Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxics ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535921

RESUMO

The tarnished plant bug (TPB, Lygus lineolaris) remains a major pest for a variety of crops. Frequent sprays on row crops, especially cotton, prompted resistance development in field populations. To maintain chemical control as an effective tool against the pest, knowledge of global gene regulations is desirable for better understanding and managing the resistance. Novel microarray expressions of 6688 genes showed 685 significantly upregulated and 1382 significantly downregulated genes in oxamyl-selected TPBs (Vyd1515FF[R]) from a cotton field. Among the 685 upregulated genes (participated in 470 pathways), 176 genes code 30 different enzymes, and 7 of the 30 participate in 24 metabolic pathways. Six important detoxification pathways were controlled by 20 genes, coding 11 esterases, two P450s, two oxidases, and three pathway-associated enzymes (synthases, reductase, and dehydrogenase). Functional analyses showed substantially enhanced biological processes and molecular functions, with hydrolase activity as the most upregulated molecular function (controlled by 166 genes). Eleven esterases belong to the acting on ester bond subclass of the 166 hydrolases. Surprisingly, only one GST showed significant upregulation, but it was not involved in any detoxification pathway. Therefore, this research reports a set of 20 genes coding 6 enzyme classes to detoxify a carbamate insecticide oxamyl in Vyd1515FF. Together with three previous reports, we have obtained the best knowledge of resistance mechanisms to all four conventional insecticide classes in the economically important crop pest. This valuable finding will greatly facilitate the development of molecular tools to monitor and manage the resistance and to minimize risk to environment.

2.
Insect Sci ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850504

RESUMO

Due to rapidly developed resistance, pest management relies less on pyrethroids to control economically damaging infestations of the tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) in cotton fields of Mississippi. Yet, pyrethroid resistance remains prevalent in TPB populations. This study assessed the resistance levels in adult TPB to six common pyrethroids and acephate. Resistant TBPs were collected from wild host plants in late October after harvest in the Mississippi Delta region of the United States. Based on LC50 values, the field-resistant TPBs displayed higher resistance to permethrin, esfenvalerate, and bifenthrin (approximately 30 fold) and moderate resistance to λ-cyhalothrin, ß-cyfluthrin, ζ-cypermethrin, and acephate (approximately 15 fold). Further investigations showed that the inhibitors of three detoxification enzyme, triphenyl phosphate (TPP), diethyl maleate (DEM), and piperonyl butoxide (PBO) had synergistic effects on permethrin, λ-cyhalothrin, and bifenthrin in resistant TPBs. Furthermore, elevated esterase, GST, and P450 activities were significantly expressed in field-resistant TPBs. Additionally, GST and esterase were reduced after 48 h exposure to certain pyrethroids at LC50 dose. The synergistic and biochemical assays consistently indicated that P450 and esterase were involved in pyrethroid detoxification in TPBs. This study provides valuable information for the continued use of pyrethroids and acephate in controlling TPBs in cotton fields in the Mississippi Delta region of the United States.

3.
Insects ; 14(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37754729

RESUMO

Over the past several decades, the extensive use of pyrethroids has led to the development of resistance in many insect populations, including the economically damaging pest tarnished plant bug (TPB), Lygus lineolaris, on cotton. To manage TPB resistance, several commercially formulated pyrethroid-containing binary mixtures, in combination with neonicotinoids or avermectin are recommended for TPB control and resistance management in the mid-South USA. This study aimed to evaluate the toxicity and resistance risks of four formulated pyrethroid-containing binary mixtures (Endigo, Leverage, Athena, and Hero) on one susceptible and two resistant TPB populations, which were field-collected in July (Field-R1) and October (Field-R2), respectively. Based on LC50 values, both resistant TPB populations displayed variable tolerance to the four binary mixtures, with Hero showing the highest resistance and Athena the lowest. Notably, the Field-R2 exhibited 1.5-3-fold higher resistance compared to the Field-R1 for all four binary insecticides. Moreover, both resistant TPB populations demonstrated significantly higher resistance ratios towards Hero and Leverage compared to their corresponding individual pyrethroid, while Endigo and Athena showed similar or lower resistance. This study also utilized the calculated additive index (AI) and co-toxicity coefficient (CTC) analysis, which revealed that the two individual components in Leverage exhibited antagonist effects against the two resistant TPB populations. In contrast, the two individual components in Endigo, Hero, and Athena displayed synergistic interactions. Considering that Hero is a mixture of two pyrethroids that can enhance the development of TPB resistance, our findings suggest that Endigo and Athena are likely superior products for slowing down resistance development in TPB populations. This study provides valuable insight for selecting the most effective mixtures to achieve better TPB control through synergistic toxicity analysis, while simultaneously reducing economic and environmental risks associated with resistance development in the insect pest.

4.
BMC Res Notes ; 16(1): 125, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370172

RESUMO

OBJECTIVE: The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), is a pest damaging many cultivated crops in North America. Although partial transcriptome data are available for this pest, a genome assembly was not available for this species. This assembly of a high-quality chromosome-length genome of TPB is aimed to develop the genetic resources that can provide the foundation required for advancing research on this species. RESULTS: The initial genome of TPB assembled with paired-end nucleotide sequences generated with Illumina technology was scaffolded with Illumina HiseqX reads generated from a proximity ligated (HiC) library to obtain a high-quality genome assembly. The final assembly contained 3963 scaffolds longer than 1 kbp to yield a genome of 599.96 Mbp. The N50 of the TPB genome assembly was 35.64 Mbp and 98.68% of the genome was assembled into 17 scaffolds larger than 1 Mbp. This megabase scaffold number is the same as the number of chromosomes observed in karyotyping of this insect. The TPB genome is known to have high repetitive DNA content, and the reduced assembled genome size compared to flowcytometric estimates of approximately 860 Mbp may be due to the collapsed assembly of highly similar regions.


Assuntos
Heterópteros , Animais , Heterópteros/genética , Biblioteca Gênica , Genoma de Planta , Cromossomos
5.
Pest Manag Sci ; 79(10): 3893-3902, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37222566

RESUMO

BACKGROUND: Heavy selection pressure prompted the development of resistance in a serious cotton pest tarnished plant bug (TPB), Lygus Lineolaris in the mid-southern United States. Conversely, a laboratory resistant TPB strain lost its resistance to five pyrethroids and two neonicotinoids after 36 generations without exposure to any insecticide. It is worthwhile to examine why the resistance diminished in this population and determine whether the resistance fade away has practical value for insecticide resistance management in TPB populations. RESULTS: A field-collected resistant TPB population in July (Field-R1) exhibited 3.90-14.37-fold resistance to five pyrethroids and two neonicotinoids, while another field-collected TPB population in April (Field-R2) showed much lower levels of resistance (0.84-3.78-fold) due to the absence of selection pressure. Interestingly, after 36 generations without exposure to insecticide, the resistance levels in the same population [laboratory resistant strain (Lab-R)] significantly decreased to 0.80-2.09-fold. The use of detoxification enzyme inhibitors had synergistic effects on permethrin, bifenthrin and imidacloprid in resistant populations of Lygus lineolaris. The synergism was more pronounced in Field-R2 than laboratory susceptible (Lab-S) and Lab-R TPB population. Moreover, esterase, glutathione S-transferase (GST), and cytochrome P450-monooxygenases (P450) enzyme activities increased significantly by approximately 1.92-, 1.43-, and 1.44-fold in Field-R1, respectively, and 1.38-fold increased P450 enzyme activities in Field-R2 TPB population, compared to the Lab-S TPB. In contrast, the three enzyme activities in the Lab-R strain were not significantly elevated anymore relative to the Lab-S population. Additionally, Field-R1 TPB showed elevated expression levels of certain esterase, GST and P450 genes, respectively, while Field-R2 TPB overexpressed only P450 genes. The elevation of these gene expression levels in Lab-R expectedly diminished to levels close to those of the Lab-S TPB populations. CONCLUSION: Our results indicated that the major mechanism of resistance in TPB populations was metabolic detoxification, and the resistance development was likely conferred by increased gene expressions of esterase, GST, and P450 genes, the fadeaway of the resistance may be caused by reversing the overexpression of esterase, GST and P450. Without pesticide selection, resistant gene (esterase, GST, P450s) frequencies declined, and detoxification enzyme activities returned to Lab-S level, which resulted in the recovery of the susceptibility in the resistant TPB populations. Therefore, pest's self-purging of insecticide resistance becomes strategically desirable for managing resistance in pest populations. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Heterópteros , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Piretrinas/farmacologia , Heterópteros/genética , Neonicotinoides/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Esterases/metabolismo , Resistência a Inseticidas/genética
6.
Environ Entomol ; 52(3): 521-526, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37040612

RESUMO

Lygus lineolaris (Palisot de Beauvois) is a highly polyphagous herbivore with more than 300 known host plants. The high polyphagy has created logistical challenges for understanding its population dynamics. I hypothesized that the primary food resource of this species can be characterized simply, cutting across the multiple host plant species, and enabling a simpler understanding of its population dynamics. The food resource was defined as the apical buds and meristematic tissue and terminal flowers and young seeds. Adult abundance in a habitat was related to the relative abundance of food in the habitat, abundance on a host plant stem was related to the amount of food resource on the stem, and the rate of emigration was lower from host plant patches with higher amounts of food resources. These results suggest that the population dynamics of L. lineolaris depends less on the identity of the host plants and more on the amount of food resource the various host plant species provide.


Assuntos
Hemípteros , Heterópteros , Animais , Herbivoria , Plantas , Sementes , Flores
7.
Pest Manag Sci ; 79(6): 2163-2171, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36730090

RESUMO

BACKGROUND: The tarnished plant bug Lygus lineolaris (Palisot de Beauvois) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States. Previous studies have reported the role of different ratios of volatile metathoracic gland components such as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal in eliciting low-level attraction of L. lineolaris. In this study, we tested different visual cues (colored sticky cards) in combination with olfactory cues (pheromone blends) to optimize the attraction and capture of L. lineolaris in the field. RESULTS: Red-colored sticky cards were more attractive to L. lineolaris adults than white, blue or yellow cards. Red sticky cards combined with blends of three potential pheromone components attracted significantly more L. lineolaris adults than sticky cards without a blend added. Traps baited with a blend of hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal in 4:10:7 ratio, respectively, caught a significantly higher number of L. lineolaris than those baited with 10:4:2 or 7:10:4 blends or an unbaited control in the first week of the experiment. CONCLUSIONS: Combining visual cues (red color) with olfactory cues (pheromone blends) significantly increased the capture of L. lineolaris in the field. This device or a future iteration could contribute towards sustainable and environmentally appropriate early-season monitoring and management of L. lineolaris in the field. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Hemípteros , Heterópteros , Animais , Humanos , Feromônios/farmacologia , Sinais (Psicologia) , Plantas , Gossypium , Butiratos/farmacologia , Butiratos/química
8.
Insects ; 12(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34564247

RESUMO

The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), (Hemiptera: Miridae) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States, although it is established throughout the United States, southern Canada, and northern Mexico. The introduction of transgenic crops for the control of moths in the Heliothine complex and eradication of the boll weevil, Anthonomus grandis, from much of the United States led to greatly reduced pesticide use in cotton fields, which allowed L. lineolaris to emerge as a new primary pest of cotton in the mid-southern United States. Since the publication of a review by Layton (2000) on damage caused by Lygus lineolaris, many new studies have been published on the changes in host range, population dynamics, sampling methods and thresholds, cultural practices, sex pheromones and attractant blends, novel pesticides and insecticide resistance mechanisms, olfactory and feeding behaviors, introduction of biological control agents, host-plant resistance mechanisms, and new molecular and genetic tools for integrated pest management of Lygus species in cotton and other important crops. Here, we review and discuss the latest developments in L. lineolaris research in the last two decades.

9.
Pest Manag Sci ; 76(12): 4057-4063, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32542895

RESUMO

BACKGROUND: The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), has emerged as a major pest of cotton, Gossypium hirsutum L, in the mid-southern USA. In the early 1990s L. lineolaris populations developed resistance to several classes of conventional insecticides, increasing the need for insecticides with alternative modes of action such as insect growth regulators (IGRs) for integrated pest management (IPM). The benzoylphenyl urea (BPU) class of IGRs acts by disrupting the growth and development of immature stages of insects, but little is known about its impact on adult stages. RESULTS: The effect of novaluron (Diamond™ 0.83EC), a BPU with known chitin synthesis inhibitor activity, was investigated on adult females of L. lineolaris. Treatment of 1-day-old adults with 600 ppm of novaluron in the diet prevented oviposition, while treatment of older females had no impact on oviposition. Oral novaluron exposure of adults of all ages reduced the viability of eggs laid. Novaluron treatment caused ultrastructural changes in the ovaries of 1-day-old adults (48 h post exposure), distorting the follicular epithelial cell architecture of developing oocytes. Additionally, novaluron treatment decreased the chitin content in ovarian tissue. CONCLUSION: Our results suggest that chitin or chitin-like components in the developing ovaries of adult L. lineolaris are a target of IGRs such as novaluron, but its activity is specific to a critical time during development. This enhances our understanding of the effects of BPUs on adult insects and could lead to incorporation of IGRs in IPM for controlling adult insect pest populations in the field. © 2020 Society of Chemical Industry.


Assuntos
Heterópteros , Inseticidas , Animais , Feminino , Inseticidas/farmacologia , Ninfa , Oogênese , Oviposição , Compostos de Fenilureia
10.
Ecol Appl ; 28(2): 348-355, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29345735

RESUMO

Agricultural intensification resulting in the simplification of agricultural landscapes is known to negatively impact the delivery of key ecosystem services such as the biological control of crop pests. Both conservation and classical biological control may be influenced by the landscape context in which they are deployed; yet studies examining the role of landscape structure in the establishment and success of introduced natural enemies and their interactions with native communities are lacking. In this study, we investigated the relationship between landscape simplification, classical and conservation biological control services and importantly, the outcome of these interactions for crop yield. We showed that agricultural simplification at the landscape scale is associated with an overall reduction in parasitism rates of crop pests. Additionally, only introduced parasitoids were identified, and no native parasitoids were found in crop habitat, irrespective of agricultural landscape simplification. Pest densities in the crop were lower in landscapes with greater proportions of semi-natural habitats. Furthermore, farms with less semi-natural cover in the landscape and consequently, higher pest numbers, had lower yields than farms in less agriculturally dominated landscapes. Our study demonstrates the importance of landscape scale agricultural simplification in mediating the success of biological control programs and highlights the potential risks to native natural enemies in classical biological control programs against native insects. Our results represent an important contribution to an understanding of the landscape-mediated impacts on crop yield that will be essential to implementing effective policies that simultaneously conserve biodiversity and ecosystem services.


Assuntos
Agricultura , Biomassa , Hemípteros/parasitologia , Controle Biológico de Vetores , Vespas/fisiologia , Animais , Fragaria , Interações Hospedeiro-Parasita
11.
Insects ; 8(4)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027974

RESUMO

Concentration-response assays were conducted from 2008 through 2015 to measure the susceptibility of field populations of Lygus lineolaris (Palisot de Beauvois) from the Delta regions of Arkansas, Louisiana, and Mississippi to acephate, imidacloprid, thiamethoxam, permethrin, and sulfoxaflor. A total of 229 field populations were examined for susceptibility to acephate, 145 for susceptibility to imidacloprid, and 208 for susceptibility to thiamethoxam. Permethrin assays were conducted in 2014 and 2015 to measure levels of pyrethroid resistance in 44 field populations, and sulfoxaflor assays were conducted against 24 field populations in 2015. Resistance to acephate and permethrin is as high or higher than that previously reported, although some populations, especially those exposed to permethrin, appear to be susceptible. Variable assay responses were measured for populations exposed to imidacloprid and thiamethoxam. Average response metrics suggest that populations are generally susceptible to the neonicotinoids, but a few populations from cotton fields experiencing control problems exhibited elevated LC50s. Efforts to associate variability in LC50s with recorded use of insecticides and estimated cotton insect losses and control costs suggest that intensive use of insecticides over several decades may have elevated general detoxifying enzymes in L. lineolaris and some field populations may be exhibiting resistance to multiple classes of insecticide. These results suggest that efforts should be made to manage these pests more efficiently with a reduced use of insecticides and alternative controls.

12.
J Insect Sci ; 16(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27324587

RESUMO

Saliva is known to play a crucial role in tarnished plant bug (TPB, Lygus lineolaris [Palisot de Beauvois]) feeding. By facilitating the piercing, the enzyme-rich saliva may be used for extra-oral digestion and for overcoming plant defense before the plant fluids are ingested by TPBs. To identify salivary gland genes, mRNA was extracted from salivary glands and cDNA library clones were sequenced. A de novo-assembling of 7,000 Sanger sequences revealed 666 high-quality unique cDNAs with an average size of 624 bp, in which the identities of 347 cDNAs were determined using Blast2GO. Kyoto Encyclopedia of Genes and Genomes analysis indicated that these genes participate in eighteen metabolic pathways. Identifications of large number of enzyme genes in TPB salivary glands evidenced functions for extra-oral digestion and feeding damage mechanism, including 45 polygalacturonase, two α- amylase, one glucosidase, one glycan enzyme, one aminopeptidase, four lipase, and many serine protease cDNAs. The presence of multiple transcripts, multigene members, and high abundance of cell wall degradation enzymes (polygalacturonases) indicated that the enzyme-rich saliva may cause damage to plants by breaking down plant cell walls to make nutrients available for feeding. We also identified genes potentially involved in insect adaptation and detoxifying xenobiotics that may allow insects to overcome plant defense responses, including four glutathione S-transferases, three esterases, one cytochrome P450, and several serine proteases. The gene profiles of TPB salivary glands revealed in this study provides a foundation for further understanding and potential development of novel enzymatic inhibitors, or other RNAi approaches that may interrupt or minimize TPB feeding damage.


Assuntos
Digestão/genética , Heterópteros/genética , Proteínas de Insetos/genética , Sequência de Aminoácidos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antibiose , DNA Complementar/genética , DNA Complementar/metabolismo , Biblioteca Gênica , Heterópteros/metabolismo , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Filogenia , Glândulas Salivares/enzimologia
13.
J Econ Entomol ; 109(3): 1188-1195, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27106220

RESUMO

The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is a major pest of cotton in the midsouthern United States, including the states of Arkansas, Mississippi, Louisiana, western Tennessee, and southeastern Missouri. Insecticides provide the primary form of control for this pest, and numerous applications are required annually to control the tarnished plant bug. Little information exists regarding when to terminate insecticide applications targeting tarnished plant bugs in cotton. Numerous sprays are made late in the season to protect a small percentage of the overall yield. Experiments were conducted at the Mississippi State University Delta Research and Extension Center to determine the impact of tarnished plant bug infestation timings on cotton yield. Two separate planting dates were utilized to determine the weeks of flowering that tarnished plant bugs can cause significant yield losses. There was a significant planting date by treatment interaction. Overall, yields were greater in the first planting date than the second planting date. In both planting dates, the first 4 wk of flowering were the most critical for tarnished plant bug control, and this is when the greatest yield losses occurred. Also, when no insecticide applications were made after the fourth week of flowering, no significant yield loss was observed. These data demonstrate the importance of scouting and adhering to treatment thresholds during the early flowering period. These data also suggest that thresholds may be able to be modified or eliminated after the fourth week of flowering, but more research is needed to confirm this.

14.
Pest Manag Sci ; 72(8): 1595-603, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26598042

RESUMO

BACKGROUND: Lygus lineolaris (Palisot de Beauvois) is a serious pest of cotton (Gossypium hirsutum L.) in Mississippi, particularly in the Delta region. This may be due to decreased insecticide susceptibility in that region. Research has revealed populations of L. lineolaris in the Delta region with high levels of insecticide resistance; however, comparisons with populations in the remainder of the state are limited. RESULTS: Experiments were undertaken to compare the LC50 values and activities of detoxification enzymes of L. lineolaris populations. The results of these studies indicated that the LC50 values were not different between the Delta and Hills regions, but differences were significant between populations within and across regions. Results of the detoxifying enzyme activity assays revealed significantly higher esterase activity in the Delta region when compared with the Hills. Glutathione S-transferase activity was not different between regions, but differences within and across regions were significant. CONCLUSION: The results indicated that glass-vial assays to determine and compare LC50 values may be less accurate than enzymatic assays for detecting insecticide susceptibility differences. Higher esterase activity is likely a contributing factor to the difficulties with managing L. lineolaris in the Mississippi Delta region. © 2015 Society of Chemical Industry.


Assuntos
Esterases/metabolismo , Glutationa Transferase/metabolismo , Heterópteros/enzimologia , Resistência a Inseticidas , Inseticidas , Animais , Gossypium/parasitologia , Heterópteros/genética , Imidazóis , Inativação Metabólica , Mississippi , Neonicotinoides , Nitrocompostos , Compostos Organotiofosforados , Permetrina , Fosforamidas
15.
Environ Entomol ; 44(3): 898-906, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26313997

RESUMO

The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), is a major pest of cotton (Gossypium hirsutum L.) in the state of Mississippi. Economic data indicate that L. lineolaris is a more serious pest of cotton in the Delta region of Mississippi than in the Hills region; however, little data exist comparing the two populations. Two experiments were undertaken to compare L. lineolaris from these two geographically distinct regions. In the first experiment, colonies of L. lineolaris from each region were reared in the laboratory under controlled conditions and measurements of development time, survivorship, fecundity, and hatch rate were compared. The geographic region of origin had no effect on any of the variables measured; however, the diet used for rearing had a significant effect on all variables except hatch rate. In the second experiment, part of the cox1 gene of the L. lineolaris mitochondrial genome was compared between the two populations to examine possible genetic differences between L. lineolaris from the two regions of Mississippi. Data revealed two cox1 clades in the Delta region and only one cox1 clade in the Hills region. Taken together, the data do not explain the reason for the differences in the severity of damage to cotton in the two regions.


Assuntos
Gossypium , Herbivoria , Heterópteros/fisiologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fertilidade , Gossypium/crescimento & desenvolvimento , Heterópteros/enzimologia , Heterópteros/genética , Heterópteros/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Longevidade , Masculino , Mississippi , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia
16.
Insect Mol Biol ; 24(4): 480-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018035

RESUMO

Astakines are hematopoietic cytokines originally isolated from crustaceans. We identified three astakine-like transcripts in the tarnished plant bug (Lygus lineolaris), LlAst-1, LlAst-2 and LlAst-3, containing prokineticin domains. Quantitative real-time PCR showed variation in expression patterns of astakines in different tissues and between sexes. Relative expression levels of LlAst-1 were highest in the fat bodies of females, while LlAst-2 expression was highest in the fat bodies of both males and females. LlAst-3 expression was higher in male legs compared with the female legs, but lower in all other tissues. Infection with the entomopathogenic fungus Beauveria bassiana slightly elevated LlAst-1 expression 48 h after infection in both males and females. In contrast, the expression levels of LlAst-2 and LlAst-3 were not significantly changed in males and females. Compared with 12:00 h, LlAst-1 level was higher in both sexes at 18:00 h and 00:00 h (midnight). By 6:00 h, the LlAst-1 level in females was significantly reduced while that in males remained high. LlAst-2 and -3 had highest relative expression levels in females at midnight but were significantly lower than in males at midnight and in both sexes at 18:00 h and 6:00 h. This is the first report of expression of astakine-like cytokines from insects.


Assuntos
Beauveria/fisiologia , Heterópteros/metabolismo , Heterópteros/microbiologia , Proteínas de Insetos/metabolismo , Sequência de Aminoácidos , Animais , Ritmo Circadiano , Citocinas/genética , Citocinas/metabolismo , Extremidades , Corpo Adiposo/metabolismo , Feminino , Perfilação da Expressão Gênica , Heterópteros/genética , Proteínas de Insetos/genética , Masculino , Dados de Sequência Molecular , Filogenia , Fatores Sexuais , Esporos Fúngicos
17.
Pest Manag Sci ; 71(1): 40-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24515672

RESUMO

BACKGROUND: Chemical spray on cotton is almost an exclusive method for controlling tarnished plant bug (TPB), Lygus lineolaris. Frequent use of imidacloprid is a concern for neonicotinoid resistance in this key pest. Information of how and why TPB becomes less susceptible to imidacloprid is essential for effective monitoring and managing resistance. RESULTS: Microarray analysis of 6688 genes in imidacloprid-selected TPB (Im1500FF) revealed 955 upregulated and 1277 downregulated (≥twofold) genes in Im1500FF, with 369 and 485 of them annotated. Five P450 and nine esterase genes were significantly upregulated, and only one esterase gene and no P450 genes were downregulated. Other upregulated genes include helicases, phosphodiesterases, ATPases and kinases. Pathway analyses identified 65 upregulated cDNAs that encode 51 different enzymes involved in 62 different pathways, including P450 and esterase genes for drug and xenobiotic metabolisms. Sixty-four downregulated cDNAs code only 17 enzymes that are associated with only 23 pathways mostly related to food digestion. CONCLUSIONS: This study demonstrated a significant change in gene expression related to metabolic processes in imidacloprid-selected TPB, resulting in overexpression of P450 and esterase genes for potential excess detoxification and cross/multiple resistance development. The identification of these and other enzyme genes establishes a foundation to explore the complicity of potential imidacloprid resistance in TPB.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hemípteros/metabolismo , Imidazóis , Inseticidas , Nitrocompostos , Animais , Hemípteros/genética , Inativação Metabólica , Resistência a Inseticidas , Anotação de Sequência Molecular , Neonicotinoides , Análise de Sequência com Séries de Oligonucleotídeos
18.
Insect Mol Biol ; 23(1): 78-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24224606

RESUMO

In insects, the perception and discrimination of odorants requires the involvement of odorant-binding proteins (OBPs). To gain a better molecular understanding of olfaction in the agronomic pest Lygus lineolaris (the tarnished plant bug), we used a transcriptomics-based approach to identify potential OBPs. In total, 33 putative OBP transcripts, including the previously reported Lygus antennal protein (LAP), were identified based on the characteristic OBP Cys signature and/or sequence similarity with annotated orthologous sequences. The L. lineolaris OBP (LylinOBP) repertoire consists of 20 'classic' OBPs, defined by the spacing of six conserved Cys residues, and 12 'Plus-C' OBPs, defined by the spacing of eight conserved Cys and one conserved Pro residue. Alternative splicing of OBP genes appears to contribute significantly to the multiplicity of LylinOBP sequences. Microarray-based analysis of chemosensory tissues (antennae, legs and proboscis) revealed enrichment of 21 LylinOBP transcripts in antennae, 12 in legs, and 15 in proboscis, suggesting potential roles in olfaction and gustation respectively. PCR-based determination of transcript abundance for a subset of the LylinOBP genes across multiple adult tissues yielded results consistent with the hybridization data.


Assuntos
Heterópteros/genética , Proteínas de Insetos/biossíntese , Receptores Odorantes/biossíntese , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Filogenia , Receptores Odorantes/genética , Alinhamento de Sequência
19.
Genet. mol. res. (Online) ; 6(1): 206-213, 2007. tab
Artigo em Inglês | LILACS | ID: lil-456766

RESUMO

Expressed sequenced tags (ESTs) were prepared to establish a baseline for molecular genetic studies of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). The largest class of identifiable ESTs (15.2%) was from genes involved in cellular metabolic functions, including physiological processes. Twenty-seven ESTs (9.8%) were from genes associated with transcription and translation, including ribosomal genes. One hundred and forty-two of the 276 unique ESTs were from genes not previously identified from any organism. Twelve sequences appear to be associated with feeding and digestion and may be targets for pest control studies


Assuntos
Animais , Masculino , Feminino , Etiquetas de Sequências Expressas , Expressão Gênica/genética , Biblioteca Gênica , Genes de Insetos/genética , Hemípteros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...