Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297649

RESUMO

The objective of this study was to assess the effectiveness of liposomes loaded with soybean lunasin and amaranth unsaponifiable matter (UM + LunLip) as a source of squalene in the prevention of melanoma skin cancer in an allograft mice model. Tumors were induced by transplanting melanoma B16-F10 cells into the mice. The most effective treatments were those including UM + LunLip, with no difference between the lunasin concentrations (15 or 30 mg/kg body weight); however, these treatments were statistically different from the tumor-bearing untreated control (G3) (p < 0.05). The groups treated with topical application showed significant inhibition (68%, p < 0.05) compared to G3. The groups treated with subcutaneous injections showed significant inhibition (up to 99%, p < 0.05) in G3. During tumor development, UM + LunLip treatments under-expressed Ki-67 (0.2-fold compared to G3), glycogen synthase kinase-3ß (0.1-fold compared to G3), and overexpressed caspase-3 (30-fold compared to G3). In addition, larger tumors showed larger necrotic areas (38% with respect to the total tumor) (p < 0.0001). In conclusion, the UM + LunLip treatment was effective when applied either subcutaneously or topically in the melanoma tumor-developing groups, as it slowed down cell proliferation and activated apoptosis.

2.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076946

RESUMO

Cancer has become one of the main public health problems worldwide, demanding the development of new therapeutic agents that can help reduce mortality. Lunasin is a soybean peptide that has emerged as an attractive option because its preventive and therapeutic actions against cancer. In this review, we evaluated available research on lunasin's structure and mechanism of action, which should be useful for the development of lunasin-based therapeutic products. We described data on its primary, secondary, tertiary, and possible quaternary structure, susceptibility to post-translational modifications, and structural stability. These characteristics are important for understanding drug activity and characterizing lunasin products. We also provided an overview of research on lunasin pharmacokinetics and safety. Studies examining lunasin's mechanisms of action against cancer were reviewed, highlighting reported activities, and known molecular partners. Finally, we briefly discussed commercially available lunasin products and potential combination therapeutics.


Assuntos
Neoplasias , Proteínas de Soja , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Processamento de Proteína Pós-Traducional , Proteínas de Soja/química , Proteínas de Soja/farmacologia , Proteínas de Soja/uso terapêutico , Glycine max/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-36141952

RESUMO

Inflammation is a normal response in defense to agents that may cause damage to the human body. When inflammation becomes chronic, reactive oxygen species (ROS) are produced; which could lead to diseases such as cancer. The aim was to assess liposomes' antioxidant and anti-inflammatory capacity loaded with amaranth unsaponifiable matter and soybean lunasin (UM + LunLip) in an in vitro model using fibroblasts and macrophages. To evaluate ROS production, fibroblasts CHON-002 ABAP were added to promote ROS production; and the cells were treated with UM + LunLip. For inflammation markers production, lipopolysaccharides (LPS)-stimulated RAW 264.7 and peritoneal macrophages were treated with empty liposomes (EmLip), liposomes loaded with unsaponifiable matter (UMLip), liposomes loaded with lunasin (LunLip), and UM + LunLip. ROS production was significantly decreased by 77% (p < 0.05) when fibroblasts were treated with UM + LunLip at 2 mg lunasin/mL compared with the control treated with ABAP. Treatment with UMLip was the most effective in reducing tumor necrosis factor-α (71-90%) and interleukin-6 (43-55%, p < 0.001). Both liposomes containing unsaponifiable matter (UMLip and UM + LunLip) were more effective than EmLip or LunLip. In conclusion, amaranth unsaponifiable matter-loaded liposomes are effective in decreasing pro-inflammatory cytokine production.


Assuntos
Glycine max , Lipopolissacarídeos , Amidinas , Anti-Inflamatórios , Antioxidantes/farmacologia , Fibroblastos , Humanos , Inflamação , Interleucina-6 , Lipossomos , Macrófagos , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA