Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Cancer Sci ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101880

RESUMO

This study investigated the role of O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation hierarchy and heterogeneity in grade 2-3 gliomas, focusing on variations in chemotherapy benefits and resection dependency. A cohort of 668 newly diagnosed grade 2-3 gliomas, with comprehensive clinical, radiological, and molecular data, formed the basis of this analysis. The extent of resection was categorized into gross total resection (GTR ≥100%), subtotal resection (STR >90%), and partial resection (PR ≤90%). MGMTp methylation levels were examined using quantitative pyrosequencing. Our findings highlighted the critical role of GTR in improving the prognosis for astrocytomas (IDH1/2-mutant and 1p/19q non-codeleted), contrasting with its lesser significance for oligodendrogliomas (IDH1/2 mutation and 1p/19q codeletion). Oligodendrogliomas demonstrated the highest average MGMTp methylation levels (median: 28%), with a predominant percentage of methylated cases (average methylation levels >20%). Astrocytomas were more common in the low-methylated group (10%-20%), while IDH wild-type gliomas were mostly unmethylated (<10%). Spatial distribution analysis revealed a decrement in frontal lobe involvement from methylated, low-methylated to unmethylated cases (72.8%, 59.3%, and 47.8%, respectively). In contrast, low-methylated and unmethylated cases were more likely to invade the temporal-insular region (19.7%, 34.3%, and 40.4%, respectively). Astrocytomas with intermediate MGMTp methylation were notably associated with temporal-insular involvement, potentially indicating a moderate response to temozolomide and underscoring the importance of aggressive resection strategies. In conclusion, our study elucidates the complex interplay of MGMTp methylation hierarchy and heterogeneity among grade 2-3 gliomas, providing insights into why astrocytomas and IDH wild-type lower-grade glioma might derive less benefit from chemotherapy.

3.
Chin Neurosurg J ; 10(1): 24, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049072

RESUMO

BACKGROUND: High-grade gliomas (HGGs) have a rapid relapse and short survival. Studies have identified many clinical characteristics and biomarkers associated with progression-free survival (PFS) and over-survival (OS). However, there has not yet a comprehensive study on survival after the first progression (SAP). METHODS: From CGGA and TCGA, 319 and 308 HGGs were confirmed as the first progression. The data on clinical characteristics and biomarkers were analyzed in accordance with OS, PFS, and SAP. RESULTS: Analysis of 319 patients from CGGA, significant predictors of improved OS/PFS/SAP were WHO grade, MGMT promoter methylation, and Ki-67 expression in univariate analysis. Further multivariate analysis showed MGMT promoter methylation and Ki-67 expression were independent predictors. However, an analysis of 308 patients from TCGA found MGMT promoter methylation is the only prognostic marker. A longer SAP was observed in patients with methylated MGMT promoter after standard chemoradiotherapy. In our data, HGGs could be divided into low, intermediate, and high-risk groups for SAP by MGMT methylation and Ki-67 expression. CONCLUSIONS: Patients with MGMT promoter methylation have a prolonger SAP after standard chemoradiotherapy. HGGs could be divided into low, intermediate, and high-risk groups for SAP according to MGMT status and Ki-67 expression.

4.
Cancers (Basel) ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893152

RESUMO

Mutation in the telomerase reverse transcriptase promoter (TERTp )is commonly observed in various malignancies, such as central nervous system (CNS) tumors, malignant melanoma, bladder cancer, and thyroid carcinoma. These mutations are recognized as significant poor prognostic factors for these tumors. In this investigation, a total of 528 cases of adult-type diffuse gliomas diagnosed at a single institution were reclassified according to the 2021 WHO classifications of CNS tumors, 5th edition (WHO2021). The study analyzed clinicopathological and genetic features, including TERTp mutations in each tumor. The impact of known prognostic factors on patient outcomes was analyzed through Kaplan-Meier survival and Cox regression analysis. TERTp mutations were predominantly identified in 94.1% of oligodendrogliomas (ODG), followed by 66.3% in glioblastoma, IDH-wildtype (GBM-IDHwt), and 9.2% of astrocytomas, IDH-mutant (A-IDHm). When considering A-IDHm and GBM as astrocytic tumors (Group 1) and ODGs (Group 2), TERTp mutations emerged as a significant adverse prognostic factor (p = 0.013) in Group 1. However, within each GBM-IDHwt and A-IDHm, the presence of TERTp mutations did not significantly impact patient prognosis (p = 0.215 and 0.268, respectively). Due to the high frequency of TERTp mutations in Group 2 (ODG) and their consistent prolonged survival, a statistical analysis to evaluate their impact on overall survival was deemed impractical. When considering MGMTp status, the combined TERTp-mutated and MGMTp-unmethylated group exhibited the worst prognosis in OS (p = 0.018) and PFS (p = 0.034) of GBM. This study confirmed that the classification of tumors according to the WHO2021 criteria effectively reflected prognosis. Both uni- and multivariate analyses in GBM, age, MGMTp methylation, and CDKN2A/B homozygous deletion were statistically significant prognostic factors while in univariate analysis in A-IDHm, grade 4, the Ki-67 index and MYCN amplifications were statistically significant prognostic factors. This study suggests that it is important to classify and manage tumors based on their genetic characteristics in adult-type diffuse gliomas.

5.
Neuro Oncol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912869

RESUMO

BACKGROUND: The treatment of elderly/ frail patients with glioblastoma is a balance between avoiding undue toxicity, while not withholding effective treatment. It remains debated, whether these patients should receive combined chemo-radiotherapy with temozolomide (RT/TMZ➜TMZ) regardless of the O6-methylguanine DNA methyltransferase gene promoter (MGMTp) methylation status. MGMT is a well-known resistance factor blunting the treatment effect of TMZ, by repairing the most genotoxic lesion. Epigenetic silencing of the MGMTp sensitizes glioblastoma to TMZ. For risk adapted treatment, it is of utmost importance to accurately identify patients, who will not benefit from TMZ treatment. METHODS: Here, we present a reanalysis of the clinical trials CE.6 and the pooled NOA-08 and Nordic trials in elderly glioblastoma patients that compared RT to RT/TMZ➜TMZ, or RT to TMZ, respectively. For 687 patients with available MGMTp methylation data, we applied a cutoff discerning truly unmethylated glioblastoma, established in a pooled analysis of four clinical trials for glioblastoma, with RT/TMZ➜TMZ treatment, using the same quantitative methylation specific MGMTp PCR assay. RESULTS: When applying this restricted cutoff to the elderly patient population, we confirmed that glioblastoma with truly unmethylated MGMTp derived no benefit from TMZ treatment. In the Nordic/NOA-08 trials RT was better than TMZ, suggesting little or no benefit from TMZ. CONCLUSION: For evidence-based treatment of glioblastoma patients validated MGMTp methylation assays should be used that accurately identify truly unmethylated patients. Respective stratified management of patients will reduce toxicity without compromising outcome and allow testing of more promising treatment options.

6.
Cancers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791984

RESUMO

(1) Background: MGMT (O-6-methylguanine-DNA methyltransferase) promoter methylation remains an important predictive biomarker in high-grade gliomas (HGGs). The influence of necrosis on the fidelity of MGMT promoter (MGMTp) hypermethylation testing is currently unknown. Therefore, our study aims to evaluate the effect of varying degrees of necrosis on MGMTp status, as determined by pyrosequencing, in a series of primary and recurrent HGGs; (2) Methods: Within each case, the most viable blocks (assigned as 'true' MGMTp status) and the most necrotic block were determined by histopathology review. MGMTp status was determined by pyrosequencing. Comparisons of MGMTp status were made between the most viable and most necrotic blocks. (3) Results: 163 samples from 64 patients with HGGs were analyzed. MGMTp status was maintained in 84.6% of primary and 78.3% of recurrent HGGs between the most viable and necrotic blocks. A threshold of ≥60% tumor cellularity was established at which MGMTp status was unaltered, irrespective of the degree of necrosis. (4) Conclusions: MGMTp methylation status, as determined by pyrosequencing, does not appear to be influenced by necrosis in the majority of cases at a cellularity of at least 60%. Further investigation into the role of intratumoral heterogeneity on MGMTp status will increase our understanding of this predictive marker.

7.
Neuropathol Appl Neurobiol ; 50(3): e12984, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783575

RESUMO

AIMS: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS: We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS: Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS: This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.


Assuntos
Metilação de DNA , Sequenciamento por Nanoporos , Regiões Promotoras Genéticas , Humanos , Sequenciamento por Nanoporos/métodos , Regiões Promotoras Genéticas/genética , Ilhas de CpG/genética , Proteínas Supressoras de Tumor/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Neoplasias Encefálicas/genética , Feminino , Masculino , Glioblastoma/genética , Idoso
8.
Artigo em Inglês | MEDLINE | ID: mdl-38651004

RESUMO

Radiomics has been widely recognized for its effectiveness in decoding tumor phenotypes through the extraction of quantitative imaging features. However, the robustness of radiomic methods to estimate clinically relevant biomarkers non-invasively remains largely untested. In this study, we propose Cascaded Data Processing Network (CDPNet), a radiomic feature learning method to predict tumor molecular status from medical images. We apply CDPNet to an epigenetic case, specifically targeting the estimation of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation from Magnetic Resonance Imaging (MRI) scans of glioblastoma patients. CDPNet has three components: 1) Principal Component Analysis (PCA), 2) Fisher Linear Discriminant (FLD), and 3) a combination of hashing and blockwise histograms. The outlined architectural framework capitalizes on PCA to reconstruct input image patches, followed by FLD to extract discriminative filter banks, and finally using binary hashing and blockwise histogram module for indexing, pooling, and feature generation. To validate the effectiveness of CDPNet, we conducted an exhaustive evaluation on a comprehensive retrospective cohort comprising 484 IDH-wildtype glioblastoma patients with pre-operative multi-parametric MRI scans (T1, T1-Gd, T2, and T2-FLAIR). The prediction of MGMT promoter methylation status was cast as a binary classification problem. The developed model underwent rigorous training via 10-fold cross-validation on a discovery cohort of 446 patients. Subsequently, the model's performance was evaluated on a distinct and previously unseen replication cohort of 38 patients. Our method achieved an accuracy of 70.11% and an area under the curve of 0.71 (95% CI: 0.65 - 0.74).

9.
Pathol Res Pract ; 257: 155272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631135

RESUMO

Glioblastoma, IDH-wild type, the most common malignant primary central nervous system tumor, represents a formidable challenge in clinical management due to its poor prognosis and limited therapeutic responses. With an evolving understanding of its underlying biology, there is an urgent need to identify prognostic molecular groups that can be subject to targeted therapy. This study established a cohort of 124 sequential glioblastomas from a tertiary hospital and aimed to find correlations between molecular features and survival outcomes. Comprehensive molecular characterization of the cohort revealed prevalent alterations as previously described, such as TERT promoter mutations and involvement of the PI3K-Akt-mTOR, CK4/6-CDKN2A/B-RB1, and p14ARF-MDM2-MDM4-p53 pathways. MGMT promoter methylation is a significant predictor of improved overall survival, aligned with previous data. Conversely, age showed a marginal association with higher mortality. Multivariate analysis to account for the effect of MGMT promoter methylation and age showed that, in contrast to other published series, this cohort demonstrated improved survival for tumors harboring PTEN mutations, and that there was no observed difference for most other molecular alterations, including EGFR amplification, RB1 loss, or the coexistence of EGFR amplification and deletion/exon skipping (EGFRvIII). Despite limitations in sample size, this study contributes data to the molecular landscape of glioblastomas, prompting further investigations to examine these findings more closely in larger cohorts.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Isocitrato Desidrogenase , Humanos , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Pessoa de Meia-Idade , Masculino , Feminino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Idoso , Adulto , Isocitrato Desidrogenase/genética , Mutação , Estudos de Coortes , Prognóstico , Biomarcadores Tumorais/genética , Metilação de DNA/genética , Adulto Jovem , Idoso de 80 Anos ou mais , Regiões Promotoras Genéticas/genética , Análise de Sobrevida
10.
Neurooncol Adv ; 6(1): vdae016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410136

RESUMO

Background: The study aims to explore MRI phenotypes that predict glioblastoma's (GBM) methylation status of the promoter region of MGMT gene (pMGMT) by qualitatively assessing contrast-enhanced T1-weighted intensity images. Methods: A total of 193 histologically and molecularly confirmed GBMs at the Kansai Network for Molecular Diagnosis of Central Nervous Tumors (KANSAI) were used as an exploratory cohort. From the Cancer Imaging Archive/Cancer Genome Atlas (TCGA) 93 patients were used as validation cohorts. "Thickened structure" was defined as the solid tumor component presenting circumferential extension or occupying >50% of the tumor volume. "Methylated contrast phenotype" was defined as indistinct enhancing circumferential border, heterogenous enhancement, or nodular enhancement. Inter-rater agreement was assessed, followed by an investigation of the relationship between radiological findings and pMGMT methylation status. Results: Fleiss's Kappa coefficient for "Thickened structure" was 0.68 for the exploratory and 0.55 for the validation cohort, and for "Methylated contrast phenotype," 0.30 and 0.39, respectively. The imaging feature, the presence of "Thickened structure" and absence of "Methylated contrast phenotype," was significantly predictive of pMGMT unmethylation both for the exploratory (p = .015, odds ratio = 2.44) and for the validation cohort (p = .006, odds ratio = 7.83). The sensitivities and specificities of the imaging feature, the presence of "Thickened structure," and the absence of "Methylated contrast phenotype" for predicting pMGMT unmethylation were 0.29 and 0.86 for the exploratory and 0.25 and 0.96 for the validation cohort. Conclusions: The present study showed that qualitative assessment of contrast-enhanced T1-weighted intensity images helps predict GBM's pMGMT methylation status.

11.
Metabolism ; 153: 155794, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301843

RESUMO

BACKGROUND: Glioblastoma is one of the deadliest tumors, and limited improvement in managing glioblastoma has been achieved in the past decades. The unmethylated promoter area of 6-O-Methylguanine-DNA Methyltransferase (MGMT) is a significant biomarker for recognizing a subset of glioblastoma that is resistant to chemotherapy. Here we identified MGMT methylation can also work as a specific biomarker to classify the lipid metabolism patterns between methylated and unmethylated glioblastoma and verify the potential novel therapeutic strategy for unmethylated MGMT glioblastoma. METHODS: Liquid Chromatograph Mass Spectrometer has been applied for non-targeted metabolome and targeted lipidomic profiling to explore the metabolism pattern correlated with MGMT promoter methylation. Transcriptome has been performed to explore the biological differences and the potential mechanism of lipid metabolism in glioblastoma samples. In vivo and ex vivo assays were performed to verify the anti-tumor activity of atorvastatin in the administration of glioblastoma. RESULTS: Multi-omics assay has described a significant difference in lipid metabolism between MGMT methylated and unmethylated glioblastoma. Longer and unsaturated fatty acyls were found enriched in MGMT-UM tumors. Lipid droplets have been revealed remarkably decreased in MGMT unmethylated glioblastoma. In vivo and ex vivo assays revealed that atorvastatin and also together with temozolomide showed significant anti-tumor activity, and atorvastatin alone was able to achieve better survival and living conditions for tumor-hosting mice. CONCLUSIONS: MGMT promoter methylation status might be a well-performed biomarker of lipid metabolism in glioblastoma. The current study can be the basis of further mechanism studies and implementation of clinical trials, and the results provide preclinical evidence of atorvastatin administration in glioblastoma, especially for MGMT unmethylated tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Metabolismo dos Lipídeos/genética , Estudos de Viabilidade , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Biomarcadores
12.
Front Oncol ; 14: 1342114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357209

RESUMO

The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter region is a critical predictor of response to alkylating agents in glioblastoma. However, current approaches to study the MGMT status focus on analyzing models with non-identical backgrounds. Here, we present an epigenetic editing approach using CRISPRoff to introduce site-specific CpG methylation in the MGMT promoter region of glioma cell lines. Sanger sequencing revealed successful introduction of methylation, effectively generating differently methylated glioma cell lines with an isogenic background. The introduced methylation resulted in reduced MGMT mRNA and protein levels. Furthermore, the cell lines with MGMT promoter region methylation exhibited increased sensitivity to temozolomide, consistent with the impact of methylation on treatment outcomes in patients with glioblastoma. This precise epigenome-editing approach provides valuable insights into the functional relevance of MGMT promoter regional methylation and its potential for prognostic and predictive assessments, as well as epigenetic-targeted therapies.

13.
Neuropathology ; 44(1): 41-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37382159

RESUMO

Glioblastoma (GBM) remains a treatment-resistant malignant brain tumor in large part because of its genetic heterogeneity and epigenetic plasticity. In this study, we investigated the epigenetic heterogeneity of GBM by evaluating the methylation status of the O6 -methylguanine methyltransferase (MGMT) promoter in individual clones of a single cell derived from GBM cell lines. The U251 and U373 GBM cell lines, from the Brain Tumour Research Centre of the Montreal Neurological Institute, were used for the experiments. To evaluate the methylation status of the MGMT promoter, pyrosequencing and methylation-specific PCR (MSP) were used. Moreover, mRNA and protein expression levels of MGMT in the individual GBM clones were evaluated. The HeLa cell line, which hyper-expresses MGMT, was used as control. A total of 12 U251 and 12 U373 clones were isolated. The methylation status of 83 of 97 CpG sites in the MGMT promoter were evaluated by pyrosequencing, and 11 methylated CpG sites and 13 unmethylated CpG sites were evaluated by MSP. The methylation status by pyrosequencing was relatively high at CpG sites 3-8, 20-35, and 7-83, in both the U251 and U373 clones. Neither MGMT mRNA nor protein was detected in any clone. These findings demonstrate tumor heterogeneity among individual clones derived from a single GBM cell. MGMT expression may be regulated, not only by methylation of the MGMT promoter but by other factors as well. Further studies are needed to clarify the mechanisms underlying the epigenetic heterogeneity and plasticity of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Metiltransferases/genética , Células HeLa , Metilação de DNA , Metilases de Modificação do DNA/genética , Neoplasias Encefálicas/genética , Células Clonais/patologia , RNA Mensageiro , Enzimas Reparadoras do DNA/genética
14.
J Neurooncol ; 166(1): 155-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150062

RESUMO

OBJECTIVES: This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS: We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS: The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION: Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Metilação de DNA , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/tratamento farmacológico , Enzimas Reparadoras do DNA/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , Metilases de Modificação do DNA/genética , Regiões Promotoras Genéticas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Supressoras de Tumor/genética
15.
Acta Neuropathol Commun ; 11(1): 175, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919784

RESUMO

MGMT promoter methylation testing is required for prognosis and predicting temozolomide response in gliomas. Accurate results depend on sufficient tumor cellularity, but histologic estimates of cellularity are subjective. We sought to determine whether driver mutation variant allelic frequency (VAF) could serve as a more objective metric for cellularity and identify possible false-negative MGMT samples. Among 691 adult-type diffuse gliomas, MGMT promoter methylation was assessed by pyrosequencing (N = 445) or DNA methylation array (N = 246); VAFs of TERT and IDH driver mutations were assessed by next generation sequencing. MGMT results were analyzed in relation to VAF. By pyrosequencing, 56% of all gliomas with driver mutation VAF ≥ 0.325 had MGMT promoter methylation, versus only 37% with VAF < 0.325 (p < 0.0001). The mean MGMT promoter pyrosequencing score was 19.3% for samples with VAF VAF ≥ 0.325, versus 12.7% for samples with VAF < 0.325 (p < 0.0001). Optimal VAF cutoffs differed among glioma subtypes (IDH wildtype glioblastoma: 0.12-0.18, IDH mutant astrocytoma: ~0.33, IDH mutant and 1p/19q co-deleted oligodendroglioma: 0.3-0.4). Methylation array was more sensitive for MGMT promoter methylation at lower VAFs than pyrosequencing. Microscopic examination tended to overestimate tumor cellularity when VAF was low. Re-testing low-VAF cases with methylation array and droplet digital PCR (ddPCR) confirmed that a subset of them had originally been false-negative. We conclude that driver mutation VAF is a useful quality assurance metric when evaluating MGMT promoter methylation tests, as it can help identify possible false-negative cases.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Supressoras de Tumor/genética , Mutação/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/genética , Glioma/patologia , Isocitrato Desidrogenase/genética
16.
Med Image Anal ; 90: 102989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827111

RESUMO

The number of studies on deep learning for medical diagnosis is expanding, and these systems are often claimed to outperform clinicians. However, only a few systems have shown medical efficacy. From this perspective, we examine a wide range of deep learning algorithms for the assessment of glioblastoma - a common brain tumor in older adults that is lethal. Surgery, chemotherapy, and radiation are the standard treatments for glioblastoma patients. The methylation status of the MGMT promoter, a specific genetic sequence found in the tumor, affects chemotherapy's effectiveness. MGMT promoter methylation improves chemotherapy response and survival in several cancers. MGMT promoter methylation is determined by a tumor tissue biopsy, which is then genetically tested. This lengthy and invasive procedure increases the risk of infection and other complications. Thus, researchers have used deep learning models to examine the tumor from brain MRI scans to determine the MGMT promoter's methylation state. We employ deep learning models and one of the largest public MRI datasets of 585 participants to predict the methylation status of the MGMT promoter in glioblastoma tumors using MRI scans. We test these models using Grad-CAM, occlusion sensitivity, feature visualizations, and training loss landscapes. Our results show no correlation between these two, indicating that external cohort data should be used to verify these models' performance to assure the accuracy and reliability of deep learning systems in cancer diagnosis.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Idoso , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Metilação , Reprodutibilidade dos Testes , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Imageamento por Ressonância Magnética/métodos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/uso terapêutico , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/uso terapêutico
17.
Radiother Oncol ; 188: 109865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619660

RESUMO

AIM OF THE STUDY: A molecular signature based on 10 mRNA abundances that characterizes the mesenchymal-to-proneural phenotype of glioblastoma stem(like) cells (GSCs) enriched in primary culture has been previously established. As this phenotype has been proposed to be prognostic for disease outcome the present study aims to identify features of the preoperative MR imaging that may predict the GSC phenotype of individual tumors. MATERIAL/METHODS: Molecular mesenchymal-to-proneural mRNA signatures and intrinsic radioresistance (SF4, survival fraction at 4 Gy) of primary GSC-enriched cultures were associated with survival data and pre-operative MR imaging of the corresponding glioblastoma patients of a prospective cohort (n = 24). The analyzed imaging parameters comprised linear vectors derived from tumor volume, necrotic volume and edema as contoured manually. RESULTS: A necrosis/tumor vector ratio and to a weaker extent the product of this ratio and the edema vector were identified to correlate with the mesenchymal-to-proneural mRNA signature and the SF4 of the patient-derived GSC cultures. Importantly, both parameter combinations were predictive for overall survival of the whole patient cohort. Moreover, the combination of necrosis/tumor vector ratio and edema vector differed significantly between uni- and multifocally recurring tumors. CONCLUSION: Features of the preoperative MR images may reflect the molecular signature of the GSC population and might be used in the future as a prognostic factor and for treatment stratification especially in the MGMT promotor-unmethylated sub-cohort of glioblastoma patients.

18.
Neurosurg Focus ; 54(6): E4, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37283447

RESUMO

OBJECTIVE: Gliomas exhibit high intratumor and interpatient heterogeneity. Recently, it has been shown that the microenvironment and phenotype differ significantly between the glioma core (inner) and edge (infiltrating) regions. This proof-of-concept study differentiates metabolic signatures associated with these regions, with the potential for prognosis and targeted therapy that could improve surgical outcomes. METHODS: Paired glioma core and infiltrating edge samples were obtained from 27 patients after craniotomy. Liquid-liquid metabolite extraction was performed on the samples and metabolomic data were obtained via 2D liquid chromatography-mass spectrometry/mass spectrometry. To gauge the potential of metabolomics to identify clinically relevant predictors of survival from tumor core versus edge tissues, a boosted generalized linear machine learning model was used to predict metabolomic profiles associated with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. RESULTS: A panel of 66 (of 168) metabolites was found to significantly differ between glioma core and edge regions (p ≤ 0.05). Top metabolites with significantly different relative abundances included DL-alanine, creatine, cystathionine, nicotinamide, and D-pantothenic acid. Significant metabolic pathways identified by quantitative enrichment analysis included glycerophospholipid metabolism; butanoate metabolism; cysteine and methionine metabolism; glycine, serine, alanine, and threonine metabolism; purine metabolism; nicotinate and nicotinamide metabolism; and pantothenate and coenzyme A biosynthesis. The machine learning model using 4 key metabolites each within core and edge tissue specimens predicted MGMT promoter methylation status, with AUROCEdge = 0.960 and AUROCCore = 0.941. Top metabolites associated with MGMT status in the core samples included hydroxyhexanoycarnitine, spermine, succinic anhydride, and pantothenic acid, and in the edge samples metabolites included 5-cytidine monophosphate, pantothenic acid, itaconic acid, and uridine. CONCLUSIONS: Key metabolic differences are identified between core and edge tissue in glioma and, furthermore, demonstrate the potential for machine learning to provide insight into potential prognostic and therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Ácido Pantotênico/genética , Ácido Pantotênico/metabolismo , Metilação de DNA , Glioma/genética , Glioma/cirurgia , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metabolômica , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Niacinamida , Microambiente Tumoral
19.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190181

RESUMO

Glioblastoma is the most aggressive primary brain tumor, which almost systematically relapses despite surgery (when possible) followed by radio-chemotherapy temozolomide-based treatment. Upon relapse, one option for treatment is another chemotherapy, lomustine. The efficacy of these chemotherapy regimens depends on the methylation of a specific gene promoter known as MGMT, which is the main prognosis factor for glioblastoma. Knowing this biomarker is a key issue for the clinician to personalize and adapt treatment to the patient at primary diagnosis for elderly patients, in particular, and also upon relapse. The association between MRI-derived information and the prediction of MGMT promoter status has been discussed in many studies, and some, more recently, have proposed the use of deep learning algorithms on multimodal scans to extract this information, but they have failed to reach a consensus. Therefore, in this work, beyond the classical performance figures usually displayed, we seek to compute confidence scores to see if a clinical application of such methods can be seriously considered. The systematic approach carried out, using different input configurations and algorithms as well as the exact methylation percentage, led to the following conclusion: current deep learning methods are unable to determine MGMT promoter methylation from MRI data.

20.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047153

RESUMO

Glioblastoma is the most common malignant brain tumor in adults. Standard treatment includes tumor resection, radio-chemotherapy and adjuvant chemotherapy with temozolomide (TMZ). TMZ methylates DNA, whereas O6-methylguanine DNA methyltransferase (MGMT) counteracts TMZ effects by removing the intended proteasomal degradation signal. Non-functional MGMT mediates the mismatch repair (MMR) system, leading to apoptosis after futile repair attempts. This study investigated the associations between MGMT promoter methylation, MGMT and MMR protein expression, and their effect on overall survival (OS) and progression-free survival (PFS) in patients with glioblastoma. MGMT promoter methylation was assessed in 42 treatment-naïve patients with glioblastoma WHO grade IV by pyrosequencing. MGMT and MMR protein expression was analyzed using immunohistochemistry. MGMT promoter methylation was present in 52%, whereas patients <70 years of age revealed a significantly longer OS using a log-rank test and a significance threshold of p ≤ 0.05. MGMT protein expression and methylation status showed no correlation. MMR protein expression was present in all patients independent of MGMT status and did not influence OS and PFS. Overall, MGMT promoter methylation implicates an improved OS in patients with glioblastoma aged <70 years. In the elderly, the extent of surgery has an impact on OS rather than the MGMT promoter methylation or protein expression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Idoso , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Intervalo Livre de Progressão , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Metilação , Reparo de Erro de Pareamento de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilação de DNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA