Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; : 107566, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002676

RESUMO

MLL-fusion proteins (MLL-FPs) are believed to maintain gene activation and induce mixed lineage leukemia (MLL) through aberrantly stimulating transcriptional elongation, but the underlying mechanisms are incompletely understood. Here we show that both MLL1 and AF9, one of the major fusion partners of MLL1, mainly occupy promoters and distal intergenic regions, exhibiting chromatin occupancy patterns resembling that of RNA polymerase II (Pol II) in HEL, a human cell line without MLL1 arrangement (MLLr). MLL1 and AF9 only co-regulate over a dozen genes despite of their co-occupancy on thousands of genes. They do not interact with each other, and their chromatin occupancy is also independent of each other. Moreover, AF9 deficiency in HEL cells decreases global TBP occupancy while decreases CDK9 occupancy on a small number of genes, suggesting an accessory role of AF9 in CDK9 recruitment and a possible major role in transcriptional initiation via initiation factor recruitment. Importantly, MLL1 and MLL-AF9 occupy promoters and distal intergenic regions, exhibiting identical chromatin occupancy patterns in MLL cells, and MLL-AF9 deficiency decreased occupancy of TBP and TFIIE on major target genes of MLL-AF9 in iMA9, a murine acute myeloid leukemia (AML) cell line inducibly expressing MLL-AF9, suggesting that it can also regulate initiation. These results suggest that there is no difference between MLL1 and MLL-AF9 with respect to location and size of occupancy sites, contrary to what people have believed, and that MLL-AF9 may also regulate transcriptional initiation in addition to widely-believed elongation.

2.
Br J Haematol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877874

RESUMO

MLL-rearranged (MLL-r) leukaemia is observed in approximately 10% of acute myeloid leukaemia (AML) and is associated with a relatively poor prognosis, highlighting the need for new treatment regimens. MLL fusion proteins produced by MLL rearrangements recruit KDM4C to mediate epigenetic reprogramming, which is required for the maintenance of MLL-r leukaemia. In this study, we used a combinatorial drug screen to selectively identify synergistic treatment partners for the KDM4C inhibitor SD70. The results showed that the drug combination of SD70 and MI-503, a potent menin-MLL inhibitor, induced synergistically enhanced apoptosis in MLL::AF9 leukaemia cells without affecting normal CD34+ cells. In vivo treatment with SD70 and MI-503 significantly prolonged survival in AML xenograft models. Differential gene expression analysis by RNA-seq following combined pharmacological inhibition of SD70 and MI-503 revealed changes in numerous genes, with MYC target genes being the most significantly downregulated. Taken together, these data provide preclinical evidence that the combination of SD70 and MI-503 is a potential dual-targeted therapy for MLL::AF9 AML.

3.
Cancers (Basel) ; 15(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509285

RESUMO

Infant acute myeloid leukemia (AML) is a heterogeneous disease, genetically distinct from its adult counterpart. Chromosomal translocations involving the KMT2A gene (MLL) are especially common in affected infants of less than 1 year of age, and are associated with a dismal prognosis. While these rearrangements are likely to arise in utero, the cell of origin has not been conclusively identified. This knowledge could lead to a better understanding of the biology of the disease and support the identification of new therapeutic vulnerabilities. Over the last few years, important progress in understanding the dynamics of fetal hematopoiesis has been made. Several reports have highlighted how hematopoietic stem cells (HSC) provide little contribution to fetal hematopoiesis, which is instead largely sustained by HSC-independent progenitors. Here, we used conditional Cre-Lox transgenic mouse models to engineer the Mll-Af9 translocation in defined subsets of embryonic hematopoietic progenitors. We show that embryonic hematopoiesis is generally permissive for Mll-Af9-induced leukemic transformation. Surprisingly, the selective introduction of Mll-Af9 in HSC-independent progenitors generated a transplantable myeloid leukemia, whereas it did not when introduced in embryonic HSC-derived cells. Ex vivo engineering of the Mll-Af9 rearrangement in HSC-independent progenitors using a CRISPR/Cas9-based approach resulted in the activation of an aberrant myeloid-biased self-renewal program. Overall, our results demonstrate that HSC-independent hematopoietic progenitors represent a permissive environment for Mll-Af9-induced leukemic transformation, and can likely act as cells of origin of infant AML.

4.
Cells ; 12(8)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190104

RESUMO

A t(9;11)(p22;q23) translocation produces the MLL-AF9 fusion protein, which is found in up to 25% of de novo AML cases in children. Despite major advances, obtaining a comprehensive understanding of context-dependent MLL-AF9-mediated gene programs during early hematopoiesis is challenging. Here, we generated a human inducible pluripotent stem cell (hiPSC) model with a doxycycline dose-dependent MLL-AF9 expression. We exploited MLL-AF9 expression as an oncogenic hit to uncover epigenetic and transcriptomic effects on iPSC-derived hematopoietic development and the transformation into (pre-)leukemic states. In doing so, we observed a disruption in early myelomonocytic development. Accordingly, we identified gene profiles that were consistent with primary MLL-AF9 AML and uncovered high-confidence MLL-AF9-associated core genes that are faithfully represented in primary MLL-AF9 AML, including known and presently unknown factors. Using single-cell RNA-sequencing, we identified an increase of CD34 expressing early hematopoietic progenitor-like cell states as well as granulocyte-monocyte progenitor-like cells upon MLL-AF9 activation. Our system allows for careful chemically controlled and stepwise in vitro hiPSC-derived differentiation under serum-free and feeder-free conditions. For a disease that currently lacks effective precision medicine, our system provides a novel entry-point into exploring potential novel targets for personalized therapeutic strategies.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Pluripotentes , Criança , Humanos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Diferenciação Celular/genética , Monócitos/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
5.
Stem Cells ; 40(8): 736-750, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35535819

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow with 5-year overall survival of less than 10% in patients over the age of 65. Limited progress has been made in the patient outcome because of the inability to selectively eradicate the leukemic stem cells (LSC) driving the refractory and relapsed disease. Herein, we investigated the role of the reprogramming factor KLF4 in AML because of its critical role in the self-renewal and stemness of embryonic and cancer stem cells. Using a conditional Cre-lox Klf4 deletion system and the MLL-AF9 retroviral mouse model, we demonstrated that loss-of-KLF4 does not significantly affect the induction of leukemia but markedly decreased the frequency of LSCs evaluated in limiting-dose transplantation studies. Loss of KLF4 in leukemic granulocyte-macrophage progenitors (L-GMP), a population enriched for AML LSCs, showed lessened clonogenicity and percentage in the G2/M phase of the cell cycle. RNAseq analysis of purified L-GMPs revealed decreased expression of stemness genes and MLL-target genes and upregulation of the RNA sensing helicase DDX58. However, silencing of DDX58 in KLF4 knockout leukemia indicated that DDX58 is not mediating this phenotype. CRISPR/Cas9 deletion of KLF4 in MOLM13 cell line and AML patient-derived xenograft cells showed impaired expansion in vitro and in vivo associated with a defective G2/M checkpoint. Collectively, our data suggest a mechanism in which KLF4 promotes leukemia progression by establishing a gene expression profile in AML LSCs supporting cell division and stemness.


Assuntos
Fator 4 Semelhante a Kruppel , Leucemia Mieloide Aguda , Animais , Medula Óssea/patologia , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo
6.
Cancers (Basel) ; 14(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35158754

RESUMO

Acute myeloid leukemia (AML) is a group of hematological cancers with metabolic heterogeneity. Oxidative phosphorylation (OXPHOS) has been reported to play an important role in the function of leukemic stem cells and chemotherapy-resistant cells and are associated with inferior prognosis in AML patients. However, the relationship between metabolic phenotype and genetic mutations are yet to be explored. In the present study, we demonstrate that AML cell lines have high metabolic heterogeneity, and AML cells with MLL/AF9 have upregulated mitochondrial activity and mainly depend on OXPHOS for energy production. Furthermore, we show that metformin repressed the proliferation of MLL/AF9 AML cells by inhibiting mitochondrial respiration. Together, this study demonstrates that AML cells with an MLL/AF9 genotype have a high dependency on OXPHOS and could be therapeutically targeted by metformin.

7.
Zhonghua Xue Ye Xue Za Zhi ; 42(10): 851-857, 2021 Oct 14.
Artigo em Chinês | MEDLINE | ID: mdl-34788926

RESUMO

Objective: To explore the clinical features and possible pathogenesis of spontaneous remission of acute myeloid leukemia (AML) . Methods: We retrospectively analyzed the clinical data of a patient with spontaneous remission of AML, MLL-AF9 rearrangement, and abnormal liver function in the First Affiliated Hospital of Zhengzhou University, and the relevant pieces of literature were summarized. Results: The patient experienced lung infection, fever, and liver dysfunction and was treated with anti-infection and blood transfusion. After complete response (CR) , the patient remained in CR with mild, indirect bilirubin elevation at 35 months of follow-up. Additionally, 56 cases of adult AML (non-acute promyelocytic leukemia) were reported in the literature from 1990 to June 2021. The cases were checked by bone marrow aspiration, and our patients were summarized and analyzed. Furthermore, 57 patients, including 37 males and 20 females, with a median age of 51 (20-83) years and a median remission time of five months; 52 patients achieved complete remission. In addition, there were five cases with long-term remission and a chromosomal record, with no recurrence so far, three with normal karyotype and two with t (9;11) (q21;q23) . Conclusion: The spontaneous remission of leukemia is rare and may be related to immunosuppression and genes.


Assuntos
Leucemia Mieloide Aguda , Hepatopatias , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Rearranjo Gênico , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Remissão Espontânea , Estudos Retrospectivos
8.
Front Oncol ; 11: 754093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692539

RESUMO

ASH1L and MLL1 are two histone methyltransferases that facilitate transcriptional activation during normal development. However, the roles of ASH1L and its enzymatic activity in the development of MLL-rearranged leukemias are not fully elucidated in Ash1L gene knockout animal models. In this study, we used an Ash1L conditional knockout mouse model to show that loss of ASH1L in hematopoietic progenitor cells impaired the initiation of MLL-AF9-induced leukemic transformation in vitro. Furthermore, genetic deletion of ASH1L in the MLL-AF9-transformed cells impaired the maintenance of leukemic cells in vitro and largely blocked the leukemia progression in vivo. Importantly, the loss of ASH1L function in the Ash1L-deleted cells could be rescued by wild-type but not the catalytic-dead mutant ASH1L, suggesting the enzymatic activity of ASH1L was required for its function in promoting MLL-AF9-induced leukemic transformation. At the molecular level, ASH1L enhanced the MLL-AF9 target gene expression by directly binding to the gene promoters and modifying the local histone H3K36me2 levels. Thus, our study revealed the critical functions of ASH1L in promoting the MLL-AF9-induced leukemogenesis, which provides a molecular basis for targeting ASH1L and its enzymatic activity to treat MLL-AF9-induced leukemias.

9.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639154

RESUMO

Leukemias derived from the MLL-AF9 rearrangement rely on dysfunctional transcriptional networks. ZNF521, a transcription co-factor implicated in the control of hematopoiesis, has been proposed to sustain leukemic transformation in collaboration with other oncogenes. Here, we demonstrate that ZNF521 mRNA levels correlate with specific genetic aberrations: in particular, the highest expression is observed in AMLs bearing MLL rearrangements, while the lowest is detected in AMLs with FLT3-ITD, NPM1, or CEBPα double mutations. In cord blood-derived CD34+ cells, enforced expression of ZNF521 provides a significant proliferative advantage and enhances MLL-AF9 effects on the induction of proliferation and the expansion of leukemic progenitor cells. Transcriptome analysis of primary CD34+ cultures displayed subsets of genes up-regulated by MLL-AF9 or ZNF521 single transgene overexpression as well as in MLL-AF9/ZNF521 combinations, at either the early or late time points of an in vitro leukemogenesis model. The silencing of ZNF521 in the MLL-AF9 + THP-1 cell line coherently results in an impairment of growth and clonogenicity, recapitulating the effects observed in primary cells. Taken together, these results underscore a role for ZNF521 in sustaining the self-renewal of the immature AML compartment, most likely through the perturbation of the gene expression landscape, which ultimately favors the expansion of MLL-AF9-transformed leukemic clones.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Nucleofosmina , Proteínas de Fusão Oncogênica/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
10.
Mol Med Rep ; 24(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34278496

RESUMO

Following the publication of this paper, the authors have realized that the final article did not indicate in the Authors' Contribution section that Fangce Wang and Zheng Li made equal contributions to this work (FW and ZL performed most of the statistical analyses and drafted the initial version of the manuscript). Therefore, the affiliations for this paper should have been written as follows (changes are highlighted in bold): FANGCE WANG1*, ZHENG LI1*, GUANGMING WANG1, XIAOXUE TIAN1, JIE ZHOU1, WENLEI YU1, ZHUOYI FAN1, LIN DONG1, JINYUAN LU1, JUN XU2, WENJUN ZHANG1 and AIBIN LIANG1. 1Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092; 2Medical Center for Stem Cell Engineering and Transformation, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China. *Contributed equally. The authors confirm that there are no further errors in the paper, and all the authors agree to this correction. The authors and the Editor apologize for any inconvenience caused. [the original article was published in Molecular Medicine Reports 21: 883­893, 2020, DOI: 10.3892/mmr.2019.10849].

11.
Int J Health Sci (Qassim) ; 15(2): 21-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708041

RESUMO

OBJECTIVE: Acute myeloid leukemia (AML) is a common malignant disorder of hematopoietic progenitor cells that caused by chromosomal translocation and the formation of fusion oncogenes. This study determined the frequencies of fusion genes in Sudanese patients with AML and their clinical impacts. METHODS: This study was conducted at Alzaeim Alazhari University, Khartoum, Sudan. A total of 97 patients with AML were recruited in the study from different clinics in Khartoum state. Quantitative real-time polymerase chain reaction was used to determine types of fusion genes. RESULTS: The highest frequency of genetic defects was observed for AML1-ETO fusion gene (57.6%) followed by MLL-AF9 (35.1%) and FUS-ERG (7.2%). No significant differences in blast cells, hemoglobin, total white blood cells, and platelets were found between different gene fusion groups (P > 0.05). In addition, no differences in the frequency of splenomegaly, hepatomegaly and lymphadenopathy were observed between different gene fusion groups (P > 0.05). With respect to French-American-British (FAB) classification, the M2 and M3 were significantly higher in patients with AML1-ETO fusion (86%, P < 0.01) whereas M4 and M5 were higher in patients with MLL-AF9 fusion (76.5%, P < 0.01). CONCLUSIONS: The study concluded that AML1-ETO and MLL-AF9 fusion genes were predominant in AML Sudanese patients. None of the examined clinical parameters were different between different fusion genes except for FAB stages.

12.
Ann Transl Med ; 9(3): 266, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708893

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a devastating disease with a poor prognosis. Innate and adaptive immunity is closely related to the progression of leukemia. Macrophages within the leukemic microenvironment have a tendency toward a leukemia-permissive phenotype. However, the characteristics of macrophages in leukemia, including their kinetics, gene expression, and functional roles have not been fully illuminated. METHODS: In the current study, the characteristics of peritoneal resident macrophages, which were large peritoneal macrophages (LPM), from mice with mixed lineage leukemia (MLL)-AF9-induced AML were investigated. AML-associated large macrophages (AML-LPM) were gated as F4/80high MHC-II- by flow cytometry. To further investigate the relationship between the leukemic microenvironment and macrophage characteristics, RNA sequencing was performed. Meanwhile, apoptosis, killing ability, and phagocytic function of peritoneal resident macrophages in MLL-AF9-induced AML were assessed. RESULTS: The results suggested that AML microenvironment was found to affect the kinetics and morphology of peritoneal resident macrophages. The results of RNA sequencing suggested that the gene expression of AML-LPMs differed significantly from that of normal LPMs. The AML microenvironment also had effects on the apoptosis, killing ability, and phagocytic function of peritoneal resident macrophages. CONCLUSIONS: These data suggest that peritoneal resident macrophages in mice with AML induced by MLL-AF9 show an M2-like phenotype. The reversal of macrophage polarization in the leukemic microenvironment may potentially enhance the immunotherapeutic effect in AML.

13.
Vnitr Lek ; 67(E-5): 9-12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35459386

RESUMO

Acute myeloid leukemia (AML) is a highly heterogeneous subtype of leukemia, accounting for 25 % of childhood leukemias. By the presence of genetic mutations in hematopoietic/ progenitor stem cells, the bone marrow produces a large number of abnormal undifferentiated leukocytes (blasts), which significantly impairs the proper differentiation of cells. AML is induced by two interventions. Chromosomal translocation during hematopoiesis of intrauterine development is the first intervention. This creates preleukemic fusion genes (PFG), which can later be transformed by a second intervention (point genetic mutation - deletion, insertion ) into a functional malignant clone. Characteristic AML fusion genes include AML1-ETO, PML-RARA or MLL-AF9, which in turn produce hybrid proteins with altered function. Several studies suggest that these PFGs are considered an important prognostic tool in disease assessment. While the incidence of PFG characteristic of acute lymphoblastic leukemia (ALL) has been relatively well studied by several research groups and has been estimated at 1 to 5% in the umbilical cord blood of healthy neonates, PFG relevant to AML are still not sufficiently clarified.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Recém-Nascido , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Prognóstico
14.
Exp Cell Res ; 397(2): 112368, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220260

RESUMO

Mixed lineage leukemia (MLL) arises from several KMT2A-gene chromosomal translocations. Shb gene deficiency has been found to exhibit pleiotropic effects in different models of leukemia, and consequently, this study aimed to investigate MLL-AF9-induced leukemia in Shb deficiency. Bone marrow cells from wild type and Shb knockout (KO) mice were transduced with the MLL-AF9 gene. Shb KO MLL-AF9 cells proliferated at an increased rate, exhibited altered expression of certain cytokine genes (Kitl, Csf3, IL6, IL1b) and higher expression of cell cycle genes (Ccnd2, Ccne1). Mice receiving Shb KO MLL-AF9 cells showed longer latency without displaying any difference in rates of leukemic cell proliferation, indicating a dichotomy between the in vitro and in vivo phenotypes. The mice with Shb deficient MLL-AF9 cells had a lower content of leukemic bone marrow cells allowing elevated normal hematopoiesis, explaining the longer latency. Finally, Shb knockout GFP-positive bone marrow cells showed a higher percentage of cells expressing myeloid markers. The result suggests a role of Shb in the progression of leukemia and that the relevance of the Shb gene is context-dependent as inferred from the differences between the in vivo and in vitro responses. These findings help to obtain an increased understanding of human MLL-AF9 leukemia.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/patologia , Regulação Leucêmica da Expressão Gênica , Leucemia Experimental/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas/fisiologia , Animais , Apoptose , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Tumorais Cultivadas
15.
Heliyon ; 6(6): e04020, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529062

RESUMO

A leukemic in vitro model produced by transducing Cord Blood derived-hematopoietic CD34+ cells with the MLL-AF9 translocation resulting in the oncogenic fusion protein, is used to assess for sensitivity to Zoledronic acid. These cells are practically immortalized and are of myeloid origin. Proliferation, clonogenic and stromal co-culture assays showed that the MLL-AF9 cells were considerably more sensitive to Zoledronic acid than normal hematopoietic CD34+ cells or MS-5 stromal cells. The MLL-AF9 cells were notably more inhibited by Zoledronic acid when cultured as colonies in 3 dimensions, requiring cell-cell contacts compared to suspension expansion cultures. This is coherent with the mechanism of action of Zoledronic acid inhibiting farnesyl diphosphate synthase which results in a block in prenylation of GTPases such that their role in the membrane is compromised for cell-cell contacts. Zoledronic acid can be proposed to target the MLL-AF9 leukemic stem cells before they emerge from the hematopoietic niche, which being in proximity to bone osteoclasts where Zoledronic acid is sequestered can be predicted to result in sufficient levels to result in an anti-leukemic action.

16.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260549

RESUMO

Acute myeloid leukemia (AML) is a complex disease with an aggressive clinical course and high mortality rate. The standard of care for patients has only changed minimally over the past 40 years. However, potentially useful agents have moved from bench to bedside with the potential to revolutionize therapeutic strategies. As such, cell-cycle inhibitors have been discussed as alternative treatment options for AML. In this review, we focus on cyclin-dependent kinase 6 (CDK6) emerging as a key molecule with distinct functions in different subsets of AML. CDK6 exerts its effects in a kinase-dependent and -independent manner which is of clinical significance as current inhibitors only target the enzymatic activity.


Assuntos
Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Quinase 6 Dependente de Ciclina/metabolismo , Humanos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia
17.
Free Radic Biol Med ; 153: 1-11, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222468

RESUMO

In mass casualty events involving radiation exposure, there is a substantial unmet need for identifying and developing an orally bioavailable agent that can be used to protect the hematopoietic stem cell pool and regenerate hematopoiesis after radiation injury. Dimethyl sulfoxide (DMSO), a free-radical scavenger, has shown therapeutic benefits in many preclinical and clinical studies. This study investigates the radioprotective effects of DMSO on oral administration. Single dose of oral DMSO administrated before irradiation conferred 100% survival of C57BL6/J mice receiving otherwise lethal as well as super-lethal radiation dose, with wide radioprotective time frame (from 15min to 4h). Oral DMSO not only protected radiation-induced acute hematopoietic stem and progenitor cell (HSPC) injury, but also ameliorated long-term BM suppression following irradiation in mice. Mechanistically, DMSO directly protected HSPC survival after irradiation in vitro and in vivo, whereas no radioprotective effect was seen in MLL-AF9-induced leukemia cells. Unexpectedly, DMSO treatment did not inhibit radiation-induced HSPC apoptosis, and the HSPC survival from Trp53-and PUMA-deficient mice after irradiation was also protected by DMSO. In conclusion, our findings demonstrate the radioprotective efficacy of oral DMSO. Given its oral efficacy and little toxicity, DMSO is an attractive candidate for human use in a wide variety of settings, including nuclear accidents and medical radiation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Protetores contra Radiação , Animais , Apoptose , Dimetil Sulfóxido/farmacologia , Células-Tronco Hematopoéticas , Camundongos , Protetores contra Radiação/farmacologia
18.
Cytotherapy ; 22(3): 127-134, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024607

RESUMO

Enhanced interleukin-1ß (IL-1ß) signaling is a common event in patients with acute myeloid leukemia (AML). It was previously demonstrated that chronic IL-1ß exposure severely impaired hematopoietic stem cell (HSC) self-renewal capability in mice and promoted leukemia cell growth in primary AML cells. However, the role of IL-1ß in the murine bone marrow (BM) niche remains unclear. Here, we explored the role of IL-1ß in the BM niche in Il-1r1-/- mice, chronic IL-1ß exposure mice and mixed lineage leukemia-AF9 fusion gene (MLL-AF9)-induced AML mice models. We demonstrated that IL-1R1 deficiency did not affect the function of HSCs or niche cells under steady-state conditions or during transplantation. Chronic exposure to IL-1ß decreased the expansion of Il-1r1-/- hematopoietic cells in Il-1r1+/+ recipient mice. These results indicated that IL-1ß exposure impaired the ability of niche cells to support hematopoietic cells. Furthermore, we revealed that IL-1R1 deficiency in niche cells prolonged the survival of MLL-AF9-induced AML mice. The results of our study suggest that inhibition of the IL-1ß/IL-1R1 signaling pathway in the niche might be a non-cell-autonomous therapy strategy for AML.


Assuntos
Medula Óssea/patologia , Progressão da Doença , Células-Tronco Hematopoéticas/metabolismo , Interleucina-1beta/metabolismo , Leucemia Mieloide Aguda/patologia , Nicho de Células-Tronco , Animais , Medula Óssea/metabolismo , Proliferação de Células , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Fusão Oncogênica/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo
19.
Mol Med Rep ; 21(2): 883-893, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789407

RESUMO

Rearrangement of the mixed lineage leukemia (MLL; also known as lysine methyltransferase 2A) gene is a recurrent genomic aberration in acute myeloid leukemia (AML). MLLT3, super elongation complex subunit (AF9) is one of the most common MLL fusion partners in AML. The present study aimed to explore the aberrant expression of genes associated with the MLL­AF9 translocation and identified potential new targets for the therapy of AML with MLL­AF9 translocation. The transcriptomic and epigenetic datasets were downloaded from National Center of Biotechnology Information Gene Expression Omnibus (GEO) database. Differentially expressed genes were obtained from two independent datasets (GSE68643 and GSE73457). Gene Ontology biological process and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. MLL­AF9­associated chromatin immunoprecipitation sequencing (ChIP­Seq) data was analyzed and identified binding sites for MLL­AF9 and wild type MLL (MLL WT). The ChIP­Seq of histone modification data was downloaded from the GEO database, including histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 79 dimethylation (H3K79me2) and histone 3 lysine 27 acetylation (H3K27ac), was used for comparing histone modification marks between the MLL­AF9 leukemia cells and normal hematopoietic cells at MLL­AF9 and MLL WT binding sites. The differentially expressed genes with the same trend in H3K79me2, H3K27ac and H3K4me3 alteration were identified as potential MLL­AF9 direct target genes. Upon validation using RNA­Seq data from the Therapeutically Applicable Research to Generate Effective Treatments AML project, eight potential direct target genes of MLL­AF9 were identified and further confirmed in MLL­AF9 mouse model using reverse transcription­quantitative polymerase chain reaction. These genes may have a critical role in AML with MLL­AF9 translocation.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Transcriptoma/genética , Animais , Transplante de Medula Óssea , Sequenciamento de Cromatina por Imunoprecipitação , Bases de Dados Genéticas , Modelos Animais de Doenças , Epigenoma , Feminino , Ontologia Genética , Histonas/química , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Transplante Heterólogo
20.
Leuk Lymphoma ; 60(12): 3011-3019, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31111759

RESUMO

BRE (Brain and Reproductive Organ-Expressed) is an anti-apoptotic protein and a core component of DNA-repair BRCA1-A complex. Microarray-detected high BRE gene expression has been found to be associated with better patient survival in AML (acute myeloid leukemia) with MLL-AF9 translocation, and radiotherapy-treated non-familial breast cancer. A recent finding suggests that the high BRE gene expression in MLL-AF9 AML could be attributed to the additional expression of a transcript variant encoding a novel C-terminal BRE isoform. Using THP-1 as the MLL-AF9 AML cell model, we found that ectopic expression of the C-terminal BRE, which could not form an intact BRCA1-A complex, indeed increased cellular sensitivity to chemotherapeutic drugs and inhibited cell proliferation, while the complete opposite was achieved by the ectopic expression of full-length BRE. Our findings suggest that the C-terminal BRE-encoding transcript could be responsible for better patient survival and may have therapeutic potential for cancer.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...