Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202402679, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298687

RESUMO

The triplet excited state lifetime of a photosensitizer is an essential parameter for diffusion-controlled energy- and electron-transfer, which occurs usually in a competitive manner to the intrinsic decay of a triplet excited state. Here we show the decisive role of luminescence lifetime in the triplet excited state reactivity toward energy- and electron transfer. Anchoring two phenyl anthracene chromophores to a ruthenium(II) polypyridyl complex (RuII ref) leads to a RuII triad with a luminescence lifetime above 100 µs, which is more than 40 times longer than that of the prototypical complex. The obtained RuII triad sensitizes energy transfer to anthracene-based annihilators more efficiently than the RuII ref and enables red-to-blue photon upconversion with a pseudo anti-Stokes shift of 0.94 eV and a moderate upconversion efficiency near 1% in aerated solution. Particularly, the RuII triad allows rapid photoredox catalytic polymerizations of acrylate and acrylamide monomers under aerobic condition with red light, which are kinetically hindered for the RuII ref. Our work shows that excited state lifetime of a photosensitizer governs the dynamics of the excited state reactions, which seems an overlooked but important aspect for photochemistry.

2.
Adv Mater ; 35(52): e2306606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787978

RESUMO

Luminescence lifetime-based sensing is ideally suited to monitor biological systems due to its minimal invasiveness and remote working principle. Yet, its applicability is limited in conditions of low signal-to-noise ratio (SNR) induced by, e.g., short exposure times and presence of opaque tissues. Herein this limitation is overcome by applying a U-shaped convolutional neural network (U-NET) to improve luminescence lifetime estimation under conditions of extremely low SNR. Specifically, the prowess of the U-NET is showcased in the context of luminescence lifetime thermometry, achieving more precise thermal readouts using Ag2 S nanothermometers. Compared to traditional analysis methods of decay curve fitting and integration, the U-NET can extract average lifetimes more precisely and consistently regardless of the SNR value. The improvement achieved in the sensing performance using the U-NET is demonstrated with two experiments characterized by extreme measurement conditions: thermal monitoring of free-falling droplets, and monitoring of thermal transients in suspended droplets through an opaque medium. These results broaden the applicability of luminescence lifetime-based sensing in fields including in vivo experimentation and microfluidics, while, hopefully, spurring further research on the implementation of machine learning (ML) in luminescence sensing.


Assuntos
Luminescência , Termometria , Redes Neurais de Computação
3.
FEBS J ; 290(23): 5554-5565, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37622174

RESUMO

Luciferases are widely used as reporter proteins in various fields. Recently, we developed a minimal bright luciferase, picALuc, via partial deletion of the artificial luciferase (ALuc) derived from copepods luciferases. However, the structures of copepod luciferases in the substrate-bound state remain unknown. Moreover, as suggested by structural modeling, picALuc has a larger active site cavity, unlike that in other copepod luciferases. Here, to explore the bioluminescence mechanism of picALuc and its luminescence properties, we conducted multiple mutational analyses, and identified residues and regions important for catalysis and bioluminescence. Mutations of residues likely involved in catalysis (S33, H34, and D55) markedly reduced bioluminescence, whereas that of residue (E50) (near the substrate in the structural model) enhanced luminescence intensity. Furthermore, deletion mutants (Δ70-Δ78) in the loop region (around I73) exhibited longer luminescence lifetimes (~ 30 min) and were reactivated multiple times upon re-addition of the substrate. Due to the high thermostability of picALuc, one of its representative mutant (Δ74), was able to be reused, that is, luminescence recycling, for day-scale time at room temperature. These findings provide important insights into picALuc bioluminescence mechanism and copepod luciferases and may help with sustained observations in a variety of applications.


Assuntos
Medições Luminescentes , Sequência de Aminoácidos , Luciferases/genética , Luciferases/metabolismo , Mutação , Domínio Catalítico , Catálise
4.
Methods Mol Biol ; 2689: 39-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37430045

RESUMO

Droplet microfluidic technology facilitates the development of high-throughput screening applications in nanoliter volumes. Surfactants provide stability for emulsified monodisperse droplets to carry out compartmentalization. Fluorinated silica-based nanoparticles are used; they can minimize crosstalk in microdroplets and provide further functionalities by surface labeling. Here we describe a protocol for monitoring pH changes in live single cells by fluorinated silica nanoparticles, for their synthesis, chip fabrication, and optical monitoring on the microscale. The nanoparticles are doped with ruthenium-tris-1,10-phenanthroline dichloride on the inside and conjugated with fluorescein isothiocyanate on the surface. This protocol may be used more generally to detect pH changes in microdroplets. The fluorinated silica nanoparticles can also be used as droplet stabilizers with an integrated luminescent sensor for other applications.


Assuntos
Ensaios de Triagem em Larga Escala , Dióxido de Silício , Reações Cruzadas , Fluoresceína , Concentração de Íons de Hidrogênio
5.
ACS Nano ; 17(16): 15401-15410, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37440601

RESUMO

Today's huge amount of data generation and transfer induced an urgent requirement for long-term data storage. Here, we demonstrate and discuss a concept for long-term storage using NV centers inside nanodiamonds. The approach is based upon the radiation-induced generation of additional vacancies (so-called GR1 states), which quench the initial NV centers, resulting in a reduced overall fluorescence lifetime of the NV center. Using the tailored fluorescence lifetime of the NV center to code the information, we demonstrate a "beyond binary" data storage density per bit. We also demonstrate that this process is reversible by heating the sample or the spot of information. This proof of principle shows that our technique may be a promising alternative data storage technology, especially in terms of long-term storage, due to the high stability of the involved color centers. In addition to the proof-of-principle demonstration using macroscopic samples, we suggest and discuss the usage of focused electron beams to write information in nanodiamond materials, to read it out with focused low-intensity light, and to erase it on the macro-, micro-, or nanoscale.

6.
Angew Chem Int Ed Engl ; 61(47): e202209592, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36175373

RESUMO

Designing luminescence lifetime sensors in the second near-infrared (NIR-II) window is a great challenge due to the difficult structural construction. Here, we report a tumor redox responsive and easily synthesized material, amorphous manganese oxide (MnOx ) with indirect band gap of 1.02 eV, as an energy acceptor to build a luminescence resonance energy transfer (LRET) toolbox for universally regulating NIR-I to NIR-II luminescence lifetimes of lanthanide nanoparticles, in which energy transfer is based on matched energy gap instead of conventional overlapped spectra. We further utilize ytterbium (Yb3+ )-doped YbNP@MnOx as an NIR-II luminescence lifetime sensor to realize in vitro quantitative redox visualization with relative errors under 5 % in samples covered with mouse skin. Furthermore, HepG2 cells and tumors with high redox state have been accurately distinguished by NIR-II luminescence lifetime imaging. The quantified intracellular and intratumor glutathione (GSH) levels are highly consistent with the commercial kit results, illustrating the reliable redox visualization ability in biological tissue.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Camundongos , Animais , Elementos da Série dos Lantanídeos/química , Luminescência , Nanopartículas/química , Glutationa , Espectroscopia de Luz Próxima ao Infravermelho , Oxirredução
7.
Angew Chem Int Ed Engl ; 61(42): e202209378, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35918764

RESUMO

Luminescence lifetime imaging has exhibited significant advantages over traditional optical imaging in terms of precise quantification detection because of the intrinsic stability of luminescence lifetimes. Recently, great emphasis has been put on the exploration of lanthanide-doped nanoparticles (LnNPs) with long-lived luminescence. The long luminescence lifetime of LnNPs not only makes it easier to filter out background signals during imaging, but also provides a wide range of tunable lifetime. Here, we introduce the luminescence mechanisms of LnNPs, the key strategies for luminescence lifetime modulation, data acquisition methods, and several cutting-edge applications in lifetime imaging systems. Then we describe several prospects to inspire efforts for improving technologies and extending applications of luminescence lifetime imaging.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Nanopartículas , Luminescência , Imagem Óptica
8.
Biosensors (Basel) ; 12(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35200391

RESUMO

Lanthanide-doped nanoparticles possess numerous advantages including tunable luminescence emission, narrow peak width and excellent optical and thermal stability, especially concerning the long lifetime from microseconds to milliseconds. Differing from other shorter-lifetime fluorescent nanomaterials, the long lifetime of lanthanide-doped nanomaterials is independent with background fluorescence interference and biological tissue depth. This review presents the recent advances in approaches to regulating the lifetime and applications of bioimaging and biodetection. We begin with the introduction of the strategies for regulating the lifetime by modulating the core-shell structure, adjusting the concentration of sensitizer and emitter, changing energy transfer channel, establishing a fluorescence resonance energy transfer pathway and changing temperature. We then summarize the applications of these nanoparticles in biosensing, including ion and molecule detecting, DNA and protease detection, cell labeling, organ imaging and thermal and pH sensing. Finally, the prospects and challenges of the lanthanide lifetime regulation for fundamental research and practical applications are also discussed.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , DNA/química , Transferência Ressonante de Energia de Fluorescência , Elementos da Série dos Lantanídeos/química , Luminescência , Nanopartículas/química
9.
Sensors (Basel) ; 21(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577281

RESUMO

Factors that cause nonuniformity in the luminescence lifetime of pressure-sensitive paints (PSPs) were investigated. The lifetime imaging method of PSP does not theoretically require wind-off reference images. Therefore, it can improve measurement accuracy because it can eliminate errors caused by the deformation or movement of the model during the measurement. However, it is reported that the luminescence lifetime of PSP is not uniform on the model, even under uniform conditions of pressure and temperature. Therefore, reference images are used to compensate for the nonuniformity of the luminescence lifetime, which significantly diminishes the advantages of the lifetime imaging method. In particular, fast-responding PSPs show considerable variation in luminescence lifetime compared to conventional polymer-based PSPs. Therefore, this study investigated and discussed the factors causing the nonuniformity of the luminescence lifetime, such as the luminophore solvent, luminophore concentrations, binder thickness, and spraying conditions. The results obtained suggest that the nonuniformity of the luminophore distribution in the binder caused by the various factors mentioned above during the coating process is closely related to the nonuniformity of the luminescence lifetime. For example, when the thickness of the binder became thinner than 8 µm, the fast-responding PSPs showed a tendency to vary significantly in the luminescence lifetime. In addition, it was found that the luminescence lifetime of fast-responding PSP could be changed in the depth direction of the binder depending on the coating conditions. Therefore, it is important to distribute the luminophore uniformly in the binder layer to create PSPs with a more uniform luminescence lifetime distribution.


Assuntos
Luminescência , Pintura , Temperatura
10.
Anal Bioanal Chem ; 413(12): 3291-3297, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33772340

RESUMO

Luminescence lifetime imaging plays an important role in distinguishing the luminescence decay rates in time-resolved luminescence imaging. However, traditional imaging instruments used for detecting lifetimes within milliseconds would be time-consuming when imaging ultra-long luminescence lifetimes over subseconds. Herein, we present an accessible and simple optical system for detecting lifetimes of persistent luminescence. A smartphone integrated with a UV LED, a dichroic mirror, and a lens was used for recording the persistent luminescence. With only a few seconds of data acquisition, a luminescence lifetime image could be processed from the video by exponential fitting of the gray level of each pixel to the delay time. Since this approach only requires single excitation, no synchronous control is needed, greatly simplifying the apparatus and saving the cost. The apparatus was successfully used for ultra-long luminescence lifetime imaging of mouse tissue dyed with a persistent luminescence molecule. This miniaturized apparatus exhibits huge potentiality in time-resolved luminescence imaging for luminescence study and biological detection.


Assuntos
Luminescência , Smartphone , Temperatura , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pele/metabolismo
11.
Chemistry ; 27(22): 6783-6794, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33755263

RESUMO

Complexes of RhI and IrI of the [M(COD)(NHC)X] type (where M=Rh or Ir, COD=1,5-cyclooctadiene, NHC=N-heterocyclic carbene, and X=halide) have recently shown promising cytotoxic activities against several cancer cell lines. Initial mechanism of action studies provided some knowledge about their interaction with DNA and proteins. However, information about their cellular localization remains scarce owing to luminescence quenching within this complex type. Herein, the synthesis of two rare examples of luminescent RhI and IrI [M(COD)(NHC)I] complexes with 1,8-naphthalimide-based emitting ligands is reported. All new complexes are comprehensively characterized, including with single-crystal X-ray structures. Steric crowding in one derivative leads to two distinct rotamers in solution, which apparently can be distinguished both by pronounced NMR shifts and by their respective spectral and temporal emission signatures. When the photophysical properties of these new complexes are exploited for cellular imaging in HT-29 and PT-45 cancer cell lines, it is demonstrated that the complexes accumulate predominantly in the endoplasmic reticulum, which is an entirely new finding and provides the first insight into the cellular localization of such IrI (NHC) complexes.


Assuntos
Irídio , Compostos Organometálicos , Retículo Endoplasmático , Luminescência , Metano/análogos & derivados , Estrutura Molecular
12.
Molecules ; 26(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477558

RESUMO

Detection of tissue and cell oxygenation is of high importance in fundamental biological and in many medical applications, particularly for monitoring dysfunction in the early stages of cancer. Measurements of the luminescence lifetimes of molecular probes offer a very promising and non-invasive approach to estimate tissue and cell oxygenation in vivo and in vitro. We optimized the evaluation of oxygen detection in vivo by [Ru(Phen)3]2+ in the chicken embryo chorioallantoic membrane model. Its luminescence lifetimes measured in the CAM were analyzed through hierarchical clustering. The detection of the tissue oxygenation at the oxidative stress conditions is still challenging. We applied simultaneous time-resolved recording of the mitochondrial probe MitoTrackerTM OrangeCMTMRos fluorescence and [Ru(Phen)3]2+ phosphorescence imaging in the intact cell without affecting the sensitivities of these molecular probes. [Ru(Phen)3]2+ was demonstrated to be suitable for in vitro detection of oxygen under various stress factors that mimic oxidative stress: other molecular sensors, H2O2, and curcumin-mediated photodynamic therapy in glioma cancer cells. Low phototoxicities of the molecular probes were finally observed. Our study offers a high potential for the application and generalization of tissue oxygenation as an innovative approach based on the similarities between interdependent biological influences. It is particularly suitable for therapeutic approaches targeting metabolic alterations as well as oxygen, glucose, or lipid deprivation.


Assuntos
Glioma/metabolismo , Compostos Organometálicos/química , Estresse Oxidativo , Oxigênio/análise , Fenantrolinas/química , Animais , Embrião de Galinha , Glioma/patologia , Humanos , Técnicas In Vitro , Células Tumorais Cultivadas
13.
ACS Sens ; 5(7): 1872-1876, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32610895

RESUMO

Remarkable variation between cell-free and cellular measurements of enzyme activity triggered the unmet need to develop tools for monitoring enzyme activity in living cells. Such tools will advance our understanding of the biological functions of enzymes and their potential impact on drug discovery. We report in this study a universal assay for monitoring ATP-generating enzymes in living cells using a self-assembled Tb3+ complex probe. Modulation of the rheological properties of cell culture media enabled shifting the lifetime of the Tb3+ complex in the presence of ATP from micro-to-millisecond range. Based on the response of the Tb3+ complex to ATP, cellular assays for 5 ATP-generating enzymes were developed. Remarkably, assessment of the activity of these enzymes in living cells is made possible for the first time. The pyruvate kinase M2 (PKM2) assay has been optimized for high-throughput screening (HTS) and further implemented in the identification of novel scaffolds as PKM2 inhibitors.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Elementos da Série dos Lantanídeos , Trifosfato de Adenosina
14.
Materials (Basel) ; 13(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188107

RESUMO

Most analyses of phase transformations detected by rare earth ions are based on the luminescence spectrum, while in this study we focus on the luminescence decay processes. We prepared Eu3+-doped (Na, K)0.5Bi0.5TiO3 ceramics and studied their phase structure before and after poling by luminescence spectra, decay curves, and X-ray diffraction (XRD). Luminescence spectra indicated that electric fields induced a transformation in (Na0.8, K0.2)0.5Bi0.497Eu0.003TiO3 (NKBET20) ceramic from tetragonal to rhombohedral phase (R phase). Based on the decay kinetics and the Judd-Ofelt theory, decay curves were shown to identify the fraction of the transformation quantitatively. The data from decay curves suggest that with electric fields increasing from 0 to 50 kV/cm, the R phase fraction increases from about 23 to 89% and the tetragonal phase (T phase) fraction decreases from about 77 to 11%. XRD Rietveld analyses further confirmed the results. In this work, the analyses of the phase fractions are simplified by the monoexponential decay of the pure phases and the biexponential decay of the mixed phase, showing an easy and inexpensive way of studying the phase structures of the materials.

15.
Nano Lett ; 20(3): 1992-1999, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053384

RESUMO

Defect centers in two-dimensional hexagonal boron nitride (hBN) are drawing attention as single-photon emitters with high photostability at room temperature. With their ultrahigh photon-stability, hBN single-photon emitters are promising for new applications in quantum technologies and for 2D-material based optoelectronics. Here, we control the emission rate of hBN-defects by coupling to resonant plasmonic nanocavities. By deterministic control of the antenna, we acquire high-resolution emission maps of the single hBN-defects. Using time-gating, we can discriminate the hBN-defect emission from the antenna luminescence. We observe sharp dips (40 nm fwhm) in emission, together with a reduction in luminescence lifetime. Comparing with finite-difference time-domain simulations, we conclude that both radiative and nonradiative rates are enhanced, effectively reducing the quantum efficiency. Also, the large refractive index of hBN largely screens off the local antenna field enhancement. Finally, based on the insight gained we propose a close-contact design for an order of magnitude brighter hBN single-photon emission.

16.
ACS Appl Bio Mater ; 3(8): 5103-5110, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021686

RESUMO

Luminescence lifetime imaging (LLIM) holds great promise in biomedical research owing to its excellent sensitivity and remarkable temporal-spatial resolution, but the development of effective long-lived luminescent probes for LLIM remains an unmet need. Herein, we designed two water-dispersible europium-doped nanoparticles (Eu-D1 and Eu-D2 NPs) for cellular LLIM, showing intense red luminescence emission and an increased lifetime of 4 orders of magnitude (∼56 000 times) than undoped NPs, which could be attributed to the multiple manipulations of their aggregation states, including efficient Förster resonance energy transfer (FRET), suppressed self-quenching, and restrained solvent effects. With good bioavailability, the as-developed NPs were demonstrated as reliable candidates for long-lifetime imaging agents. Such a simple and versatile strategy could be extended to develop various luminescent nanoprobes for advanced high-precision bioimaging.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117434, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31394392

RESUMO

Molecular motion plays an important role in the reverse intersystem crossing of thermally activated delayed fluorescence (TADF) materials, since the conformation varies as the molecule vibrates, leading to potential changes in the energies of excited states. Although many theoretical simulations have researched the relationship between the excited states and the molecular conformations, there are still few experimental results showing the energy level difference between different long-lived excited states. Herein, a novel method for measuring spectrally resolved luminescence lifetimes is proposed to detect the energy splitting of the long-lived excited states of a classical TADF molecule, BTZ-DMAC. A set of the time-gated luminescence spectra with different delay times were captured by a spectrograph equipped on an auto-phase-locked system, and then used for lifetime analysis at each wavelength. Unlike traditional measurement techniques, the proposed novel method does not require ultrafast laser, high-speed detector and any phase matching circuitry, thus significantly reducing the cost. This method revealed a definite energy gap between the two excited states of BTZ-DMAC with different lifetimes, indicating different conformations caused by molecular vibration. This low-cost method could be also used to detect many other luminescence materials for investigating the detail mechanisms of multiple excited states.

18.
Mikrochim Acta ; 186(12): 841, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31768640

RESUMO

A luminescent microRNA nanoprobe based on the target-triggered Ir(III)-solvent complex release has been fabricated. The complex is initially embedded into mesoporous silica nanoparticles (MSNs), and then is capped by single-stranded (ss) DNA. In the presence of the target microRNA, the ssDNA hybridize with the microRNA forming a rigid DNA/RNA heteroduplexes and leaving the surface of MSN. Thus, the capped Ir(III) solvent complex is released and re-coordinated with histidine (His) to form a new luminescent complex. The luminescence intensity of the nascent complex (with excitation/emission maxima at 340/570 nm) is positively correlated with the concentrations of the target microRNA in the range from 0.05 to 2 nM, and the detection limit of microRNA is estimated as 0.2 pM (S/N = 3). The ability of this nanoprobe to detect microRNA in cell extract further demonstrates its potential in practical application. Graphical abstractSchematic of a luminescent microRNA nanoprobe based on the target-triggered release of an Ir(III)-solvent complex from mesoporous silica nanoparticles.


Assuntos
Complexos de Coordenação/química , Substâncias Luminescentes/química , MicroRNAs/química , Nanopartículas/química , Dióxido de Silício/química , Acetonitrilas/química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Histidina/química , Humanos , Irídio/química , Limite de Detecção , Medições Luminescentes/métodos , Células MCF-7 , MicroRNAs/genética , Hibridização de Ácido Nucleico , Porosidade , Estudo de Prova de Conceito
19.
Small ; 15(46): e1904487, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31565853

RESUMO

For years, luminescence lifetime imaging has served as a quantitative tool in indicating intracellular components and activities. However, very few studies involve the in vivo study of animals, especially in vivo stimuli-responsive activities of animals, as both excitation and emission wavelengths should fall into the near-infrared (NIR) optical transparent window (660-950 and 1000-1500 nm). Herein, this work reports a lifetime-responsive nanocomposite with both excitation and emission in the NIR I window (800 nm) and lifetime in the microsecond region. The incorporation of Tm3+ -doped rare-earth nanocrystals and NIR dye builds an efficient energy transfer pathway that enables a tunable luminescence lifetime range. The NaYF4 :Tm nanocrystal, which absorbs and emits photons at the same energy level, is found to be 33 times brighter than optimized core-shell upconversion nanocrystals, and proved to be an effective donor for NIR luminescence resonance energy transfer (LRET). The anti-interference capability of luminescence lifetime signals is further confirmed by luminescence and lifetime imaging. In vivo studies also verify the lifetime response upon stimulation generated in an arthritis mouse model. This work introduces an intriguing tool for luminescence lifetime-based sensing in the microsecond region.


Assuntos
Corantes/química , Luminescência , Metais Terras Raras/química , Nanocompostos/química , Animais , Fluoretos/química , Camundongos , Nanocompostos/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Ítrio/química
20.
Nano Lett ; 19(10): 7287-7292, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525062

RESUMO

The ability to tailor waveguide cavities and couple them with quantum emitters has developed a realm of nanophotonics encompassing, for example, highly efficient single photon generation or the control of giant photon nonlinearities. Opening new grounds by pushing the interaction of the waveguide cavity and integrated emitters further into the deep subwavelength regime, however, has been complicated by nonradiative losses due to the increasing importance of surface defects when decreasing cavity dimensions. Here, we show efficient suppression of nonradiative recombination for thin waveguide cavities using core-shell semiconductor nanowires. We experimentally reveal the advantages of such nanowires, which host mobile emitters, that is, free excitons, in a one-dimensional (1D) waveguide, highlighting the resulting potential for tunable, active, nanophotonic devices. In our experiment, controlling the nanowire waveguide diameter tunes the luminescence lifetime of excitons in the nanowires across 2 orders of magnitude up to 80 ns. At the smallest wire diameters, we show that this luminescence lifetime can be manipulated by engineering the dielectric environment of the nanowires. Exploiting this unique handle on the spontaneous emission of mobile emitters, we demonstrate an all-dielectric spatial control of the mobile emitters along the axis of the 1D nanowire waveguide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA