Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Artif Intell Med ; 154: 102917, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38917599

RESUMO

Early detection of pneumoconiosis by routine health screening of workers in the mining industry is critical for preventing the progression of this incurable disease. Automated pneumoconiosis classification in chest X-ray images is challenging due to the low contrast of opacities, inter-class similarity, intra-class variation and the existence of artifacts. Compared to traditional methods, convolutional neural networks have shown significant improvement in pneumoconiosis classification tasks, however, accurate classification remains challenging due to mainly the inability to focus on semantically meaningful lesion opacities. Most existing networks focus on high level abstract information and ignore low level detailed object information. Different from natural images where an object occupies large space, the classification of pneumoconiosis depends on the density of small opacities inside the lung. To address this issue, we propose a novel two-stage adaptive multi-scale feature pyramid network called AMFP-Net for the diagnosis of pneumoconiosis from chest X-rays. The proposed model consists of 1) an adaptive multi-scale context block to extract rich contextual and discriminative information and 2) a weighted feature fusion module to effectively combine low level detailed and high level global semantic information. This two-stage network first segments the lungs to focus more on relevant regions by excluding irrelevant parts of the image, and then utilises the segmented lungs to classify pneumoconiosis into different categories. Extensive experiments on public and private datasets demonstrate that the proposed approach can outperform state-of-the-art methods for both segmentation and classification.

2.
Biomed Phys Eng Express ; 10(5)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38781939

RESUMO

Accurate lung segmentation in chest x-ray images plays a pivotal role in early disease detection and clinical decision-making. In this study, we introduce an innovative approach to enhance the precision of lung segmentation using the Segment Anything Model (SAM). Despite its versatility, SAM faces the challenge of prompt decoupling, often resulting in misclassifications, especially with intricate structures like the clavicle. Our research focuses on the integration of spatial attention mechanisms within SAM. This approach enables the model to concentrate specifically on the lung region, fostering adaptability to image variations and reducing the likelihood of false positives. This work has the potential to significantly advance lung segmentation, improving the identification and quantification of lung anomalies across diverse clinical contexts.


Assuntos
Algoritmos , Pulmão , Radiografia Torácica , Humanos , Pulmão/diagnóstico por imagem , Radiografia Torácica/métodos , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
3.
Phys Med Biol ; 69(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38417177

RESUMO

Objective. Honeycomb lung is a rare but severe disease characterized by honeycomb-like imaging features and distinct radiological characteristics. Therefore, this study aims to develop a deep-learning model capable of segmenting honeycomb lung lesions from Computed Tomography (CT) scans to address the efficacy issue of honeycomb lung segmentation.Methods. This study proposes a sparse mapping-based graph representation segmentation network (SM-GRSNet). SM-GRSNet integrates an attention affinity mechanism to effectively filter redundant features at a coarse-grained region level. The attention encoder generated by this mechanism specifically focuses on the lesion area. Additionally, we introduce a graph representation module based on sparse links in SM-GRSNet. Subsequently, graph representation operations are performed on the sparse graph, yielding detailed lesion segmentation results. Finally, we construct a pyramid-structured cascaded decoder in SM-GRSNet, which combines features from the sparse link-based graph representation modules and attention encoders to generate the final segmentation mask.Results. Experimental results demonstrate that the proposed SM-GRSNet achieves state-of-the-art performance on a dataset comprising 7170 honeycomb lung CT images. Our model attains the highest IOU (87.62%), Dice(93.41%). Furthermore, our model also achieves the lowest HD95 (6.95) and ASD (2.47).Significance.The SM-GRSNet method proposed in this paper can be used for automatic segmentation of honeycomb lung CT images, which enhances the segmentation performance of Honeycomb lung lesions under small sample datasets. It will help doctors with early screening, accurate diagnosis, and customized treatment. This method maintains a high correlation and consistency between the automatic segmentation results and the expert manual segmentation results. Accurate automatic segmentation of the honeycomb lung lesion area is clinically important.


Assuntos
Tratos Piramidais , Radiologia , Tomografia Computadorizada por Raios X , Pulmão/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
4.
Curr Med Imaging ; 20: 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389381

RESUMO

BACKGROUND: The novel coronavirus pandemic has caused a global health crisis, placing immense strain on healthcare systems worldwide. Chest X-ray technology has emerged as a critical tool for the diagnosis and treatment of COVID-19. However, the manual interpretation of chest X-ray films has proven to be inefficient and time-consuming, necessitating the development of an automated classification system. OBJECTIVE: In response to the challenges posed by the COVID-19 pandemic, we aimed to develop a deep learning model that accurately classifies chest X-ray images, specifically focusing on lung regions, to enhance the efficiency and accuracy of COVID-19 and pneumonia diagnosis. METHODS: We have proposed a novel deep network called "FocusNet" for precise segmentation of lung regions in chest radiographs. This segmentation allows for the accurate extraction of lung contours from chest X-ray images, which are then input into the classification network, ResNet18. By training the model on these segmented lung datasets, we sought to improve the accuracy of classification. RESULTS: The performance of our proposed system was evaluated on three types of lung regions in normal individuals, COVID-19 patients, and those with pneumonia. The average accuracy of the segmentation model (FocusNet) in segmenting lung regions was found to be above 90%. After reclassification of the segmented lung images, the specificities and sensitivities for normal, COVID-19, and pneumonia were excellent, with values of 98.00%, 99.00%, 99.50%, and 98.50%, 100.00%, and 99.00%, respectively. ResNet18 achieved impressive area under the curve (AUC) values of 0.99, 1.00, and 0.99 for classifying normal, COVID-19, and pneumonia, respectively, on the segmented lung datasets. Moreover, the AUC values of the three groups increased by 0.02, 0.02, and 0.06, respectively, when compared to the direct classification of unsegmented original images. Overall, the accuracy of lung region classification after processing the datasets was 99.3%. CONCLUSION: Our deep learning-based automated chest X-ray classification system, incorporating lung region segmentation using FocusNet and subsequent classification with ResNet18, has significantly improved the accuracy of diagnosing respiratory lung diseases, including COVID-19. The proposed approach has great potential to revolutionize the diagnosis of COVID-19 and other respiratory lung diseases, offering a valuable tool to support healthcare professionals during health crises.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumopatias , Pneumonia , Humanos , COVID-19/diagnóstico por imagem , Pandemias , Raios X , Pulmão/diagnóstico por imagem , Pneumonia/diagnóstico por imagem
5.
Digit Health ; 10: 20552076231225853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313365

RESUMO

Background: The COVID-19 can cause long-term symptoms in the patients after they overcome the disease. Given that this disease mainly damages the respiratory system, these symptoms are often related with breathing problems that can be caused by an affected diaphragm. The diaphragmatic function can be assessed with imaging modalities like computerized tomography or chest X-ray. However, this process must be performed by expert clinicians with manual visual inspection. Moreover, during the pandemic, the clinicians were asked to prioritize the use of portable devices, preventing the risk of cross-contamination. Nevertheless, the captures of these devices are of a lower quality. Objectives: The automatic quantification of the diaphragmatic function can determine the damage of COVID-19 on each patient and assess their evolution during the recovery period, a task that could also be complemented with the lung segmentation. Methods: We propose a novel multi-task fully automatic methodology to simultaneously localize the position of the hemidiaphragms and to segment the lung boundaries with a convolutional architecture using portable chest X-ray images of COVID-19 patients. For that aim, the hemidiaphragms' landmarks are located adapting the paradigm of heatmap regression. Results: The methodology is exhaustively validated with four analyses, achieving an 82.31% ± 2.78% of accuracy when localizing the hemidiaphragms' landmarks and a Dice score of 0.9688 ± 0.0012 in lung segmentation. Conclusions: The results demonstrate that the model is able to perform both tasks simultaneously, being a helpful tool for clinicians despite the lower quality of the portable chest X-ray images.

6.
Quant Imaging Med Surg ; 14(2): 1636-1651, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415134

RESUMO

Background: Pulmonary segments are valuable because they can provide more precise localization and intricate details of lung cancer than lung lobes. With advances in precision therapy, there is an increasing demand for the identification and visualization of pulmonary segments in computed tomography (CT) images to aid in the precise treatment of lung cancer. This study aimed to integrate multiple deep-learning models to accurately segment pulmonary segments in CT images using a bronchial tree (BT)-based approach. Methods: The proposed segmentation method for pulmonary segments using the BT-based approach comprised the following five essential steps: (I) segmentation of the lung using a U-Net (R231) (public access) model; (II) segmentation of the lobes using a V-Net (self-developed) model; (III) segmentation of the airway using a combination of a differential geometric approach method and a BronchiNet (public access) model; (IV) labeling of the BT branches based on anatomical position; and (V) segmentation of the pulmonary segments based on the distance of each voxel to the labeled BT branches. This five-step process was applied to 14 high-resolution breath-hold CT images and compared against manual segmentations for evaluation. Results: For the lung segmentation, the lung mask had a mean dice similarity coefficient (DSC) of 0.98±0.03. For the lobe segmentation, the V-Net model had a mean DSC of 0.94±0.06. For the airway segmentation, the average total length of the segmented airway trees per image scan was 1,902.8±502.1 mm, and the average number of the maximum airway tree generations was 8.5±1.3. For the segmentation of the pulmonary segments, the proposed method had a DSC of 0.73±0.11 and a mean surface distance of 6.1±2.9 mm. Conclusions: This study demonstrated the feasibility of combining multiple deep-learning models for the auxiliary segmentation of pulmonary segments on CT images using a BT-based approach. The results highlighted the potential of the BT-based method for the semi-automatic segmentation of the pulmonary segment.

7.
Med Phys ; 51(1): 378-393, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37401205

RESUMO

BACKGROUND: Hyperpolarized (HP) gas MRI enables the clear visualization of lung structure and function. Clinically relevant biomarkers, such as ventilated defect percentage (VDP) derived from this modality can quantify lung ventilation function. However, long imaging time leads to image quality degradation and causes discomfort to the patients. Although accelerating MRI by undersampling k-space data is available, accurate reconstruction and segmentation of lung images are quite challenging at high acceleration factors. PURPOSE: To simultaneously improve the performance of reconstruction and segmentation of pulmonary gas MRI at high acceleration factors by effectively utilizing the complementary information in different tasks. METHODS: A complementation-reinforced network is proposed, which takes the undersampled images as input and outputs both the reconstructed images and the segmentation results of lung ventilation defects. The proposed network comprises a reconstruction branch and a segmentation branch. To effectively exploit the complementary information, several strategies are designed in the proposed network. Firstly, both branches adopt the encoder-decoder architecture, and their encoders are designed to share convolutional weights for facilitating knowledge transfer. Secondly, a designed feature-selecting block discriminately feeds shared features into decoders of both branches, which can adaptively pick suitable features for each task. Thirdly, the segmentation branch incorporates the lung mask obtained from the reconstructed images to enhance the accuracy of the segmentation results. Lastly, the proposed network is optimized by a tailored loss function that efficiently combines and balances these two tasks, in order to achieve mutual benefits. RESULTS: Experimental results on the pulmonary HP 129 Xe MRI dataset (including 43 healthy subjects and 42 patients) show that the proposed network outperforms state-of-the-art methods at high acceleration factors (4, 5, and 6). The peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and Dice score of the proposed network are enhanced to 30.89, 0.875, and 0.892, respectively. Additionally, the VDP obtained from the proposed network has good correlations with that obtained from fully sampled images (r = 0.984). At the highest acceleration factor of 6, the proposed network promotes PSNR, SSIM, and Dice score by 7.79%, 5.39%, and 9.52%, respectively, in comparison to the single-task models. CONCLUSION: The proposed method effectively enhances the reconstruction and segmentation performance at high acceleration factors up to 6. It facilitates fast and high-quality lung imaging and segmentation, and provides valuable support in the clinical diagnosis of lung diseases.


Assuntos
Processamento de Imagem Assistida por Computador , Pulmão , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Respiração , Razão Sinal-Ruído
8.
Med Biol Eng Comput ; 62(4): 1121-1137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150110

RESUMO

Accurate segmentation of honeycomb lung lesions from lung CT images plays a crucial role in the diagnosis and treatment of various lung diseases. However, the availability of algorithms for automatic segmentation of honeycomb lung lesions remains limited. In this study, we propose a novel multi-scale cross-layer attention fusion network (MCAFNet) specifically designed for the segmentation of honeycomb lung lesions, taking into account their shape specificity and similarity to surrounding vascular shadows. The MCAFNet incorporates several key modules to enhance the segmentation performance. Firstly, a multiscale aggregation (MIA) module is introduced in the input part to preserve spatial information during downsampling. Secondly, a cross-layer attention fusion (CAF) module is proposed to capture multiscale features by integrating channel information and spatial information from different layers of the feature maps. Lastly, a bidirectional attention gate (BAG) module is constructed within the skip connection to enhance the model's ability to filter out background information and focus on the segmentation target. Experimental results demonstrate the effectiveness of the proposed MCAFNet. On the honeycomb lung segmentation dataset, the network achieves an Intersection over Union (IoU) of 0.895, mean IoU (mIoU) of 0.921, and mean Dice coefficient (mDice) of 0.949, outperforming existing medical image segmentation algorithms. Furthermore, experiments conducted on additional datasets confirm the generalizability and robustness of the proposed model. The contribution of this study lies in the development of the MCAFNet, which addresses the lack of automated segmentation algorithms for honeycomb lung lesions. The proposed network demonstrates superior performance in accurately segmenting honeycomb lung lesions, thereby facilitating the diagnosis and treatment of lung diseases. This work contributes to the existing literature by presenting a novel approach that effectively combines multi-scale features and attention mechanisms for lung lesion segmentation. The code is available at https://github.com/Oran9er/MCAFNet .


Assuntos
Algoritmos , Pneumopatias , Humanos , Tomografia Computadorizada por Raios X , Pneumopatias/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
9.
Radiol Artif Intell ; 5(6): e220239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074782

RESUMO

Purpose: To analyze the performance of deep learning (DL) models for segmentation of the neonatal lung in MRI and investigate the use of automated MRI-based features for assessment of neonatal lung disease. Materials and Methods: Quiet-breathing MRI was prospectively performed in two independent cohorts of preterm infants (median gestational age, 26.57 weeks; IQR, 25.3-28.6 weeks; 55 female and 48 male infants) with (n = 86) and without (n = 21) chronic lung disease (bronchopulmonary dysplasia [BPD]). Convolutional neural networks were developed for lung segmentation, and a three-dimensional reconstruction was used to calculate MRI features for lung volume, shape, pixel intensity, and surface. These features were explored as indicators of BPD and disease-associated lung structural remodeling through correlation with lung injury scores and multinomial models for BPD severity stratification. Results: The lung segmentation model reached a volumetric Dice coefficient of 0.908 in cross-validation and 0.880 on the independent test dataset, matching expert-level performance across disease grades. MRI lung features demonstrated significant correlations with lung injury scores and added structural information for the separation of neonates with BPD (BPD vs no BPD: average area under the receiver operating characteristic curve [AUC], 0.92 ± 0.02 [SD]; no or mild BPD vs moderate or severe BPD: average AUC, 0.84 ± 0.03). Conclusion: This study demonstrated high performance of DL models for MRI neonatal lung segmentation and showed the potential of automated MRI features for diagnostic assessment of neonatal lung disease while avoiding radiation exposure.Keywords: Bronchopulmonary Dysplasia, Chronic Lung Disease, Preterm Infant, Lung Segmentation, Lung MRI, BPD Severity Assessment, Deep Learning, Lung Imaging Biomarkers, Lung Topology Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Parraga and Sharma in this issue.

10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 912-919, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37879920

RESUMO

Precise segmentation of lung field is a crucial step in chest radiographic computer-aided diagnosis system. With the development of deep learning, fully convolutional network based models for lung field segmentation have achieved great effect but are poor at accurate identification of the boundary and preserving lung field consistency. To solve this problem, this paper proposed a lung segmentation algorithm based on non-local attention and multi-task learning. Firstly, an encoder-decoder convolutional network based on residual connection was used to extract multi-scale context and predict the boundary of lung. Secondly, a non-local attention mechanism to capture the long-range dependencies between pixels in the boundary regions and global context was proposed to enrich feature of inconsistent region. Thirdly, a multi-task learning to predict lung field based on the enriched feature was conducted. Finally, experiments to evaluate this algorithm were performed on JSRT and Montgomery dataset. The maximum improvement of Dice coefficient and accuracy were 1.99% and 2.27%, respectively, comparing with other representative algorithms. Results show that by enhancing the attention of boundary, this algorithm can improve the accuracy and reduce false segmentation.


Assuntos
Algoritmos , Diagnóstico por Computador , Raios X , Tórax/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Processamento de Imagem Assistida por Computador
11.
J Med Phys ; 48(2): 161-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576094

RESUMO

Aim: The main objective of this work is to propose an efficient segmentation model for accurate and robust lung segmentation from computed tomography (CT) images, even when the lung contains abnormalities such as juxtapleural nodules, cavities, and consolidation. Methodology: A novel deep learning-based segmentation model, pyramid-dilated dense U-Net (PDD-U-Net), is proposed to directly segment lung regions from the whole CT image. The model is integrated with pyramid-dilated convolution blocks to capture and preserve multi-resolution spatial features effectively. In addition, shallow and deeper stream features are embedded in the nested U-Net structure at the decoder side to enhance the segmented output. The effect of three loss functions is investigated in this paper, as the medical image analysis method requires precise boundaries. The proposed PDD-U-Net model with shape-aware loss function is tested on the lung CT segmentation challenge (LCTSC) dataset with standard lung CT images and the lung image database consortium-image database resource initiative (LIDC-IDRI) dataset containing both typical and pathological lung CT images. Results: The performance of the proposed method is evaluated using Intersection over Union, dice coefficient, precision, recall, and average Hausdorff distance metrics. Segmentation results showed that the proposed PDD-U-Net model outperformed other segmentation methods and achieved a 0.983 dice coefficient for the LIDC-IDRI dataset and a 0.994 dice coefficient for the LCTSC dataset. Conclusions: The proposed PDD-U-Net model with shape-aware loss function is an effective and accurate method for lung segmentation from CT images, even in the presence of abnormalities such as cavities, consolidation, and nodules. The model's integration of pyramid-dilated convolution blocks and nested U-Net structure at the decoder side, along with shape-aware loss function, contributed to its high segmentation accuracy. This method could have significant implications for the computer-aided diagnosis system, allowing for quick and accurate analysis of lung regions.

12.
Expert Syst Appl ; 229(Pt A)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37397242

RESUMO

Lung segmentation in chest X-rays (CXRs) is an important prerequisite for improving the specificity of diagnoses of cardiopulmonary diseases in a clinical decision support system. Current deep learning models for lung segmentation are trained and evaluated on CXR datasets in which the radiographic projections are captured predominantly from the adult population. However, the shape of the lungs is reported to be significantly different across the developmental stages from infancy to adulthood. This might result in age-related data domain shifts that would adversely impact lung segmentation performance when the models trained on the adult population are deployed for pediatric lung segmentation. In this work, our goal is to (i) analyze the generalizability of deep adult lung segmentation models to the pediatric population and (ii) improve performance through a stage-wise, systematic approach consisting of CXR modality-specific weight initializations, stacked ensembles, and an ensemble of stacked ensembles. To evaluate segmentation performance and generalizability, novel evaluation metrics consisting of mean lung contour distance (MLCD) and average hash score (AHS) are proposed in addition to the multi-scale structural similarity index measure (MS-SSIM), the intersection of union (IoU), Dice score, 95% Hausdorff distance (HD95), and average symmetric surface distance (ASSD). Our results showed a significant improvement (p < 0.05) in cross-domain generalization through our approach. This study could serve as a paradigm to analyze the cross-domain generalizability of deep segmentation models for other medical imaging modalities and applications.

13.
Front Radiol ; 3: 1190745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492393

RESUMO

Background: Chest x-ray (CXR) is widely applied for the detection and diagnosis of children's lung diseases. Lung field segmentation in digital CXR images is a key section of many computer-aided diagnosis systems. Objective: In this study, we propose a method based on deep learning to improve the lung segmentation quality and accuracy of children's multi-center CXR images. Methods: The novelty of the proposed method is the combination of merits of TransUNet and ResUNet. The former can provide a self-attention module improving the feature learning ability of the model, while the latter can avoid the problem of network degradation. Results: Applied on the test set containing multi-center data, our model achieved a Dice score of 0.9822. Conclusions: This novel lung segmentation method proposed in this work based on TransResUNet is better than other existing medical image segmentation networks.

14.
Neural Comput Appl ; 35(21): 15343-15364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273912

RESUMO

Lung segmentation algorithms play a significant role in segmenting theinfected regions in the lungs. This work aims to develop a computationally efficient and robust deep learning model for lung segmentation using chest computed tomography (CT) images with DeepLabV3 + networks for two-class (background and lung field) and four-class (ground-glass opacities, background, consolidation, and lung field). In this work, we investigate the performance of the DeepLabV3 + network with five pretrained networks: Xception, ResNet-18, Inception-ResNet-v2, MobileNet-v2 and ResNet-50. A publicly available database for COVID-19 that contains 750 chest CT images and corresponding pixel-labeled images are used to develop the deep learning model. The segmentation performance has been assessed using five performance measures: Intersection of Union (IoU), Weighted IoU, Balance F1 score, pixel accu-racy, and global accuracy. The experimental results of this work confirm that the DeepLabV3 + network with ResNet-18 and a batch size of 8 have a higher performance for two-class segmentation. DeepLabV3 + network coupled with ResNet-50 and a batch size of 16 yielded better results for four-class segmentation compared to other pretrained networks. Besides, the ResNet with a fewer number of layers is highly adequate for developing a more robust lung segmentation network with lesser computational complexity compared to the conventional DeepLabV3 + network with Xception. This present work proposes a unified DeepLabV3 + network to delineate the two and four different regions automatically using CT images for CoVID-19 patients. Our developed automated segmented model can be further developed to be used as a clinical diagnosis system for CoVID-19 as well as assist clinicians in providing an accurate second opinion CoVID-19 diagnosis.

15.
MethodsX ; 10: 102198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152666

RESUMO

Computed Tomography (CT) is a standard clinical tool utilized to diagnose known lung pathologies based on established grading methods. However, for preclinical trials and toxicity investigations in animal models, more comprehensive datasets are typically needed to determine discriminative features between experimental treatments, which oftentimes require analysis of multiple images and their associated differential quantification using manual segmentation methods. Furthermore, for manual segmentation of image data, three or more readers is the gold standard of analysis, but this requirement can be time-consuming and inefficient, depending on variability due to reader bias. In previous papers, microCT image manual segmentation was a valuable tool for assessment of lung pathology in several animal models; however, the manual segmentation approach and the commercial software used was typically a major rate-limiting step. To improve the efficiency, the semi-manual segmentation method was streamlined, and a semi-automated segmentation process was developed to produce:•Quantifiable segmentations: using manual and semi-automated analysis methods for assessing experimental injury and toxicity models,•Deterministic results and efficiency through automation in an unbiased and parameter free process, thereby reducing reader variance, user time, and increases throughput in data analysis,•Cost-Effectiveness: portable with low computational resource demand, based on a cross-platform open-source ImageJ program.

16.
New Gener Comput ; 41(2): 475-502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229179

RESUMO

COVID-19 has expanded overall across the globe after its initial cases were discovered in December 2019 in Wuhan-China. Because the virus has impacted people's health worldwide, its fast identification is essential for preventing disease spread and reducing mortality rates. The reverse transcription polymerase chain reaction (RT-PCR) is the primary leading method for detecting COVID-19 disease; it has high costs and long turnaround times. Hence, quick and easy-to-use innovative diagnostic instruments are required. According to a new study, COVID-19 is linked to discoveries in chest X-ray pictures. The suggested approach includes a stage of pre-processing with lung segmentation, removing the surroundings that do not provide information pertinent to the task and may result in biased results. The InceptionV3 and U-Net deep learning models used in this work process the X-ray photo and classifies them as COVID-19 negative or positive. The CNN model that uses a transfer learning approach was trained. Finally, the findings are analyzed and interpreted through different examples. The obtained COVID-19 detection accuracy is around 99% for the best models.

17.
SN Comput Sci ; 4(4): 414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252339

RESUMO

Accurate segmentation of the lungs in CXR images is the basis for an automated CXR image analysis system. It helps radiologists in detecting lung areas, subtle signs of disease and improving the diagnosis process for patients. However, precise semantic segmentation of lungs is considered a challenging case due to the presence of the edge rib cage, wide variation of lung shape, and lungs affected by diseases. In this paper, we address the problem of lung segmentation in healthy and unhealthy CXR images. Five models were developed and used in detecting and segmenting lung regions. Two loss functions and three benchmark datasets were employed to evaluate these models. Experimental results showed that the proposed models were able to extract salient global and local features from the input CXR images. The best performing model achieved an F1 score of 97.47%, outperforming recent published models. They proved their ability to separate lung regions from the rib cage and clavicle edges and segment varying lung shape depending on age and gender, as well as challenging cases of lungs affected by anomalies such as tuberculosis and the presence of nodules.

18.
Bioengineering (Basel) ; 10(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978712

RESUMO

OBJECTIVE: To help improve radiologists' efficacy of disease diagnosis in reading computed tomography (CT) images, this study aims to investigate the feasibility of applying a modified deep learning (DL) method as a new strategy to automatically segment disease-infected regions and predict disease severity. METHODS: We employed a public dataset acquired from 20 COVID-19 patients, which includes manually annotated lung and infections masks, to train a new ensembled DL model that combines five customized residual attention U-Net models to segment disease infected regions followed by a Feature Pyramid Network model to predict disease severity stage. To test the potential clinical utility of the new DL model, we conducted an observer comparison study. First, we collected another set of CT images acquired from 80 COVID-19 patients and process images using the new DL model. Second, we asked two chest radiologists to read images of each CT scan and report the estimated percentage of the disease-infected lung volume and disease severity level. Third, we also asked radiologists to rate acceptance of DL model-generated segmentation results using a 5-scale rating method. RESULTS: Data analysis results show that agreement of disease severity classification between the DL model and radiologists is >90% in 45 testing cases. Furthermore, >73% of cases received a high rating score (≥4) from two radiologists. CONCLUSION: This study demonstrates the feasibility of developing a new DL model to automatically segment disease-infected regions and quantitatively predict disease severity, which may help avoid tedious effort and inter-reader variability in subjective assessment of disease severity in future clinical practice.

19.
Biomedicines ; 11(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672641

RESUMO

Current research indicates that for the identification of lung disorders, comprising pneumonia and COVID-19, structural distortions of bronchi and arteries (BA) should be taken into account. CT scans are an effective modality to detect lung anomalies. However, anomalies in bronchi and arteries can be difficult to detect. Therefore, in this study, alterations of bronchi and arteries are considered in the classification of lung diseases. Four approaches to highlight these are introduced: (a) a Hessian-based approach, (b) a region-growing algorithm, (c) a clustering-based approach, and (d) a color-coding-based approach. Prior to this, the lungs are segmented, employing several image preprocessing algorithms. The utilized COVID-19 Lung CT scan dataset contains three classes named Non-COVID, COVID, and community-acquired pneumonia, having 6983, 7593, and 2618 samples, respectively. To classify the CT scans into three classes, two deep learning architectures, (a) a convolutional neural network (CNN) and (b) a CNN with long short-term memory (LSTM) and an attention mechanism, are considered. Both these models are trained with the four datasets achieved from the four approaches. Results show that the CNN model achieved test accuracies of 88.52%, 87.14%, 92.36%, and 95.84% for the Hessian, the region-growing, the color-coding, and the clustering-based approaches, respectively. The CNN with LSTM and an attention mechanism model results in an increase in overall accuracy for all approaches with an 89.61%, 88.28%, 94.61%, and 97.12% test accuracy for the Hessian, region-growing, color-coding, and clustering-based approaches, respectively. To assess overfitting, the accuracy and loss curves and k-fold cross-validation technique are employed. The Hessian-based and region-growing algorithm-based approaches produced nearly equivalent outcomes. Our proposed method outperforms state-of-the-art studies, indicating that it may be worthwhile to pay more attention to BA features in lung disease classification based on CT images.

20.
Vis Comput ; 39(3): 875-913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35035008

RESUMO

Chest radiography (X-ray) is the most common diagnostic method for pulmonary disorders. A trained radiologist is required for interpreting the radiographs. But sometimes, even experienced radiologists can misinterpret the findings. This leads to the need for computer-aided detection diagnosis. For decades, researchers were automatically detecting pulmonary disorders using the traditional computer vision (CV) methods. Now the availability of large annotated datasets and computing hardware has made it possible for deep learning to dominate the area. It is now the modus operandi for feature extraction, segmentation, detection, and classification tasks in medical imaging analysis. This paper focuses on the research conducted using chest X-rays for the lung segmentation and detection/classification of pulmonary disorders on publicly available datasets. The studies performed using the Generative Adversarial Network (GAN) models for segmentation and classification on chest X-rays are also included in this study. GAN has gained the interest of the CV community as it can help with medical data scarcity. In this study, we have also included the research conducted before the popularity of deep learning models to have a clear picture of the field. Many surveys have been published, but none of them is dedicated to chest X-rays. This study will help the readers to know about the existing techniques, approaches, and their significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...