Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.923
Filtrar
1.
iScience ; 27(7): 110046, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38989454

RESUMO

The interplay between lipid metabolism and immune response in macrophages plays a pivotal role in various infectious diseases, notably tuberculosis (TB). Herein, we illuminate the modulatory effect of heat-killed Mycobacterium tuberculosis (HKMT) on macrophage lipid metabolism and its implications on the inflammatory cascade. Our findings demonstrate that HKMT potently activates the lipid scavenger receptor, CD36, instigating lipid accumulation. While CD36 inhibition mitigated lipid increase, it unexpectedly exacerbated the inflammatory response. Intriguingly, this paradoxical effect was linked to an upregulation of PPARδ. Functional analyses employing PPARδ modulation revealed its central role in regulating both lipid dynamics and inflammation, suggesting it as a potential therapeutic target. Moreover, primary monocytic cells from diabetic individuals, a demographic at amplified risk of TB, exhibited heightened PPARδ expression and inflammation, further underscoring its pathological relevance. Targeting PPARδ in these cells effectively dampened the inflammatory response, offering a promising therapeutic avenue against TB.

2.
iScience ; 27(7): 110182, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38989455

RESUMO

Diagnosis of tuberculosis remains a challenge when microbiological tests are negative. Immune cell atlas of patients with tuberculosis and healthy controls were established by single-cell transcriptome. Through integrated analysis of scRNA-seq with microarray and bulk RNA sequencing data, a ferroptosis-related gene signature containing ACSL4, CTSB, and TLR4 genes that were associated with tuberculosis disease was identified. Four gene expression datasets from blood samples of patients with tuberculosis, latent tuberculosis infection, and healthy controls were used to assess the diagnostic value of the gene signature. The areas under the ROC curve for the combined gene signature were 1.000, 0.866, 0.912, and 0.786, respectively, in differentiating active tuberculosis from latent infection. During anti-tuberculosis treatment, the expression of the gene signature decreased significantly in cured patients with tuberculosis. In conclusion, the ferroptosis-related gene signature was associated with tuberculosis treatment efficacy and was a promising biomarker for differentiating active tuberculosis from latent infection.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38989854

RESUMO

Antimicrobial resistance poses one of the most significant medical challenges for humanity. The current burden is overwhelming and is projected to escalate rapidly, with predictions for 2050 indicating 10 million deaths per year due to antibiotic-resistant microorganisms. Enhancing public awareness and education on this topic is crucial in efforts to mitigate this issue. In our study, we translated an existing questionnaire on antimicrobial resistance into Portuguese, validated it, and applied it between December 2020 and March 2021 to a group of Portuguese students (n = 112) and science teachers (n = 95). A majority of the students surveyed (65.1%) incorrectly believed that antibiotics could treat colds/flus. As anticipated, the teachers outperformed the students in the questionnaire. However, difficulties with this topic were evident in both groups. Most notably, the misconception that the human body becomes resistant to antibiotics was prevalent among most participants (77.0% of students and 68.4% of teachers). Consistent with previous studies in other populations and geographic locations, our research reveals a worrying lack of knowledge about antimicrobial resistance among Portuguese students and science teachers. Consequently, it is deemed urgent to implement effective measures to raise awareness and educate on this topic.

4.
Cell Rep ; 43(7): 114435, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38985673

RESUMO

Cell membranes mediate interactions between life and its environment, with lipids determining their properties. Understanding how cells adjust their lipidomes to tune membrane properties is crucial yet poorly defined due to the complexity of most organisms. We used quantitative shotgun lipidomics to study temperature adaptation in the simple organism Mycoplasma mycoides and the minimal cell JCVI-syn3B. We show that lipid abundances follow a universal logarithmic distribution across eukaryotes and bacteria, with comparable degrees of lipid remodeling for adaptation regardless of lipidomic or organismal complexity. Lipid features analysis demonstrates head-group-specific acyl chain remodeling as characteristic of lipidome adaptation; its deficiency in Syn3B is associated with impaired homeoviscous adaptation. Temporal analysis reveals a two-stage cold adaptation process: swift cholesterol and cardiolipin shifts followed by gradual acyl chain modifications. This work provides an in-depth analysis of lipidome adaptation in minimal cells, laying a foundation to probe the design principles of living membranes.

5.
Cell Rep ; 43(7): 114453, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38985677

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.

6.
Cell Rep ; 43(7): 114476, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38985671

RESUMO

Biological nitrogen fixation catalyzed by nitrogenase contributes greatly to the global nitrogen cycle. Nitrogenase expression is subject to regulation in response to nitrogen availability. However, the mechanism through which the transcriptional activator NifA regulates nitrogenase expression by interacting with PII nitrogen regulatory proteins remains unclear in diazotrophic proteobacteria lacking NifL. Here, we demonstrate that in Rhodopseudomonas palustris grown with ammonium, NifA bound deuridylylated PII proteins to form an inactive NifA-PII complex, thereby inhibiting the expression of nitrogenase. Upon nitrogen limitation, the dissociation of uridylylated PII proteins from NifA resulted in the full restoration of NifA activity, and, simultaneously, uridylylation of the significantly up-regulated PII protein GlnK2 led to the increased expression of NifA in R. palustris. This insight into how NifA interacts with PII proteins and controls nitrogenase expression sets the stage for creating highly efficient diazotrophs, reducing the need for energy-intensive chemical fertilizers and helping to diminish carbon emissions.

7.
Cell Rep ; 43(7): 114478, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38985668

RESUMO

Lyssavirus is a kind of neurotropic pathogen that needs to evade peripheral host immunity to enter the central nervous system to accomplish infection. NLRP3 inflammasome activation is essential for the host to defend against pathogen invasion. This study demonstrates that the matrix protein (M) of lyssavirus can inhibit both the priming step and the activation step of NLRP3 inflammasome activation. Specifically, M of lyssavirus can compete with NEK7 for binding to NLRP3, which restricts downstream apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. The serine amino acid at the 158th site of M among lyssavirus is critical for restricting ASC oligomerization. Moreover, recombinant lab-attenuated lyssavirus rabies (rabies lyssavirus [RABV]) with G158S mutation at M decreases interleukin-1ß (IL-1ß) production in bone-marrow-derived dendritic cells (BMDCs) to facilitate lyssavirus invasion into the brain thereby elevating pathogenicity in mice. Taken together, this study reveals a common mechanism by which lyssavirus inhibits NLRP3 inflammasome activation to evade host defenses.

8.
Cell Rep ; 43(7): 114449, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38985680

RESUMO

Some microbial toxins also target the producer species itself, necessitating a means of self-protection. The M2 double-stranded RNA (dsRNA) killer virus in Saccharomyces cerevisiae contains a single open reading frame (ORF) encoding both the secreted pore-forming toxin K2 as well as a cognate immunity factor. Here, we show that expression of a 49-amino acid N-terminal peptide from the K2 precursor is both necessary and sufficient for immunity. This immunity peptide simultaneously functions as a signal peptide for toxin secretion and protects the cell against the cytotoxic K2 α subunit. The K2 toxin and immunity factor can be functionally separated into two ORFs, yielding a modular toxin-immunity system. This case further shows how a (signal) peptide can carry the potential for providing cellular protection against an antimicrobial toxin.

9.
iScience ; 27(6): 110136, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38966568

RESUMO

Clinical data on the types of respiratory pathogens which are most frequently engaged in respiratory co-infections of children and adults are lacking. We analyzed 10 years of data on a total of over 15,000 tests for 16 viral and bacterial pathogens detected in clinical samples at the University Hospital of Augsburg, Germany. Co-infection frequencies and their seasonal patterns were examined using a proportional distribution model. Co-infections were detected in 7.3% of samples, with a higher incidence in children and males. The incidence of interbacterial and interviral co-infections was higher than expected, whereas bacterial-viral co-infections were less frequent. H. influenzae, S. pneumoniae, rhinovirus, and respiratory syncytial virus (RSV) were most frequently involved. Most co-infections occurred in winter, but distinct summer peaks were also observed, which occurred even in children, albeit less pronounced than in adults. Seasonality of respiratory (co-)infections decreased with age. Our results suggest to adjust existing testing strategies during high-incidence periods.

10.
Cell Rep ; 43(7): 114442, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968070

RESUMO

Despite a growing interest in the gut microbiome of non-industrialized countries, data linking deeply sequenced microbiomes from such settings to diverse host phenotypes and situational factors remain uncommon. Using metagenomic data from a community-based cohort of 1,871 people from 19 isolated villages in the Mesoamerican highlands of western Honduras, we report associations between bacterial species and human phenotypes and factors. Among them, socioeconomic factors account for 51.44% of the total associations. Meta-analysis of species-level profiles across several datasets identified several species associated with body mass index, consistent with previous findings. Furthermore, the inclusion of strain-phylogenetic information modifies the overall relationship between the gut microbiome and the phenotypes, especially for some factors like household wealth (e.g., wealthier individuals harbor different strains of Eubacterium rectale). Our analysis suggests a role that gut microbiome surveillance can play in understanding broad features of individual and public health.

11.
Front Microbiol ; 15: 1368377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962127

RESUMO

Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.

12.
Cell Rep ; 43(7): 114432, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963762

RESUMO

The human pathogen Streptococcus pneumoniae (Spn) encodes several cell-cell communication systems, notably multiple members of the Rgg/SHP and the Tpr/Phr families. Until now, members of these diverse communication systems were thought to work independently. Our study reveals that the ABC transporter PptAB and the transmembrane enzyme Eep act as a molecular link between Rgg/SHP and TprA/PhrA systems. We demonstrate that PptAB/Eep activates the Rgg/SHP systems and represses the TprA/PhrA system. Specifically, they regulate the respective precursor peptides (SHP and PhrA) before these leave the cell. This dual mode of action leads to temporal coordination of these systems, producing an overlap between their respective regulons during host cell infection. Thus, we have identified a single molecular mechanism that targets diverse cell-cell communication systems in Spn. Moreover, these molecular components are encoded by many gram-positive bacteria, suggesting that this mechanism may be broadly conserved.

14.
Gut ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960582

RESUMO

OBJECTIVE: Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome. DESIGN: We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified. RESULTS: Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion. CONCLUSION: Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.

15.
Sex Transm Infect ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960602

RESUMO

ObjectivesWe evaluated how storing vaginal samples at room temperature in stabilising solutions versus immediate freezing affects 16S rRNA gene amplicon sequencing-based microbiota studies, aiming to simplify home and field collection. METHODS: Twenty participants self-collected six mid-vaginal swabs that were stored in two nucleic acid preservatives (three in modified Solution C2 (Qiagen) and three in Amies/RNALater (Sigma)) in January-February 2016. From each set, two were immediately frozen (-80°C) and one was shipped to the University of Idaho (Moscow, Idaho) with return shipping to the Institute for Genome Sciences (Baltimore, Maryland). Amplicon sequencing of the 16S rRNA gene was used to characterise the vaginal microbiota, VALENCIA was used to assign community state types (CSTs), and quantitative PCR (qPCR) of 16S rRNA genes was used to estimate bacterial abundance. Cohen's Kappa statistic was used to assess within-participant agreement. Bayesian difference of means models assessed within-participant comparisons between shipped and immediately frozen samples. RESULTS: There were 115 samples available for analysis. Average duration of transit for shipped samples was 8 days (SD: 1.60, range: 6-11). Within-participant comparisons of CSTs between shipped and immediately frozen samples revealed complete concordance (kappa: 1.0) for both preservative solutions. No significant differences comparing shipped and immediately frozen samples were found with taxon-level comparisons or bacterial abundances based on pan-bacterial qPCR. CONCLUSIONS: Short-term room temperature shipping of vaginal swabs placed in stabilising solutions did not affect vaginal microbiota composition. Home collection with mail-in of vaginal samples may be a reasonable approach for research and clinical purposes to assess the vaginal microbiota.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38963103

RESUMO

Emerging infectious diseases and increasing resistance to available antimicrobials are mapping the evolution of clinical microbiology and escalating the nature of undertakings required. Rapid diagnosis has become the need of the hour, which can affect diagnostic algorithms and therapeutic decisions simultaneously. Subsequently, the concept of 'diagnostic stewardship' was introduced into clinical practice for coherent implementation of available diagnostic modalities to ensure that these new rapid diagnostic technologies are conserved, rather than consumed as part of health care resources, with a view to improve the patient care and reduce Turnaround Time (TAT) and treatment expense. The present study highlights the requisite of diagnostic stewardship and outlines the infectious disease diagnostic modalities that can assist in its successful implementation. Diagnostic stewardship promotes precise, timely diagnostics, from the initial specimen collection and identification to reporting with appropriate TAT, so as to enable timely management of the patient. The main aim of diagnostic stewardship is to optimize the right choice of diagnostic test for the right patient to attain clinically significant reports with the least possible TAT for timely management and the least expected adverse effects for the patient, community, and the healthcare system. This underlines the requisite of a multifaceted approach to make technological advancements effective and successful for implementation as a part of diagnostic stewardship for the best patient care.

17.
iScience ; 27(6): 110092, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38952683

RESUMO

The human gut microbiota comprises various microorganisms engaged in intricate interactions among themselves and with the host, affecting its health. While advancements in omics technologies have led to the inference of clear associations between microbiome composition and health conditions, we usually lack a causal and mechanistic understanding of these associations. For modeling mechanisms driving the interactions, we simulated the organism's metabolism using in silico genome-scale metabolic models (GEMs). We used multi-objective optimization to predict and explain metabolic interactions among gut microbes and an intestinal epithelial cell. We developed a score integrating model simulation results to predict the type (competition, neutralism, mutualism) and quantify the interaction between several organisms. This framework uncovered a potential cross-feeding for choline, explaining the predicted mutualism between Lactobacillus rhamnosus GG and the epithelial cell. Finally, we analyzed a five-organism ecosystem, revealing that a minimal microbiota can favor the epithelial cell's maintenance.

18.
iScience ; 27(6): 110139, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38952678

RESUMO

The development of antifungal drugs requires novel molecular targets due to limited treatment options and drug resistance. Through chemical screening and establishment of a novel genetic technique to repress gene expression in Trichophyton rubrum, the primary causal fungus of dermatophytosis, we demonstrated that fungal Cdc42 and Rac GTPases are promising antifungal drug targets. Chemical inhibitors of these GTPases impair hyphal formation, which is crucial for growth and virulence in T. rubrum. Conditional repression of Cdc24, a guanine nucleotide exchange factor for Cdc42 and Rac, led to hyphal growth defects, abnormal cell morphology, and cell death. EHop-016 inhibited the promotion of the guanine nucleotide exchange reaction in Cdc42 and Rac by Cdc24 as well as germination and growth on the nail fragments of T. rubrum and improved animal survival in an invertebrate infection model of T. rubrum. Our results provide a novel antifungal therapeutic target and a potential lead compound.

19.
iScience ; 27(6): 110157, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38952680

RESUMO

Fusobacterium nucleatum is an oral commensal bacterium that can colonize extraoral tumor entities, such as colorectal cancer and breast cancer. Recent studies revealed its ability to modulate the immune response in the tumor microenvironment (TME), promoting cancer progression and metastasis. Importantly, F. nucleatum subsp. animalis was shown to bind to Siglec-7 via lipopolysaccharides, leading to a pro-inflammatory profile in human monocyte-derived dendritic cells. In this study, we show that F. nucleatum subsp. nucleatum RadD binds to Siglec-7 on NK cells, thereby inhibiting NK cell-mediated cancer cell killing. We demonstrate that this binding is dependent on arginine residue R124 in Siglec-7. Finally, we determine that this binding is independent of the known interaction of RadD with IgA. Taken together, our findings elucidate the targeting of Siglec-7 by F. nucleatum subsp. nucleatum RadD as a means to modulate the NK cell response and potentially promoting immune evasion and tumor progression.

20.
STAR Protoc ; 5(3): 103167, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954516

RESUMO

Constructing metagenome-assembled genomes (MAGs) from complex metagenomic samples involves a series of bioinformatics operations, each requiring deep bioinformatics knowledge. Here, we present a protocol for constructing MAGs and conducting functional profiling to address biological questions. We describe steps for system configuration, data downloads, read processing, removal of human DNA contamination, metagenomic assembly, and statistical quality assessment of the final assembly. Additionally, we detail procedures for the construction and refinement of MAGs, as well as the functional profiling of MAGs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...