Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Free Radic Biol Med ; 152: 776-786, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31981623

RESUMO

Chronic intestinal inflammation involves a cycle of oxidative stress, activation of redox sensitive transcription factors, and barrier permeabilization. The latter can lead to systemic inflammation and its associated co-morbidities. Diet can play a major role in the modulation of intestinal inflammation. Among plant bioactives, ellagic acid (EA) was reported to inhibit inflammatory bowel disease in animal models. This work investigated the mechanisms by which EA inhibits tumor necrosis factor alpha (TNFα)-induced inflammation, oxidative stress, and loss of barrier integrity. Caco-2 cells differentiated into an intestinal epithelial cell monolayer were incubated with TNFα (10 ng/ml), in the presence of different EA concentrations. TNFα triggered interleukin (IL) 6 and 8 release into the medium, which was inhibited by EA in a dose-dependent manner (IC50 = 17.3 µM for IL-6). TNFα also led to: i) increased ICAM-1 and NLRP3 expression; ii) loss of epithelial barrier function; iii) increased oxidant production from NOX and mitochondrial origin; iv) NF-κB and ERK1/2 activation; and v) increased MLCK gene expression and MLC phosphorylation. EA (10-40 µM) inhibited all these adverse effects of TNFα. EA mainly acted through NF-κB and ERK1/2 inhibition, breaking the cycle of inflammation, oxidative stress, redox-sensitive pathway (e.g. NF-κB, ERK1/2) activation and intestinal permeabilization. This suggests that consumption of EA, via foods or supplements, may afford a strategy to mitigate intestinal inflammation and its associated co-morbidities.


Assuntos
Ácido Elágico , Mucosa Intestinal , Animais , Células CACO-2 , Ácido Elágico/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Quinase de Cadeia Leve de Miosina , NF-kappa B/genética , Junções Íntimas , Fator de Necrose Tumoral alfa/genética
2.
Exp Cell Res ; 354(1): 1-17, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28300565

RESUMO

Cytoskeletal organization, actin-myosin contractility and the cell membrane together regulate cell morphology in response to the cell environment, wherein the extracellular matrix (ECM) is an indispensable component. Plasticity in cell shape enables cells to adapt their migration mode to their surroundings. GH3 endocrine cells respond to different ECM proteins, acquiring different morphologies: a rounded on collagen I-III (C I-III) and an elongated on collagen IV (C IV). However, the identities of the molecules that participate in these responses remain unknown. Considering that actin-myosin contractility is crucial to maintaining cell shape, we analyzed the participation of MLCK and ROCK in the acquisition of cell shape, the generation of cellular tension and the cell motility mode. We found that a rounded shape with high cortical tension depends on MLCK and ROCK, whereas in cells with an elongated shape, MLCK is the primary protein responsible for cell spreading. Further, in cells with a slow and directionally persistent motility, MLCK predominates, while rapid and erratic movement is ROCK-dependent. This behavior also correlates with GTPase activation. Cells on C I-III exhibited higher Rho-GTPase activity than cells on C IV and vice versa with Rac-GTPase activity, showing a plastic response of GH3 cells to their environment, leading to the generation of different cytoskeleton and membrane organizations and resulting in two movement strategies, rounded and fibroblastoid-like.


Assuntos
Adesão Celular/genética , Movimento Celular/genética , Contração Muscular/genética , Peptídeos/genética , Quinases Associadas a rho/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Forma Celular/genética , Matriz Extracelular/genética , Contração Muscular/fisiologia , Peptídeos/metabolismo , Fosforilação , Ratos , Transdução de Sinais/genética , Quinases Associadas a rho/biossíntese
3.
Tissue Barriers ; 3(1-2): e978720, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25838983

RESUMO

The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction.

4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;46(7): 574-579, ago. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-682398

RESUMO

Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca2+ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca2+ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca2+ (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca2+ at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in Emax for NE and from 0.729±0.037 to 0.645±0.056 g/mg in Emax for Ca2+, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.


Assuntos
Animais , Masculino , Cálcio/metabolismo , Linfa/fisiologia , Artéria Mesentérica Superior/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Quinase de Cadeia Leve de Miosina/fisiologia , Choque Hemorrágico/fisiopatologia , Contração Muscular , Artéria Mesentérica Superior/metabolismo , Músculo Liso Vascular/metabolismo , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/análise , Distribuição Aleatória , Ratos Wistar , Choque Hemorrágico/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA