Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; : PDIS06231154RE, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37775922

RESUMO

A mandatory tomato-free period (TFP) was implemented in the state of Goiás, Brazil, in 2007 to help manage diseases caused by whitefly-transmitted begomoviruses. The impact of the TFP was examined in five locations across three states in Central Brazil from 2013 to 2016. Surveys revealed significant differences in begomovirus disease incidence among locations, i.e., low in Guaíra-TFP and Patos de Minas-TFP; moderate-high in Itaberaí-TFP and Morrinhos-TFP; and high in the non-TFP (NTFP) control, Cristalina-NTFP. PCR tests and DNA sequencing were used to validate the symptoms and showed that all collected symptomatic plant samples were infected with tomato severe rugose virus (ToSRV), a common indigenous bipartite begomovirus. Early season surveys (20 to 40 days after transplants [DAT]) in Itaberaí-TFP and Morrinhos-TFP revealed significantly less begomovirus disease in fields established sooner after the TFP (0 to 2 months) compared with incidences in (i) equivalent early planted fields in the Cristalina-NTFP control and (ii) fields established longer after the end of the TFP (>2 to 5 months). Whitefly infestation of crops was detected year-round in all locations and years, and all tested adults were classified in the Bemisia tabaci MEAM1 cryptic species. Infestation levels were significantly higher during the summer but did not vary significantly among locations. Results of monthly monitoring of adult whiteflies for general begomovirus and ToSRV were positively correlated and were indicators of disease incidence in the field. Notably, ToSRV was not detected in whiteflies collected from nontomato plants during the TFP, and there was a longer lag period before detection in whiteflies collected from processing tomatoes for Itaberaí-TFP and Morrinhos-TFP compared with Cristalina-NTFP. Taken together with the low levels of ToSRV infection detected in potential nontomato reservoir hosts at all locations, our results revealed low levels of primary inoculum during the TFP. Thus, even in a complex agroecosystem with year-round whitefly infestation of crops, the TFP was beneficial due to delayed and reduced begomovirus disease pressure during a critical stage of plant development (first month) and for favoring low levels of primary inoculum. Thus, we concluded that the TFP should be part of a regional integrated pest management (IPM) program targeting ToSRV in Brazil.

2.
Sci Total Environ ; 857(Pt 3): 159443, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36252665

RESUMO

Amid concerns on the myriad of existing chemical stressors in agroecosystems, pesticides and particularly neonicotinoid insecticides are in the forefront. Despite that, these neurotoxic compounds remain the dominant group of insecticides in worldwide use with the added versatility of use in seed coatings. Such use sparks environmental concerns counterbalanced by their reported insecticidal efficacy and potential plant bioactivation. Nonetheless, this alleged double benefit and interconnection expected with neonicotinoids has been little explored particularly when the whole plant phenology is considered. Regardless of the expected efficacy against targeted insect pest species, like whiteflies, neonicotinoids may spark dual effect on plants - negative at higher concentrations, positive at low concentrations, which is consistent with the hormesis phenomenon that may be expressed as a plant bioactivation. This effect may also cascade to the targeted insect species, what deserves attention. Therefore, soybean seeds treated with increasing concentrations of the neonicotinoid thiamethoxam were followed throughout their development in greenhouse, recording the plant response and yield, besides their effect in whiteflies (Bemisia tabaci MEAM1). Thiamethoxam application was correlated to leaf contents of thiamethoxam and its metabolite clothianidin. Plant hormesis was found for leaf area and root growth, but not for other plant morphological or physiological parameters, nor plant yield. The insecticide concentration-dependency compromised whitefly population growth without evidence of cascading any plant-mediated hormesis to the insects. Thus, although plant hormesis was recognized with thiamethoxam in treated soybean seeds in relevant parameters, no evidence of plant bioactivation was observed to justify its use with such a secondary objective, nor did this hormesis impair whitefly control.


Assuntos
Hemípteros , Inseticidas , Animais , Tiametoxam , Glycine max , Hormese , Nitrocompostos , Oxazinas , Neonicotinoides , Sementes , Insetos
3.
Neotrop Entomol ; 50(5): 850-857, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33978919

RESUMO

Two Bemisia tabaci (Gennadius) species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), are major pests that are dispersed throughout the world. While MEAM1 was introduced in Brazil in the 1990s, MED was reported recently with limited spread. Here, a survey was performed to examine whether MED whiteflies are widely present in the Federal District region, in central Brazil. Whiteflies were collected in various locations in the Federal District and surroundings between 2018 and 2020, including garden centers and small- and large-scale farms. The species were identified using RFLPand sequencing of the mitochondrial cytochrome c oxidase I subunit gene region. Out of 108 whitefly batches, 63.89% were composed exclusively by MEAM1, followed by 16.67% presenting only MED, and another 7.40% containing unidentified whitefly species (NI). Plant varieties serving as hosts for more than one whitefly species were observed in 12.04% of the samples, either by MEAM1/MED, MEAM1/NI, or MED/NI. This study highlights the still limited presence of MED in the Federal District and surroundings, predominantly in garden centers and in the green belt of Brasília, closer to urban areas. In contrast, only MEAM1 was identified in large-scale cultivated areas.


Assuntos
Produtos Agrícolas , Hemípteros , Meios de Transporte , Animais , Brasil , Espécies Introduzidas
4.
Insect Sci ; 22(4): 483-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24753322

RESUMO

The whitefly Bemisia tabaci (Gennadius) is one of the most important pests causing economic losses in a variety of cropping systems around the world. This species was recently found in a coastal region of Colombia and has now spread inland. To investigate this invasive process, the genetic structure of B. tabaci was examined in 8 sampling locations from 2 infested regions (coastal, inland) using 9 microsatellite markers and the mitochondrial COI gene. The mitochondrial analysis indicated that only the invasive species of the B. tabaci complex Middle East-Asia Minor 1 (MEAM 1 known previously as biotype B) was present. The microsatellite data pointed to genetic differences among the regions and no isolation by distance within regions. The coastal region in the Caribbean appears to have been the initial point of invasion, while the inland region in the Southwest showed genetic variation among populations most likely reflecting founder events and ongoing changes associated with climatic and topographical heterogeneity. These findings have implications for tracking and managing B. tabaci.


Assuntos
Hemípteros/genética , Animais , Colômbia , DNA Mitocondrial/genética , Variação Genética , Hemípteros/classificação , Espécies Introduzidas , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA