisotropia , Materiais Biocompatíveis/química , Elasticidade , Pectinas/química , Engenharia Tecidual/métodos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...