Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Redox Biol ; 74: 103231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861835

RESUMO

Primary graft dysfunction (PGD) is a severe form of acute lung injury resulting from lung ischemia/reperfusion injury (I/R) in lung transplantation (LTx), associated with elevated post-transplant morbidity and mortality rates. Neutrophils infiltrating during reperfusion are identified as pivotal contributors to lung I/R injury by releasing excessive neutrophil extracellular traps (NETs) via NETosis. While alveolar macrophages (AMs) are involved in regulating neutrophil chemotaxis and infiltration, their role in NETosis during lung I/R remains inadequately elucidated. Extracellular histones constitute the main structure of NETs and can activate AMs. In this study, we confirmed the significant involvement of extracellular histone-induced M1 phenotype of AMs (M1-AMs) in driving NETosis during lung I/R. Using secretome analysis, public protein databases, and transwell co-culture models of AMs and neutrophils, we identified Cathepsin C (CTSC) derived from AMs as a major mediator in NETosis. Further elucidating the molecular mechanisms, we found that CTSC induced NETosis through a pathway dependent on NADPH oxidase-mediated production of reactive oxygen species (ROS). CTSC could significantly activate p38 MAPK, resulting in the phosphorylation of the NADPH oxidase subunit p47phox, thereby facilitating the trafficking of cytoplasmic subunits to the cell membrane and activating NADPH oxidase. Moreover, CTSC up-regulated and activated its substrate membrane proteinase 3 (mPR3), resulting in an increased release of NETosis-related inflammatory factors. Inhibiting CTSC revealed great potential in mitigating NETosis-related injury during lung I/R. These findings suggests that CTSC from AMs may be a crucial factor in mediating NETosis during lung I/R, and targeting CTSC inhition may represent a novel intervention for PGD in LTx.


Assuntos
Catepsina C , Armadilhas Extracelulares , Histonas , Macrófagos Alveolares , Neutrófilos , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Macrófagos Alveolares/metabolismo , Armadilhas Extracelulares/metabolismo , Animais , Histonas/metabolismo , Neutrófilos/metabolismo , Catepsina C/metabolismo , Catepsina C/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Masculino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Disfunção Primária do Enxerto/metabolismo , Disfunção Primária do Enxerto/patologia
2.
Biochem Biophys Res Commun ; 722: 150132, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788354

RESUMO

OBJECTIVE: The present study aims to investigate the protective potential of salidroside in both lung ischemia/reperfusion injury (LIRI) mice model and cell hypoxia/reoxygenation (H/R)model and the involvement of ferroptosis and JAK2/STAT3 pathway. MATERIALS AND METHODS: After we established the IR-induced lung injury model in mice, we administered salidroside and the ferroptosis inhibitor, ferrostatin-1, then assessed the lung tissue injury, ferroptosis (levels of reactive oxygen species level, malondialdehyde and glutathione), and inflammation in lung tissues. The levels of ferroptosis-related proteins (glutathione peroxidase 4, fibroblast-specific protein 1, solute carrier family 1 member 5 and glutaminase 2) in the lung tissue were measured with Western blotting. Next, BEAS-2B cells were used to establish an H/R cell model and treated with salidroside or ferrostatin-1 before the cell viability and the levels of lactate dehydrogenase (LDH), inflammatory factor, ferroptosis-related proteins were measured. The activation of the JAK2/STAT3 signaling pathway was measured with Western blotting, then its role was confirmed with STAT3 knockdown. RESULTS: Remarkably, salidroside was found to alleviate ferroptosis, inflammation, and lung injury in LIRI mice and the cell injury in H/R cell model. Severe ferroptosis were observed in LIRI mice models and H/R-induced BEAS-2B cells, which was alleviated by salidroside. Furthermore, salidroside could inhibit JAK2/STAT3 activation induced by LIRI. STAT3 knockdown could enhance the effect of salidroside treatment on H/R-induced cell damage and ferroptosis in vitro. CONCLUSIONS: Salidroside inhibits ferroptosis to alleviate lung ischemia reperfusion injury via the JAK2/STAT3 signaling pathway.


Assuntos
Ferroptose , Glucosídeos , Janus Quinase 2 , Fenóis , Traumatismo por Reperfusão , Fator de Transcrição STAT3 , Transdução de Sinais , Fenóis/farmacologia , Fenóis/uso terapêutico , Animais , Ferroptose/efeitos dos fármacos , Janus Quinase 2/metabolismo , Glucosídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Linhagem Celular , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/etiologia
3.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745191

RESUMO

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Transplante de Pulmão , Metformina , Necroptose , Traumatismo por Reperfusão , Animais , Ratos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Metformina/farmacologia , Necroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais/efeitos dos fármacos
4.
BMC Pulm Med ; 24(1): 207, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671448

RESUMO

OBJECTIVE: The aim of this research was to examine how penehyclidine hydrochloride (PHC) impacts the occurrence of pyroptosis in lung tissue cells within a rat model of lung ischemia-reperfusion injury. METHODS: Twenty-four Sprague Dawley (SD) rats, weighing 250 g to 270 g, were randomly distributed into three distinct groups as outlined below: a sham operation group (S group), a control group (C group), and a test group (PHC group). Rats in the PHC group received a preliminary intravenous injection of PHC at a dose of 3 mg/kg. At the conclusion of the experiment, lung tissue and blood samples were collected and properly stored for subsequent analysis. The levels of malondialdehyde, superoxide dismutase, and myeloperoxidase in the lung tissue, as well as IL-18 and IL-1ß in the blood serum, were assessed using an Elisa kit. Pyroptosis-related proteins, including Caspase1 p20, GSDMD-N, and NLRP3, were detected through the western blot method. Additionally, the dry-to-wet ratio (D/W) of the lung tissue and the findings from the blood gas analysis were also documented. RESULTS: In contrast to the control group, the PHC group showed enhancements in oxygenation metrics, reductions in oxidative stress and inflammatory reactions, and a decrease in lung injury. Additionally, the PHC group exhibited lowered levels of pyroptosis-associated proteins, including the N-terminal segment of gasdermin D (GSDMD-N), caspase-1p20, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3). CONCLUSION: Pre-administration of PHC has the potential to mitigate lung ischemia-reperfusion injuries by suppressing the pyroptosis of lung tissue cells, diminishing inflammatory reactions, and enhancing lung function. The primary mechanism behind anti-pyroptotic effect of PHC appears to involve the inhibition of oxidative stress.


Assuntos
Gasderminas , Pulmão , Piroptose , Quinuclidinas , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Piroptose/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Ratos , Quinuclidinas/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Masculino , Malondialdeído/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Superóxido Dismutase/metabolismo , Peroxidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Caspase 1/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38584527

RESUMO

OBJECTIVE: At present, no proven effective treatment is available for Lung Ischemiareperfusion Injury (LIRI). Natural compounds offer promising prospects for developing new drugs to address various diseases. This study sought to explore the potential of Rebaudioside B (Reb B) as a treatment compound for LIRI, both in vivo and in vitro. METHODS: This study involved utilizing the human pulmonary alveolar cell line A549, consisting of epithelial type II cells, subjected to Oxygen-glucose Deprivation/recovery (OGD/R) for highthroughput in vitro cell viability screening. The aim was to identify the most promising candidate compounds. Additionally, an in vivo rat model of lung ischemia-reperfusion was employed to evaluate the potential protective effects of Reb B. RESULTS: Through high-throughput screening, Reb B emerged as the most promising natural compound among those tested. In the A549 OGD/R models, Reb B exhibited a capacity to enhance cell viability by mitigating apoptosis. In the in vivo LIRI model, pre-treatment with Reb B notably decreased apoptotic cells, perivascular edema, and neutrophil infiltration within lung tissues. Furthermore, Reb B demonstrated its ability to attenuate lung inflammation associated with LIRI primarily by elevating IL-10 levels while reducing levels of IL-6, IL-8, and TNF-α. CONCLUSION: The comprehensive outcomes strongly suggest Reb B's potential as a protective agent against LIRI. This effect is attributed to its inhibition of the mitochondrial apoptotic pathway and its ability to mitigate the inflammatory response.

6.
PeerJ ; 12: e17123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560469

RESUMO

Background: The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods: Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results: It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion: EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.


Assuntos
Eritropoetina , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Proteína X Associada a bcl-2/metabolismo , Caspase 3/genética , Epoetina alfa/metabolismo , Eritropoetina/farmacologia , Isquemia , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
7.
Inflammation ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386131

RESUMO

We explored the sex difference in lung ischemia-reperfusion injury (LIRI) and the role and mechanism of estrogen (E2) and angiotensin II (Ang II) in LIRI. We established a model of LIRI in mice. E2, Ang II, E2 inhibitor (fulvestrant), and angiotensin II receptor blocker (losartan) were grouped for treatment. The lung wet/dry weight ratio, natural killer (NK) cells (by flow cytometry), neutrophils (by flow cytometry), expression of key proteins (by Western blot, immunohistochemistry, ELISA, and immunofluorescence), and expression of related protein mRNA (by qPCR) were detected. The ultrastructure of the alveolar epithelial cells was observed by transmission electron microscopy. We found that E2 and Ang II played an important role in the progression of LIRI. The two signaling pathways showed obvious antagonism, and E2 regulates LIRI in the different sexes by downregulating Ang II, leading to a better prognosis. E2 and losartan reduced the inflammatory cell infiltration in lung tissue and key inflammatory factors in serum while fulvestrant and Ang II had the opposite effect. The protective effect of E2 was related with AKT, p38, COX2, and HIF-1α.

8.
Inflamm Res ; 73(3): 393-405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265687

RESUMO

BACKGROUND: Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS: A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS: During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS: Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.


Assuntos
Lesão Pulmonar , Traumatismo por Reperfusão , Humanos , Imunidade Inata , Traumatismo por Reperfusão/metabolismo , Inflamação/complicações , Pulmão/metabolismo , Isquemia/complicações , Receptores de Reconhecimento de Padrão
9.
J Pharm Sci ; 113(1): 85-94, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931787

RESUMO

INTRODUCTION: Ischemia-reperfusion injury (IRI) is directly related to forming reactive oxygen species, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and cytokines. Niosomes are nanocarriers and an essential part of drug delivery systems. We aimed to investigate the effects of myrtenol's inhaled and intraperitoneal niosomal form, compared to its simple form, on lung ischemia reperfusion injury (LIRI). MATERIAL AND METHOD: Wistar rats were divided into ten groups. Simple and niosomal forms of myrtenol were inhaled or intraperitoneally injected daily for one week prior to LIRI. We evaluated oxidative stress, apoptotic, and inflammatory indices, nitric oxide, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and histopathological indices. RESULTS: Pretreatment with simple and niosomal forms of myrtenol significantly inhibited the indices of pulmonary edema, pro-inflammatory cytokines and proteins, oxidant agents, nitric oxide, iNOS, apoptotic proteins, congestion of capillaries, neutrophil infiltration, and bleeding in the alveoli. Furthermore, myrtenol increased anti-inflammatory cytokines, anti-oxidants agents, eNOS, anti-apoptotic proteins and the survival time of animals. The niosomal form of myrtenol showed a more ameliorative effect than its simple form. CONCLUSION: The results showed the superior protective effect of the inhalation of myrtenol niosomal form against LIRI compared to its simple form and systemic use.


Assuntos
Lipossomos , Traumatismo por Reperfusão , Ratos , Animais , Ratos Wistar , Lipossomos/metabolismo , Injeções Intraperitoneais , Óxido Nítrico/metabolismo , Pulmão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Citocinas
10.
Mol Med ; 29(1): 164, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049750

RESUMO

BACKGROUND: Lung ischemia-reperfusion (I/R) injury is a serious clinical problem without effective treatment. Enhancing branched-chain amino acids (BCAA) metabolism can protect against cardiac I/R injury, which may be related to bioactive molecules generated by BCAA metabolites. L-ß-aminoisobutyric acid (L-BAIBA), a metabolite of BCAA, has multi-organ protective effects, but whether it protects against lung I/R injury is unclear. METHODS: To assess the protective effect of L-BAIBA against lung I/R injury, an animal model was generated by clamping the hilum of the left lung, followed by releasing the clamp in C57BL/6 mice. Mice with lung I/R injury were pre-treated or post-treated with L-BAIBA (150 mg/kg/day), given by gavage or intraperitoneal injection. Lung injury was assessed by measuring lung edema and analyzing blood gases. Inflammation was assessed by measuring proinflammatory cytokines in bronchoalveolar lavage fluid (BALF), and neutrophil infiltration of the lung was measured by myeloperoxidase activity. Molecular biological methods, including western blot and immunofluorescence, were used to detect potential signaling mechanisms in A549 and BEAS-2B cells. RESULTS: We found that L-BAIBA can protect the lung from I/R injury by inhibiting ferroptosis, which depends on the up-regulation of the expressions of GPX4 and SLC7A11 in C57BL/6 mice. Additionally, we demonstrated that the Nrf-2 signaling pathway is key to the inhibitory effect of L-BAIBA on ferroptosis in A549 and BEAS-2B cells. L-BAIBA can induce the nuclear translocation of Nrf-2. Interfering with the expression of Nrf-2 eliminated the protective effect of L-BAIBA on ferroptosis. A screening of potential signaling pathways revealed that L-BAIBA can increase the phosphorylation of AMPK, and compound C can block the Nrf-2 nuclear translocation induced by L-BAIBA. The presence of compound C also blocked the protective effects of L-BAIBA on lung I/R injury in C57BL/6 mice. CONCLUSIONS: Our study showed that L-BAIBA protects against lung I/R injury via the AMPK/Nrf-2 signaling pathway, which could be a therapeutic target.


L-BAIBA upregulates the expression of GPX4 and SLC7A11 by activating the AMPK/Nrf-2/GPX4/SLC7A11 signaling pathway, thereby protecting against I/R-induced increase in ROS and ferroptosis in the lung.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
11.
Curr Issues Mol Biol ; 45(12): 9868-9886, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132462

RESUMO

Lung ischemia-reperfusion injury (LIRI) is a prevalent occurrence in various pulmonary diseases and surgical procedures, including lung resections and transplantation. LIRI can result in systemic hypoxemia and multi-organ failure. Hydroxycitric acid (HCA), the primary acid present in the peel of Garcinia cambogia, exhibits anti-inflammatory, antioxidant, and anticancer properties. However, the effects of HCA on LIRI remain unknown. To investigate the impact of HCA on LIRI in mice, the mice were randomly divided into four groups: the control group, the I/R model group, and the I/R + low- or high-dose HCA groups. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia for 12 h followed by reoxygenation for 6 h to simulate in vitro LIRI. The results demonstrated that administration of HCA effectively attenuated lung injury, inflammation, and edema induced by ischemia reperfusion. Moreover, HCA treatment significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels while decreasing iron content and increasing superoxide dismutase (SOD) levels after ischemia-reperfusion insult. Mechanistically, HCA administration significantly inhibited Hif-1α and HO-1 upregulation both in vivo and in vitro. We found that HCA could also alleviate endothelial barrier damage in H/R-induced HUVECs in a concentration-dependent manner. In addition, overexpression of Hif-1α counteracted HCA-mediated inhibition of H/R-induced endothelial cell ferroptosis. In summary, these results indicate that HCA alleviated LIRI by inhibiting oxidative stress and ferroptosis through the Hif-1α pathway.

12.
bioRxiv ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37397979

RESUMO

Lung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. We recently reported that endothelial cell (EC) TRPV4 channels play a central role in lung edema and dysfunction after IR. However, the cellular mechanisms for lung IR-induced activation of endothelial TRPV4 channels are unknown. In a left-lung hilar ligation model of IRI in mice, we found that lung IR increases the efflux of extracellular ATP (eATP) through pannexin 1 (Panx1) channels at the EC membrane. Elevated eATP activated elementary Ca2+ influx signals through endothelial TRPV4 channels through purinergic P2Y2 receptor (P2Y2R) signaling. P2Y2R-dependent activation of TRPV4 channels was also observed in human and mouse pulmonary microvascular endothelium in ex vivo and in vitro surrogate models of lung IR. Endothelium-specific deletion of P2Y2R, TRPV4, and Panx1 in mice had substantial protective effects against lung IR-induced activation of endothelial TRPV4 channels, lung edema, inflammation, and dysfunction. These results identify endothelial P2Y2R as a novel mediator of lung edema, inflammation, and dysfunction after IR, and show that disruption of endothelial Panx1-P2Y2R-TRPV4 signaling pathway could represent a promising therapeutic strategy for preventing lung IRI after transplantation.

13.
Exp Lung Res ; 49(1): 101-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265380

RESUMO

Background: Lung ischemia-reperfusion injury (LIRI) remains the major cause of primary lung dysfunction after lung transplantation. Diabetes mellitus (DM) is an independent risk factor for morbidity and mortality following lung transplantation. Mitochondrial dysfunction is recognized as a key mediator in the pathogenesis of diabetic LIRI. Melatonin has been reported to be a safe and potent preserving mitochondrial function agent. This study aimed at investigating the potential therapeutic effect and mechanisms of melatonin on diabetic LIRI. Methods: High-fat-diet-fed streptozotocin-induced type 2 diabetic rats were exposed to melatonin, with or without administration of the SIRT3 short hairpin ribonucleic acid (shRNA) plasmid following a surgical model of ischemia-reperfusion injury of the lung. Lung function, inflammation, oxidative stress, cell apoptosis, and mitochondrial function were examined. Results: The SIRT3 signaling and mitophagy were suppressed following diabetic LIRI. Treatment with melatonin markedly induced mitophagy and restored SIRT3 expression. Melatonin treatment also attenuated subsequent diabetic LIRI by improving lung functional recovery, suppressing inflammation, decreasing oxidative damage, diminishing cell apoptosis, and preserving mitochondrial function. However, either administration of SIRT3 shRNA or an autophagy antagonist 3-methyladenine (3-MA) suppressing mitophagy, and compromised the protective action of melatonin. Conclusion: Data indicated that melatonin attenuates diabetic LIRI through activation of SIRT3 signaling-mediated mitophagy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Melatonina , Traumatismo por Reperfusão , Sirtuína 3 , Ratos , Animais , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Sirtuína 3/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Mitofagia , Traumatismo por Reperfusão/tratamento farmacológico , Pulmão/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , RNA Interferente Pequeno/metabolismo , Apoptose
14.
Front Bioeng Biotechnol ; 11: 1176369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214302

RESUMO

Introduction: Dexamethasone (DEX), as an important enduring-effect glucocorticoid (GC), holds great promise in the field of lung ischemia-reperfusion injury (LIRI) comprehensive therapy owing to its immunomodulatory properties, such as inducing apoptosis and cell cycle distribution. However, its potent anti-inflammatory application is still restricted because of multiple internal physiologic barriers. Methods: Herein, we developed upconversion nanoparticles (UCNPs) coated with photosensitizer/capping agent/fluorescent probe-modified mesoporous silica (UCNPs@mSiO2[DEX]-Py/ß-CD/FITC, USDPFs) for precise DEX release synergistic LIRI comprehensive therapy. The UCNPs were designed by covering an inert YOF:Yb shell on the YOF:Yb, Tm core to achieve high-intensity blue and red upconversion emission upon Near-Infrared (NIR) laser irradiation. Results: Under suitable compatibility conditions, the molecular structure of photosensitizer can be damaged along with capping agent shedding, which endowed USDPFs with an outstanding capability to carry out DEX release controlling and fluorescent indicator targeting. Furthermore, the hybrid encapsulating of DEX significantly increased utilization of nano-drugs, improving the water solubility and bioavailability, which was conducive to developing the anti-inflammatory performance of USDPFs in the complex clinical environment. Discussion: The response-controlled release of DEX in the intrapulmonary microenvironment can reduce normal cell damage, which can effectively avoid the side effects of nano-drugs in anti-inflammatory application. Meanwhile, the multi-wavelength of UCNPs endowed nano-drugs with the fluorescence emission imaging capacity in an intrapulmonary microenvironment, providing precise guidance for LIRI.

15.
J Int Med Res ; 51(2): 3000605231153587, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36756846

RESUMO

OBJECTIVE: DNA methylation plays an important role in inflammation and oxidative stress. This study aimed to investigate the effect of inhibiting DNA methylation on lung ischemia-reperfusion injury (LIRI). METHODS: We adopted a completely random design for our study. Thirty-two rats were randomized into the sham, LIRI, azathioprine (AZA), and pluripotin (SC1) groups. The rats in the LIRI, AZA, and SC1 groups received left lung transplantation and intravenous injection of saline, AZA, and SC1, respectively. After 24 hours of reperfusion, histological injury, the arterial oxygen partial pressure to fractional inspired oxygen ratio, the wet/dry weight ratio, protein and cytokine concentrations in lung tissue, and DNA methylation in lung tissue were evaluated. The pulmonary endothelium that underwent hypoxemia and reoxygenation was treated with AZA or SC1. Endothelial apoptosis, chemokines, reactive oxygen species, nuclear factor-κB, and apoptotic proteins in the endothelium were studied. RESULTS: Inhibition of DNA methylation by AZA attenuated lung injury, inflammation, and the oxidative stress response, but SC1 aggravated LIRI injury. AZA significantly improved endothelial function, suppressed apoptosis and necrosis, reduced chemokines, and inhibited nuclear factor-κB. CONCLUSIONS: Inhibition of DNA methylation ameliorates LIRI and apoptosis and improves pulmonary function via the regulation of inflammation and oxidative stress.


Assuntos
Transplante de Pulmão , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Metilação de DNA , Pulmão/patologia , Transplante de Pulmão/efeitos adversos , Inflamação/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Oxigênio/metabolismo
16.
Inflammation ; 46(2): 639-654, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36357527

RESUMO

Polarization of alveolar macrophages (AMs) into the M1 phenotype contributes to inflammatory responses and tissue damage that occur during lung ischemia-reperfusion injury (LIRI). Programmed cell death factor-1 (PD-1) regulates polarization of macrophages, but its role in LIRI is unknown. We examined the role of PD-1 in AM polarization in models of LIRI in vivo and in vitro. Adult Sprague-Dawley rats were subjected to ischemia-reperfusion with or without pretreatment with a PD-1 inhibitor, SHP1/2 inhibitor, or Akt activator. Lung tissue damage and infiltration by M1-type AMs were assessed. As an in vitro complement to the animal studies, rat alveolar macrophages in culture were subjected to oxygen/glucose deprivation and reoxygenation. Levels of SHP1/2 and Akt proteins were evaluated using Western blots, while levels of pro-inflammatory cytokines were measured using enzyme-linked immunosorbent assays. Injury upregulated PD-1 both in vivo and in vitro. Inhibiting PD-1 reduced the number of M1-type AMs, expression of SHP1 and SHP2, and levels of inflammatory cytokines. At the same time, it partially restored Akt activation. Similar results were observed after inhibition of SHP1/2 or activation of the PI3K/Akt pathway. PD-1 promotes polarization of AMs to the M1 phenotype and inflammatory responses through the SHP1/2-PI3K/Akt axis. Inhibiting PD-1 may be an effective therapeutic strategy to limit LIRI.


Assuntos
Macrófagos Alveolares , Traumatismo por Reperfusão , Ratos , Animais , Macrófagos Alveolares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Morte Celular Programada 1 , Ratos Sprague-Dawley , Pulmão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Citocinas
17.
Comput Biol Med ; 151(Pt A): 106234, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335812

RESUMO

BACKGROUND: Lung Ischemia Reperfusion injury(LIRI) is one of the most predominant complications of ischemic lung disease. Cavin-2 emerged as a regulator of a variety of cellular processes, including endocytosis, lipid homeostasis, signal transduction and tumorigenesis, but the function of Cavin-2 in LIRI is unknown. The purpose of this study was to determine the predictive potential of Cavin-2 in protecting lung ischemia-reperfusion injury and its corresponding mechanisms. METHODS: We found the strong relationship between Cavin-2 and multiple immune-related genes by deep learning method. To reveal the mechanism of Cavin-2 in LIRI, the LIRI SD rat model was constructed to detect the expression of Cavin-2 in the lung tissue of SD rats after LIRI, and the expression of Cavin-2 in lung cell lines was also detected. The expression of IL-6, IL-10 and MDA in cells after Cavin-2 over-expression or knockdown was examined under hypoxic conditions. The expression levels of p-AKT, p-STAT3 and p-ERK1/2 were measured in over-expressing Cavin-2 cells under hypoxic-ischemia conditions, and then the corresponding blockers of AKT, STAT3 and ERK1/2 were given to verify, whether they play a protective role in LIRI. RESULTS: After hypoxia, the expression of Cavin-2 in rat lung tissues was significantly increased, and the cellular activity and IL-10 in Cavin-2 over-expressing cells were significantly higher than that of the control group, while IL-6 and MDA were significantly lower than that of the control group, while the above results were reversed in Cavin-2 knockdown cells; Meanwhile, the phosphorylation levels of AKT, STAT3, and ERK1/2 were significantly increased in Cavin-2 over-expression cells after hypoxia. When AKT, STAT3, and ERK1/2 specific blockers were given, they lost their protective effect against LIRI. CONCLUSIONS: Cavin-2 shows biomarker potential in protecting lung from ischemia-reperfusion injury through the survivor activating factor enhancement (SAFE) and reperfusion injury salvage kinase (RISK) pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão , Animais , Ratos , Biomarcadores , Hipóxia , Interleucina-10 , Interleucina-6 , Isquemia , Pulmão/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
18.
Cells ; 11(19)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36231101

RESUMO

Lung ischemia-reperfusion injury (LIRI) is associated with many diseases, including primary graft dysfunction after lung transplantation, and has no specific and effective therapies. Necroptosis contributes to the pathogenesis of ischemia-reperfusion injury. Necrostatin-1 (Nec-1), the necroptosis inhibitor targeting RIPK1, has been reported to alleviate ischemia-reperfusion injury in various organs. However, the underlying mechanism of Nec-1 in LIRI remains unclear. In this paper, an in vivo LIRI model was built up by left lung hilar clamping in mice, and an in vitro cold ischemia-reperfusion (CI/R) model using BEAS-2B cells was applied to mimic the lung transplantation setting. We found Nec-1 significantly alleviated ischemia-reperfusion-induced lung injury, cytokine releasing, and necroptosis of epithelial cells in mouse lungs. In vitro, Nec-1 also mitigated CI/R-induced cell death and inflammatory responses in BEAS-2B cells, and these protective effects were achieved by simultaneously inhibiting the formation of necrosome and RIPK1-dependent apoptosis. However, Nec-1 decreased the necrosome number but increased the apoptosis level in lung tissues after ischemia reperfusion. We further clarified that Nec-1 could also attenuate lung injury by promoting neutrophil apoptosis from flow cytometry. In conclusion, Nec-1 alleviated lung ischemia-reperfusion injury by inhibiting necroptosis and apoptosis of epithelial cells and promoting the apoptosis of neutrophils. Thus, Nec-1 could be a promising medication against primary graft dysfunction after lung transplantation.


Assuntos
Lesão Pulmonar , Disfunção Primária do Enxerto , Traumatismo por Reperfusão , Animais , Apoptose , Citocinas/farmacologia , Células Epiteliais/patologia , Imidazóis , Indóis , Pulmão/patologia , Lesão Pulmonar/patologia , Camundongos , Necroptose , Disfunção Primária do Enxerto/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia
19.
J Inflamm Res ; 15: 5103-5119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091334

RESUMO

Purpose: Endoplasmic reticulum stress (ERS) plays an important role in the pathogenesis of lung ischemia/reperfusion (I/R) injury. Cyclic GMP-AMP synthase (cGAS) is a cytosol dsDNA sensor, coupling with downstream stimulator of interferon genes (STING) located in the ER, which involves innate immune responses. The aim of our present study was to investigate the effects of cGAS on lung I/R injury via regulating ERS. Methods: We used Sprague-Dawley rats to make the lung I/R model by performing left hilum occlusion-reperfusion surgery. cGAS-specific inhibitor RU.521, STING agonist SR-717, and 4-phenylbutyric acid (4-PBA), the ERS inhibitor, were intraperitoneally administered in rats. Double immunofluorescent staining was applied to detect the colocalization of cGAS or BiP, an ERS protein, with alveolar epithelial type II cells (AECIIs) marker. We used transmission electron microscopy to examine the ultrastructure of ER and mitochondria. Apoptosis and oxidative stress in the lungs were assessed, respectively. The profiles of pulmonary edema and lung tissue injury were evaluated. And the pulmonary ventilation function was measured using a spirometer system. Results: In lung I/R rats, the cGAS-STING pathway was upregulated, which implied they were activated. After cGAS-STING pathway was inhibited or activated in lung I/R rats, the ERS was alleviated after cGAS was inhibited, while when STING was activated after lung I/R, ERS was aggravated in the AECIIs, these results suggested that cGAS-STING pathway might trigger ERS responses. Furthermore, activation of cGAS-STING pathway induced increased apoptosis, inflammation, and oxidative stress via regulating ERS and therefore resulted in pulmonary edema and pathological injury in the lungs of I/R rats. Inhibition of cGAS-STING pathway attenuated ERS, therefore attenuated lung injury and promoted pulmonary ventilation function in I/R rats. Conclusion: Inhibition of the cGAS-STING pathway attenuates lung ischemia/reperfusion injury via alleviating endoplasmic reticulum stress in alveolar epithelial type II cells of rats.

20.
Aging (Albany NY) ; 14(16): 6507-6519, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972910

RESUMO

Some microRNAs (miRNAs) play important roles in lung ischemia-reperfusion injury (LIRI) injury. Here, this study aimed to examine whether miR-141 was related to lung ischemia-reperfusion injury (IRI) via regulating autophagy and the epidermal growth factor receptor (EGFR), and to explore the underlying signal transduction pathways. To this end, we constructed the LIRI cell model and mouse models, separately. According to RT-qPCR and Western blotting (WB) analysis results, miR-141 up-regulation together with ß-catenin and EGFR down-regulation within mouse pulmonary microvascular endothelial cells (PMVECs) or lung tissues was related to lung IRI. Besides, we conducted dual-luciferase reporter assay, which suggested the binding of EGFR to miR-141. In addition, we carried out TUNEL staining, HE staining, and flow cytometric analysis to assess the apoptosis of PMVECs and the injury to mouse lung tissues. Furthermore, we performed light-chain immunofluorescence assay to examine autophagosomes within PMVECs. According to our results, miR-141 suppressed ß-catenin level through reducing EGFR level. Besides, the miR-141/EGFR/ß-catenin axis enhanced autophagy to aggravate LIRI. To sum up, miR-141 suppresses EGFR expression to inhibit ß-catenin level, which subsequently aggravates autophagy and complicates LIRI. The above results offer the candidate therapeutic target for the treatment of lung IRI.


Assuntos
MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose/genética , Autofagia/genética , Células Endoteliais/metabolismo , Receptores ErbB/genética , Pulmão/metabolismo , Camundongos , MicroRNAs/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...