Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Chromatogr A ; 1713: 464525, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38000198

RESUMO

Lubricating oils help an internal combustion engine function effectively by reducing friction and wear on the engine's moving parts. They typically consist of petroleum-derived base oil and various additives to achieve the desired characteristics in automotive engine oils. Determination of aromatics and polar additives in the finished and used lubricating oils is not possible with existing methods hence their development is significant from the perspectives of environment and reuse/re-refining of used lubricating oils. This study reports the development of a new HPLC method to determine additives in the finished lubricating oils and/or polars in the used engine oils. The proposed method is simple, fast (runtime of 13 min), does not require sample pre-treatment, and exhibits high precision and superior limits of detection and quantification. The method demonstrated good linear response ranging from 0.1 to 30 mass for total aromatics and 0.1 to 20 % for additives. The method validation was carried out by analyzing brand-new commercial two and four-wheeler lubricants with used automotive lubricants. Based on the proposed method, the aromatics and additives concentration ranges in the studied finished lubricants were estimated between 0.20-1.70 % (mass) and 0.20-3.50 % (mass), respectively. Similarly, for used lubricants, the aromatics and additives were estimated to be 1.00-6.10 % and 0.60-2.40 % (mass), respectively.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Cromatografia Líquida de Alta Pressão , Óleos , Petróleo/análise , Lubrificantes/análise , Lubrificantes/química
2.
Appl Radiat Isot ; 186: 110274, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567934

RESUMO

Compared to energy dispersive X-ray fluorescence (EDXRF) that is limited to analysis of elements (Z ≥ 13) via fluorescence and which is hardly direct, energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry exploits additionally, scatter radiation to quantify both low- and heavy-Z elements as well as predict various material properties. The goal of this work was to demonstrate proof-of-concept for chemometrics-enabled EDXRFS spectrometry utilizing a weak sample excitation source towards rapid quality assurance (QA) analysis of complex matrix materials. A109Cd source was used to analyse three types of polymer powders - polypropylene (PP), low density polyethene (LDPE) and high density polyethene (HDPE) moulded as âˆ¼ 2.5 g (∅ = 2.5 cm) pellets; and both actual as well as simulate lubricating oils spiked with trace additive metals B, Na, Ca, Mg, Fe and Zn and subjected to thermal degradation between 100 °C and 400 °C for 24 h. EDXRFS combined with principal components analysis (PCA) and soft independent modelling of class analogy (SIMCA) accurately identified polypropylene as well as differentiated it from both low density polyethene (LDPE) and high density polyethene (HDPE). LDPE and HDPE were fairly discriminated on the basis of density. In the second application partial least squares (PLS) modelling successfully determined the viscosity of lubricating oils utilizing the combination of the scatter peak and the Zn fluorescence signature, as well as correlated the lubricating oils viscosity to their thermal degradation. The reported method is applicable in industrial quality assurance due to its non-destructivity and speed.


Assuntos
Polietileno , Oligoelementos , Quimiometria , Óleos , Polipropilenos , Espectrometria por Raios X/métodos , Oligoelementos/análise , Raios X
3.
Materials (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614668

RESUMO

The article describes the results of experimental studies of electrorheological (ER) properties of lubricating oils containing an admixture of an ionic liquid as the electrically active ingredient. The novelty of these studies consists of the use of selected ionic liquids as additives to hydrocarbon oils in order to obtain quasi-homogenous mixtures with electrorheological properties. So far, such studies have not been carried out. Basic research, which consisted in determining the rheological characteristics in the presence of an external direct electric field, was carried out on a specially designed and built stand, which used a modified Brookfield DV-III Ultra viscometer. The conducted research showed that the produced mixtures generated the ER effect in the presence of a direct electric field with an intensity of up to 0.2 kV·mm-1. The tested mixtures showed different electrorheological characteristics. The research was also carried out in the so-called dielectric spectroscopy using the Hewlett Packard HP4192A impedance analyzer. The mechanism of generating and decaying the ER effect was diagnosed by in situ microscopy using the Nikon Eclipse LV100D optical microscope. It was found that the course of the τ = f(γ˙) characteristic of a mixture of hydrocarbon oil with a small admixture of an ionic liquid is mainly influenced by the so-called dielectric properties of the electrically active component, or rather their change as a function of the applied BIAS (DC) voltage. At the same time, the obtained results of the research gave grounds to state that the electrorheological characteristics also depend on many physicochemical properties of the mixture components and on the differentiation of their values e.g., from the difference in viscosity of the insulating base oil and the added ionic liquid, and also from the difference in the value of the surface tension of the base oil and the added ionic liquid. In these studies, it was found that the surface tension of the CJ001 ionic liquid at 25 °C was 26.032 mN·m-1. The surface tension of CJ008 was 28.099 mN·m-1 and that of PAO-6 oil was almost the same, i.e., 27.523 mN·m-1. The first mixture (GP1 + CJ001) showed Bigham characteristics and the second (PAO6 + CJ008) Newtonian, in the second mixture, the viscosity difference of the components was two times lower than in the first one (GP1-12.61 mPa·s, CJ001-552.42 mPa·s and PAO6-47.35 mPa·s, CJ008-327.24 mPa·s).

4.
ACS Nano ; 15(7): 11869-11879, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34170109

RESUMO

An intelligent monitoring lubricant is essential for the development of smart machines because unexpected and fatal failures of critical dynamic components in the machines happen every day, threatening the life and health of humans. Inspired by the triboelectric nanogenerators (TENGs) work on water, we present a feasible way to prepare a self-powered triboelectric sensor for real-time monitoring of lubricating oils via the contact electrification process of oil-solid contact (O-S TENG). Typical intruding contaminants in pure base oils can be successfully monitored. The O-S TENG has very good sensitivity, which even can respectively detect at least 1 mg mL-1 debris and 0.01 wt % water contaminants. Furthermore, the real-time monitoring of formulated engine lubricating oil in a real engine oil tank is achieved. Our results show that electron transfer is possible from an oil to solid surface during contact electrification. The electrical output characteristic depends on the screen effect from such as wear debris, deposited carbons, and age-induced organic molecules in oils. Previous work only qualitatively identified that the output ability of liquid can be improved by leaving less liquid adsorbed on the TENG surface, but the adsorption mass and adsorption speed of liquid and its consequences for the output performance were not studied. We quantitatively study the internal relationship between output ability and adsorbing behavior of lubricating oils by quartz crystal microbalance with dissipation (QCM-D) for liquid-solid contact interfaces. This study provides a real-time, online, self-powered strategy for intelligent diagnosis of lubricating oils.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31434340

RESUMO

Lubricating oils used in machines with an open cutting system, such as a saw or harvester, are applied in forest areas, gardening, in the household, and in urban greenery. During the operation of the device with an open cutting system, the lubricating oil is emitted into the environment. Therefore, the use of an oil base and refining additives of petroleum origin in the content of lubricants is associated with a negative impact on health and the environment. The current legal regulations concerning lubricants applicable in the European Union (EU) assess the degree of biodegradability. Legislation permits the use of biodegradable oils at 60% for a period of 28 days. This means that, in practice, lubricating oil considered to be biodegradable can contain up to 50% of the so-called petroleum oil base. The paper aims to draw public attention to the need to reduce the toxicity and harmful effects, due to their composition, of lubricating oils emitted into the environment on health. The authors discuss the impact of petroleum oil lubricants on soils, groundwater, vegetation, and animals, and the impact of petroleum-origin oil mist on health. An overview of test methods for the biodegradability of lubricating oils is presented, including the Organization for Economic Cooperation and Development (OECD) 301 A-F, 310, and 302 A-D tests, as well as their standard equivalents. The current legal regulations regarding the use and control of lubricating oils emitted into the environment are discussed. Legal provisions are divided according to their area of application. Key issues regarding the biodegradability and toxicity of petroleum fractions in lubricating oils are also addressed. It is concluded that lubricating oils, emitted or potentially emitted into the environment, should contain only biodegradable ingredients in order to eliminate the negative impact on both the environment and health. Total biodegradability should be confirmed by widely applied tests. Therefore, a need to develop and implement low-cost and simple control procedures for each type of lubricating oil, ensuring the possibility of an indisputable conclusion about the presence and total absence of petroleum-derived components in oil, as well as the content of natural ingredients, occurs.


Assuntos
Ecologia , Lubrificantes/toxicidade , Óleos/toxicidade , Animais , Biodegradação Ambiental , Exposição Ambiental , Solo
6.
Talanta ; 195: 573-579, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625585

RESUMO

A straightforward and rapid single-tube sample pretreatment for wear metals determination in used lubricating oils was developed in this work as an alternative to the reference pretreatment method (ASTM). A D-optimal mixture design on a three-component solution was performed. The optimal composition for the proposed sample preparation emulsion was 2% v/v of xylene, 9.5% v/v of Triton®X-114% and 88.5% v/v of H2O. The determination of 18 wear metals was carried out by microwave induced plasma with optical emission spectrometer (MIP OES), and the results of the two sample preparations -conventional and proposed- were statistically compared. Also, a certified standard "wear metals in used lubricating oils" for pretreatment validation was used. The developed method was as effective as the reference method indicated by ATSM, similar in speed and simplicity, but superior from the environmental and economic point of view. The proposed pretreatment allowed Ag, Al, Ba, Ca, Cd, Cr, Cu, K, Mg, Mn, Mo, Ni, Pb, Si, Sn, Ti, V and Zn determination, with LOQ between 1.40 mg kg-1 for Ca and 6.34 mg kg-1 for Pb. The precisions established as the relative standard deviation (RSD) were better than 6.2%. The proposed method avoid sample handling, reducing contamination risks and analyte losses, affording significantly improvement on wear metal quantification.

7.
Sensors (Basel) ; 18(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932444

RESUMO

Lubricant and hydraulic fluid ageing impacts the performance of the machines, gears, transmissions or automatisms where they are being used. This manuscript describes the work accomplished for bringing an innovative measurement concept for analysing the physical- chemical properties of these fluids, to a real industrial product ready to be integrated into different industrial equipment. The steps taken to deal with uncertainties and evolving requirements while progressing in the sensor development are described, covering the stages of theoretical formulation of the problem, optical and fluidic simulations, sensor prototype development and tests. The sensor working principle is based on a combination of transmittance and diffuse reflectance photonic inspection of the fluid sample that is collected in a microcavity through a standard hydraulic fitting. Photonics, electronics, micro-mechanics, fluidics, data processing and analysis has been merged with a deep knowledge in the lubricant degradation process to develop a sensor solution that is able to measure the Oil Degradation Index, Oil Oxidation, Acid Number, Ruler and Membrane Patch Colorimetry data from an inservice lubricating oil sample. The photonic micro sensor presented here offers a powerful tool that operates directly immersed in the fluid, at an economic cost and compacted size for inline oil degradation monitoring.

8.
Sensors (Basel) ; 17(3)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28335436

RESUMO

The presence of microscopic particles in suspension in industrial fluids is often an early warning of latent or imminent failures in the equipment or processes where they are being used. This manuscript describes work undertaken to integrate different photonic principles with a micro- mechanical fluidic structure and an embedded processor to develop a fully autonomous wear debris sensor for in-line monitoring of industrial fluids. Lens-less microscopy, stroboscopic illumination, a CMOS imager and embedded machine vision technologies have been merged to develop a sensor solution that is able to detect and quantify the number and size of micrometric particles suspended in a continuous flow of a fluid. A laboratory test-bench has been arranged for setting up the configuration of the optical components targeting a static oil sample and then a sensor prototype has been developed for migrating the measurement principles to real conditions in terms of operating pressure and flow rate of the oil. Imaging performance is quantified using micro calibrated samples, as well as by measuring real used lubricated oils. Sampling a large fluid volume with a decent 2D spatial resolution, this photonic micro sensor offers a powerful tool at very low cost and compacted size for in-line wear debris monitoring.

9.
An. bras. dermatol ; 86(4,supl.1): 53-56, jul,-ago. 2011. ilus
Artigo em Português | LILACS | ID: lil-604120

RESUMO

Elaioconiose é uma dermatose ocupacional do tipo acneiforme que afeta as áreas expostas de trabalhadores que lidam com óleos ou graxas. Atualmente, com o uso dos equipamentos de proteção individual, medidas de higiene pessoal e lavagem dos uniformes de trabalho, sua incidência diminuiu. Apesar de não ser uma doença rara, é pouco relatada na literatura, principalmente na nacional. Seu tratamento é lento e para a resolução das lesões, requer o afastamento do trabalhador de suas atividades laborativas.


Elaioconiosis is a work-related acneiform dermatosis which affects the exposed skin of individuals working with oils or greases. Its incidence has decreased with the introduction of personal protective equipment, personal hygiene measures and the cleaning of work clothes. Although not a rare disease, elaioconiosis is seldom reported in the literature, particularly in Brazil. Sufferers need to take time off work to proceed with the prolonged treatment to resolve the lesions caused by this condition.


Assuntos
Humanos , Masculino , Pessoa de Meia-Idade , Dermatite Ocupacional/etiologia , Dermatoses da Mão/induzido quimicamente , Óleos Industriais/toxicidade , Dermatite Ocupacional/patologia , Dermatoses da Mão/patologia , Licença Médica
10.
Rev. colomb. biotecnol ; 12(1): 141-157, jul. 2010. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-590652

RESUMO

Los lodos contaminados con residuos de aceites lubricantes usados generan gran impacto ambiental negativo al no ser manejados adecuadamente. Se propuso la biorremediación para disminuir la concentración de dichos contaminantes. Los ensayos fueron realizados en las instalaciones de la planta de tratamiento de aguas residuales (PTAR) de Río Frío (Girón, Santander, Colombia), donde se evaluaron consorcios microbianos nativos, que posteriormente se adicionaron a las biopilas conformadas por lodos deshidratados provenientes del tratamiento primario de aguas residuales domésticas (usados como fuente de materia orgánica), lodos provenientes de lavaderos de carros y lodos de alcantarillado de la zona industrial de la ciudad de Bucaramanga (Colombia). Se aislaron, identificaron y conservaron cepas microbianas con capacidad degradadora de hidrocarburos totales de petróleo (TPH) como Pseudomonas spp., Acinetobacter spp, Enterobacter cloacae, Citrobacter spp., Bacillus brevis, Micrococcus spp y Nocardia spp. Se hizo una serie de pruebas piloto donde se inoculó cada montaje con un consorcio bacteriano a una concentración de 3x108 UFC/ml de bacterias y microorganismos fúngicos como Aspergillus spp., Fusarium spp., Trichoderma spp., a una concentración de 1x106 esporas/ml; se monitorearon parámetros de temperatura, pH, humedad y oxigenación. Se realizaron dos ensayos para verificar el comportamiento de dichos tratamientos; se analizó la variable continua TPH en ppm mediante el método de modelos mixtos lineares en bloques aleatorios completos, que revelaron diferencias significativas entre la biopila control y las biopilas bajo prueba; se obtuvieron porcentajes de remoción hasta de 94% de TPH en 120 días y 84% en 40 días, lo que reflejó un efecto positivo en la utilización de los consorcios de microorganismos bajo prueba en la descontaminación de lodos de alcantarillado industrial y lodos de lavaderos de carros.


The sludge contaminated with residues of used lubricating oils produce large negative environmental impact by not being handled properly. We proposed Biorremediation to decreasethe concentration of these polltants. The trials were conducted on the waste water treatment plant (WWTP) Río Frío (Girón, Santander, Colombia) ,we evaluate native microbial associations, and subsequently they were added to biopiles, made up of dried sludge the waste water treatment (source of organic mater) sludge from washing cars and sewage sludge from the industrial area of the city Bucaramanga (Colombia). Several pilot test were completed and we isolated, identified and retained microbial atrains with ability to degrading total petroleum hydrocarbons (TPH) such as Pseudomonas spp., Escherichia coli, Citrobacter spp., Bacillus brevis, Micrococcus spp., among others. We inoculated each pilot assembly with a bacterial concentration of 3x108 UFC/ml and fungal microorganisms like Aspergillus spp., Fusarium spp., Trichoderma spp. in a concentration of 1x106 Spores/ml. Parameters such as temperature, pH, humidity, oxygenation were monitoring frequently. Two trials were completed to verify the behabior and results of treatment, we analized continuously the concentration of TPH using linear mixed models approach in a randomized complete blocks, which revealed significant differences between control biopile (without microorganism consortia) and biopiles under test, obtaining removal percentages to 94% of TPH in 120 days, and 84% in 40 days, reflecting a positive effect on the use of consortia of microorganisms under test in the decontamination of domestic sewage sludge and industrial sludge and sludge the car wash.


Assuntos
/análise , /métodos , Óleos Lubrificantes/análise , Óleos Lubrificantes/efeitos adversos , Óleos Lubrificantes/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...