Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Exp Parasitol ; 255: 108647, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914151

RESUMO

Chagas disease (CD) remains neglected and causes high morbidity and mortality. The great difficulty is the lack of effective treatment. The current drugs cause side effects and have limited therapeutic efficacy in the chronic phase. This study aims to fulfil some gaps in studies of the natural substance lychnopholide nanoencapsulated LYC-PLA-PEG-NC (LYC-NC) and free (Free-LYC): the activity in epimastigotes and amastigotes to determine its selectivity index (SI), the therapeutic efficacy in mice infected with Colombian Trypanosoma cruzi strain and insight of the mechanism of LYC-NC action on T. cruzi. The SI was obtained by calculation of the ratio between the IC50 value toward H9c2 cells divided by the IC50 value in the anti-T. cruzi test. Infected Swiss mice were treated with 2 and 12 mg/kg/day via intravenous and oral, respectively, and the therapeutic efficacy was determined. The IC50 of LYC-NC and Free-LYC for epimastigotes of T. cruzi were similar. Both were active against amastigotes in cell culture, particularly Free-LYC. The SI of LYC-NC and Free-LYC were 45.38 and 32.11, respectively. LYC-NC 2 and 12 mg/kg/day cured parasitologically, 62.5% and 80% of the animals, respectively, infected with a strain resistant to treatment. The fluorescent NC was distributed in the cardiomyocyte cytoplasm, infected or not, and interacted with the trypomastigotes. Together, these results represent advances in demonstrating LYC as a potent new therapeutic option for treating CD.


Assuntos
Doença de Chagas , Nanocápsulas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Nifurtimox/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Doença de Chagas/tratamento farmacológico , Poliésteres/farmacologia , Poliésteres/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-31988096

RESUMO

Chagas disease remains neglected, and current chemotherapeutics present severe limitations. Lychnopholide (LYC) at low doses loaded in polymeric poly(d,l-lactide)-block-polyethylene glycol (PLA-PEG) nanocapsules (LYC-PLA-PEG-NC) exhibits anti-Trypanosoma cruzi efficacy in mice infected with a partially drug-resistant strain. This study reports the efficacy of LYC-PLA-PEG-NC at higher doses in mice infected with a T. cruzi strain resistant to benznidazole (BZ) and nifurtimox (NF) treated at both the acute phase (AP) and the chronic phase (CP) of infection by the oral route. Mice infected with the T. cruzi VL-10 strain were treated by the oral route with free LYC (12 mg/kg of body weight/day), LYC-PLA-PEG-NC (8 or 12 mg/kg/day), or BZ at 100 mg/kg/day or were not treated (controls). Treatment efficacy was assessed by hemoculture (HC), PCR, enzyme-linked immunosorbent assay (ELISA), heart tissue quantitative PCR (qPCR), and histopathology. According to classical cure criteria, treatment with LYC-PLA-PEG-NC at 12 mg/kg/day cured 75% (AP) and 88% (CP) of the animals, while at a dose of 8 mg/kg/day, 43% (AP) and 43% (CP) were cured, showing dose-dependent efficacy. The negative qPCR results for heart tissue and the absence of inflammation/fibrosis agreed with the negative results obtained by HC and PCR. Thus, the mice treated with the highest dose could be considered 100% cured, in spite of a low ELISA reactivity in some animals. No cure was observed in animals treated with free LYC or BZ or the controls. These results are exceptional in terms of experimental Chagas disease chemotherapy and provide evidence of the outstanding contribution of nanotechnology in mice infected with a T. cruzi strain totally resistant to BZ and NF at both phases of infection. Therefore, LYC-PLA-PEG-NC has great potential as a new treatment for Chagas disease and deserves further investigations in clinical trials.


Assuntos
Doença de Chagas/tratamento farmacológico , Portadores de Fármacos/química , Lactonas/uso terapêutico , Sesquiterpenos/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Animais , Feminino , Camundongos , Nanocápsulas/uso terapêutico , Poliésteres/química , Polietilenoglicóis/química
3.
Biomed Chromatogr ; 30(7): 1092-1096, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26577838

RESUMO

Lychnopholide is a sesquiterpene lactone usually obtained from Lychnophora and Eremanthus species and has pharmacological activities that include anti-inflammatory and anti-tumor. Lychnopholide isolated from Eremanthus matogrossenssis was analyzed in this study. The aims of this study were to develop and validate an analytical methodology by LC-MS/MS and to quantify lychnopholide in rat plasma. Chromatographic separation was achieved on a C18 column using isocratic elution with the mobile phase consisting of methanol and water (containing 0.1% formic acid) at a flow rate of 0.4 mL/min. The detection was performed in multiple-reaction monitoring mode using electrospray ionization in positive mode. The method validation was performed in accordance with regulatory guidelines and the results met the acceptance criteria. The linear range of detection was 10-200 ng/mL (r > 0.9961). The intra- and inter-day assay variability were <6.2 and <11.7%, respectively. The extraction recovery was approximately 63% using liquid-liquid extraction with chloroform. Lychnopholide was detected in plasma up to 60 min after intravenous administration in rats. This rapid and sensitive method for the analysis of the sesquiterpene lactone lychnopholide in rat plasma can be applied to pharmacokinetic studies of this compound. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida/métodos , Lactonas/sangue , Sesquiterpenos/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Lactonas/farmacocinética , Limite de Detecção , Ratos , Reprodutibilidade dos Testes , Sesquiterpenos/farmacocinética
4.
Rev. bras. plantas med ; 16(2): 275-282, jun. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-711788

RESUMO

The sesquiterpene lactones lychnopholide and eremantholide C were isolated from Lychnophora trichocarpha Spreng. (Asteraceae), which is a plant species native to the Brazilian Savannah or Cerrado and popularly known as arnica. Sesquiterpene lactones are known to present a variety of biological activities including antitumor activity. The present paper reports on the evaluation of the in vitro antitumor activity of lychnopholide and eremantholide C, in the National Cancer Institute, USA (NCI, USA), against a panel of 52 human tumor cell lines of major human tumors derived from nine cancer types. Lychnopholide disclosed significant activity against 30 cell lines of seven cancer types with IC100 (total growth concentration inhibition) values between 0.41 µM and 2.82 µM. Eremantholide C showed significant activity against 30 cell lines of eight cancer types with IC100 values between 21.40 µM and 53.70 µM. Lychnopholide showed values of lethal concentration 50% (LC50) for 30 human tumor cell lines between 0.72 and 10.00 µM, whereas eremantholide C presented values of LC50 for 21 human tumor cell lines between 52.50 and 91.20 µM. Lychnopholide showed an interesting profile of antitumor activity. The α-methylene-γ-lactone present in the structure of lychnopholide, besides two α,β- unsaturated carbonyl groups, might be responsible for the better activity and higher cytotoxicity of this compound in relation to eremantholide C.


As lactonas sesquiterpênicas licnofolida e eremantolida C foram isoladas de Lychnophora trichocarpha Spreng. (Asteraceae), espécie vegetal nativa do cerrado brasileiro e popularmente conhecida por arnica brasileira. As lactonas sesquiterpênicas são conhecidas por apresentarem variadas atividades biológicas, incluindo atividade antitumoral. O presente artigo relata a avaliação da atividade antitumoral in vitro de licnofolida e eremantolida C frente a um painel de 52 linhagens de células tumorais, provenientes de tumores humanos referentes a nove principais tipos de câncer. Os testes foram conduzidos no National Cancer Institute, USA (NCI, USA). Licnofolida apresentou atividade significativa frente a 30 linhagens de células tumorais referentes a sete tipos de câncer, com valores de CI100 (concentração que inibe 100% do crescimento celular) entre 0,41 µM e 2,82 µM. Eremantolida C mostrou atividade significativa frente a 30 linhagens de células tumorais referentes a oito tipos de câncer, com valores de CI100 entre 21,40 µM e 53,70 µM. Licnofolida apresentou valores de concentração letal 50% (CL50) para 30 linhagens de células tumorais humanas entre 0,72 e 10,00 µM, enquanto eremantolida C mostrou valores de CL50 para 21 linhagens entre 52,50 e 91,20 µM. Licnofolida apresentou um interessante perfil de atividade antitumoral. A presença na estrutura química da licnofolida de uma α-metileno-γ-lactona, além de dois grupos ésteres α,β-insaturados, podem ser responsáveis pela melhor atividade e maior citotoxicidade desta substância em relação à eremantolida C.


Assuntos
Asteraceae/classificação , Lactonas/análise , Técnicas In Vitro/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA