Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Endocrinology ; 164(9)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539861

RESUMO

Leydig cells produce hormones required for the development and maintenance of sex characteristics and fertility in males. MEF2 transcription factors are important regulators of Leydig cell gene expression and steroidogenesis. ERK5 is an atypical member of the MAP kinase family that modulates transcription factor activity, either by direct phosphorylation or by acting as a transcriptional coactivator. While MEF2 and ERK5 are known to cooperate transcriptionally, the presence and role of ERK5 in Leydig cells remained unknown. Our goal was to determine whether ERK5 is present in Leydig cells and whether it cooperates with MEF2 to regulate gene expression. We found that ERK5 is present in Leydig cells in testicular tissue and immortalized cell lines. ERK5 knockdown in human chorionic gonadotrophin-treated MA-10 Leydig cells reduced steroidogenesis and decreased Star and Nr4a1 expression. Luciferase assays using a synthetic reporter plasmid containing 3 MEF2 elements revealed that ERK5 enhances MEF2-dependent promoter activation. Although ERK5 did not cooperate with MEF2 on the Star promoter in Leydig cell lines, we found that ERK5 and MEF2C do cooperate on the Nr4a1 promoter, which contains 2 adjacent MEF2 elements. Mutation of each MEF2 element in a short version of the Nr4a1 promoter significantly decreased the ERK5/MEF2C cooperation, indicating that both MEF2 elements need to be intact. The ERK5/MEF2C cooperation did not require phosphorylation of MEF2C on Ser387. Taken together, our data identify ERK5 as a new regulator of MEF2 activity in Leydig cells and provide potential new insights into mechanisms that regulate Leydig cell gene expression and function.


Assuntos
Regulação da Expressão Gênica , Células Intersticiais do Testículo , Humanos , Masculino , Linhagem Celular , Células Intersticiais do Testículo/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
2.
J Biol Chem ; 295(25): 8613-8627, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32393578

RESUMO

N-Methyl-d-aspartate type glutamate receptors (NMDARs) are key mediators of synaptic activity-regulated gene transcription in neurons, both during development and in the adult brain. Developmental differences in the glutamate receptor ionotropic NMDA 2 (GluN2) subunit composition of NMDARs determines whether they activate the transcription factor cAMP-responsive element-binding protein 1 (CREB). However, whether the developmentally regulated GluN3A subunit also modulates NMDAR-induced transcription is unknown. Here, using an array of techniques, including quantitative real-time PCR, immunostaining, reporter gene assays, RNA-Seq, and two-photon glutamate uncaging with calcium imaging, we show that knocking down GluN3A in rat hippocampal neurons promotes the inducible transcription of a subset of NMDAR-sensitive genes. We found that this enhancement is mediated by the accumulation of phosphorylated p38 mitogen-activated protein kinase in the nucleus, which drives the activation of the transcription factor myocyte enhancer factor 2C (MEF2C) and promotes the transcription of a subset of synaptic activity-induced genes, including brain-derived neurotrophic factor (Bdnf) and activity-regulated cytoskeleton-associated protein (Arc). Our evidence that GluN3A regulates MEF2C-dependent transcription reveals a novel mechanism by which NMDAR subunit composition confers specificity to the program of synaptic activity-regulated gene transcription in developing neurons.


Assuntos
Glicoproteínas de Membrana/metabolismo , Plasticidade Neuronal/fisiologia , Transcrição Gênica , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Hipocampo/metabolismo , Fatores de Transcrição MEF2/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Tetrodotoxina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Chinese Journal of Nephrology ; (12): 295-301, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-745975

RESUMO

Objective To observe the level of CD4+CD25+ regulatory T cells (CD4+CD25+ Treg cells) with positive fork head transcription factor 3 (Foxp3) and changes of T-box transcription factor TBX1 (TBX1) and myocyte specific enhancer 2D (MEF2D) expression in peripheral blood of rats with acute rejection after renal transplantation,and to investigate its regulatory mechanisms by combined with renal function,plasma interleukin-10 (IL-10),interferon-γ (IFN-γ) and renal histopathological changes.Methods Rat renal transplantation model was established and divided into two groups:acute rejection group (AR group) and non-acute rejection group (non-AR group).Their renal function including serum creatinine (Scr) and blood urea nitrogen (BUN) in plasma was measured.The renal histopathology was observed by HE staining.Levels of IL-10 and IFN-γ in plasma were detected by ELISA.The proportion of CD4+CD25+ Treg cells was measured by flow cytometry.The mRNA expressions of Foxp3,TBX1 and MEF2D in CD4+CD4+Treg cells were detected by real-time PCR,and their protein expressions were tested by Western blotting.Results Compared with these in the non-AR group,the levels of BUN,Scr and IFN-γ significantly increased in AR group (all P < 0.05),while IL-10 decreased (P < 0.05).Renal histopathology in the acute rejection group showed glomerular hypertrophy and mesangial cell proliferation,capillary proliferation and neutrophil infiltration;renal interstitial edema and tubular necrosis,accompanied by lymphocytes,plasma cells and neutrophils infiltration.Compared with that in the non-AR group,the percentage of CD4+CD25+ Treg cells in peripheral blood was notably lowered in AR group (4.50%±0.50% vs 5.74%±1.96%,P < 0.05).The mRNA and protein expressions of Foxp3 and MEF2D were lower in AR group than those in non-AR group,while the expressions of TBX1 was elevated (all P < 0.05).Conclusions In rats with acute renal allograft rejection,the percentage of CD4+CD25+ Treg cells and expressions of Foxp3,MEF2D and IL-10 decrease,while the expressions of TBX1 and IFN-γ enhance.These participate in the development of acute rejection after renal transplantation,and aggravate the renal damage.

4.
Stem Cells ; 35(3): 725-738, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27612437

RESUMO

The transcription factor MEF2C (Myocyte Enhancer Factor 2C) plays an established role in the early steps of myogenic differentiation. However, the involvement of MEF2C in adult myogenesis and in muscle regeneration has not yet been systematically investigated. Alternative splicing of mammalian MEF2C transcripts gives rise to two mutually exclusive protein variants: MEF2Cα2 which exerts a positive control of myogenic differentiation, and MEF2Cα1, in which the α1 domain acts as trans-repressor of the MEF2C pro-differentiation activity itself. However, MEF2Cα1 variants are persistently expressed in differentiating cultured myocytes, suggesting a role in adult myogenesis. We found that overexpression of both MEF2Cα1/α2 proteins in a mouse model of muscle injury promotes muscle regeneration and hypertrophy, with each isoform promoting different stages of myogenesis. Besides the ability of MEF2Cα2 to increase differentiation, we found that overexpressed MEF2Cα1 enhances both proliferation and differentiation of primary myoblasts, and activates the AKT/mTOR/S6K anabolic signaling pathway in newly formed myofibers. The multiple activities of MEF2Cα1 are modulated by phosphorylation of Ser98 and Ser110, two amino acid residues located in the α1 domain of MEF2Cα1. These specific phosphorylations allow the interaction of MEF2Cα1 with the peptidyl-prolyl isomerase PIN1, a regulator of MEF2C functions. Overall, in this study we established a novel regulatory mechanism in which the expression and the phosphorylation of MEF2Cα1 are critically required to sustain the adult myogenesis. The described molecular mechanism will represent a new potential target for the development of therapeutical strategies to treat muscle-wasting diseases. Stem Cells 2017;35:725-738.


Assuntos
Processamento Alternativo/genética , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Regeneração , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Hipertrofia , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos/metabolismo , Células NIH 3T3 , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Células Satélites de Músculo Esquelético/metabolismo , Serina/metabolismo
5.
Genes Dev ; 30(20): 2297-2309, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27898394

RESUMO

Angiogenesis, the fundamental process by which new blood vessels form from existing ones, depends on precise spatial and temporal gene expression within specific compartments of the endothelium. However, the molecular links between proangiogenic signals and downstream gene expression remain unclear. During sprouting angiogenesis, the specification of endothelial cells into the tip cells that lead new blood vessel sprouts is coordinated by vascular endothelial growth factor A (VEGFA) and Delta-like ligand 4 (Dll4)/Notch signaling and requires high levels of Notch ligand DLL4. Here, we identify MEF2 transcription factors as crucial regulators of sprouting angiogenesis directly downstream from VEGFA. Through the characterization of a Dll4 enhancer directing expression to endothelial cells at the angiogenic front, we found that MEF2 factors directly transcriptionally activate the expression of Dll4 and many other key genes up-regulated during sprouting angiogenesis in both physiological and tumor vascularization. Unlike ETS-mediated regulation, MEF2-binding motifs are not ubiquitous to all endothelial gene enhancers and promoters but are instead overrepresented around genes associated with sprouting angiogenesis. MEF2 target gene activation is directly linked to VEGFA-induced release of repressive histone deacetylases and concurrent recruitment of the histone acetyltransferase EP300 to MEF2 target gene regulatory elements, thus establishing MEF2 factors as the transcriptional effectors of VEGFA signaling during angiogenesis.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição MEF2/metabolismo , Neovascularização Fisiológica/genética , Animais , Células Cultivadas , Embrião não Mamífero , Células Endoteliais/enzimologia , Elementos Facilitadores Genéticos/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neovascularização Patológica/genética , Domínios e Motivos de Interação entre Proteínas , Retina/embriologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...