Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Biol Chem ; : 107566, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002676

RESUMO

MLL-fusion proteins (MLL-FPs) are believed to maintain gene activation and induce mixed lineage leukemia (MLL) through aberrantly stimulating transcriptional elongation, but the underlying mechanisms are incompletely understood. Here we show that both MLL1 and AF9, one of the major fusion partners of MLL1, mainly occupy promoters and distal intergenic regions, exhibiting chromatin occupancy patterns resembling that of RNA polymerase II (Pol II) in HEL, a human cell line without MLL1 arrangement (MLLr). MLL1 and AF9 only co-regulate over a dozen genes despite of their co-occupancy on thousands of genes. They do not interact with each other, and their chromatin occupancy is also independent of each other. Moreover, AF9 deficiency in HEL cells decreases global TBP occupancy while decreases CDK9 occupancy on a small number of genes, suggesting an accessory role of AF9 in CDK9 recruitment and a possible major role in transcriptional initiation via initiation factor recruitment. Importantly, MLL1 and MLL-AF9 occupy promoters and distal intergenic regions, exhibiting identical chromatin occupancy patterns in MLL cells, and MLL-AF9 deficiency decreased occupancy of TBP and TFIIE on major target genes of MLL-AF9 in iMA9, a murine acute myeloid leukemia (AML) cell line inducibly expressing MLL-AF9, suggesting that it can also regulate initiation. These results suggest that there is no difference between MLL1 and MLL-AF9 with respect to location and size of occupancy sites, contrary to what people have believed, and that MLL-AF9 may also regulate transcriptional initiation in addition to widely-believed elongation.

2.
Cell Rep ; 43(7): 114378, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38889007

RESUMO

The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.

3.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857395

RESUMO

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Assuntos
Diferenciação Celular , Fagócitos , Humanos , Fagócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo , Engenharia de Proteínas/métodos , Fagocitose
4.
Cell Rep ; 43(5): 114222, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38735046

RESUMO

The activation and specialization of regulatory T cells (Tregs) are crucial for maintaining immune self-tolerance; however, the regulation of these processes by histone modifications is not fully understood. Here, we show that T cell-specific deletion of the lysine methyltransferase MLL1 results in a spontaneous lymphocyte proliferation phenotype in aged mice without disturbing the development of conventional T cells and Tregs. Treg-specific MLL1 ablation leads to a systemic autoimmune disease associated with Treg dysfunction. Moreover, RNA sequencing demonstrates that the induction of multiple genes involved in Treg activation, functional specialization, and tissue immigration is defective in MLL1-deficient Tregs. This dysregulation is associated with defects in H3K4 trimethylation at these genes' transcription start sites. Finally, using a T-bet fate-mapping mouse system, we determine that MLL1 is required to establish stable Th1-type Tregs. Thus, MLL1 is essential in optimal Treg function by providing a coordinated chromatin context for activation and specialization.


Assuntos
Histona-Lisina N-Metiltransferase , Ativação Linfocitária , Proteína de Leucina Linfoide-Mieloide , Linfócitos T Reguladores , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Camundongos , Camundongos Endogâmicos C57BL , Histonas/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Metilação , Proliferação de Células
5.
Free Radic Biol Med ; 217: 48-59, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527695

RESUMO

The transcription factor NRF2 plays a pivotal role in maintaining redox and metabolic homeostasis by orchestrating oxidative stress-dependent transcription programs. Despite growing evidence implicating various cellular components in the regulation of NRF2 activity at the posttranslational stage, relatively less is known about the factors dictating the transcriptional activation of NRF2 in response to oxidative stress. In this study, we report the crucial roles of MLL1, an H3K4-specific methyltransferase, and UTX, an H3K27-specific histone demethylase, in the NRF2-dependent transcription program under oxidative stress. We find that the depletion of MLL1 or UTX results in increased susceptibility to oxidative stress, accompanied by higher intracellular ROS and the failed activation of antioxidant genes, including NRF2. In addition, MLL1 and UTX selectively target the NRF2 promoter, and exogenous FLAG-NRF2 expression increases the viability of MLL1-or UTX-depleted cells upon exposure to hydrogen peroxide. RNA-seq analysis demonstrates that depletion of MLL1 or UTX affects the changes in NRF2-dependent transcriptome in response to oxidative stress. Furthermore, ChIP and ChIP-seq analyses find that MLL1 and UTX functionally cooperate to establish a chromatin environment that favors active transcription at the H3K4me3/H3K27me3 bivalent NRF2 promoter in response to ROS-induced oxidative stress. Collectively, these findings provide a molecular mechanism underlying the cellular response to oxidative stress and highlight the importance of the chromatin structure and function in maintaining redox homeostasis.


Assuntos
Histona Desmetilases , Fator 2 Relacionado a NF-E2 , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Metilação , Cromatina , Estresse Oxidativo
6.
BMC Med ; 22(1): 57, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317232

RESUMO

BACKGROUND: Abnormal placental development is a significant factor contributing to perinatal morbidity and mortality, affecting approximately 5-7% of pregnant women. Trophoblast syncytialization plays a pivotal role in the establishment and maturation of the placenta, and its dysregulation is closely associated with several pregnancy-related disorders, including preeclampsia and intrauterine growth restriction. However, the underlying mechanisms and genetic determinants of syncytialization are largely unknown. METHODS: We conducted a systematic drug screen using an epigenetic compound library to systematically investigate the epigenetic mechanism essential for syncytialization, and identified mixed lineage leukemia 1 (MLL1), a histone 3 lysine 4 methyltransferase, as a crucial regulator of trophoblast syncytialization. BeWo cells were utilized to investigate the role of MLL1 during trophoblast syncytialization. RNA sequencing and CUT&Tag were further performed to search for potential target genes and the molecular pathways involved. Human placenta tissue was used to investigate the role of MLL1 in TEA domain transcription factor 4 (TEAD4) expression and the upstream signaling during syncytialization. A mouse model was used to examine whether inhibition of MLL1-mediated H3K4me3 regulated placental TEAD4 expression and fetoplacental growth. RESULTS: Genetic knockdown of MLL1 or pharmacological inhibition of the MLL1 methyltransferase complex (by MI-3454) markedly enhanced syncytialization, while overexpression of MLL1 inhibited forskolin (FSK)-induced syncytiotrophoblast formation. In human placental villous tissue, MLL1 was predominantly localized in the nuclei of cytotrophoblasts. Moreover, a notable upregulation in MLL1 expression was observed in the villus tissue of patients with preeclampsia compared with that in the control group. Based on RNA sequencing and CUT&Tag analyses, depletion of MLL1 inhibited the Hippo signaling pathway by suppressing TEAD4 expression by modulating H3K4me3 levels on the TEAD4 promoter region. TEAD4 overexpression significantly reversed the FSK-induced or MLL1 silencing-mediated trophoblast syncytialization. Additionally, decreased hypoxia-inducible factor 1A (HIF1A) enrichment at the MLL1 promoter was observed during syncytialization. Under hypoxic conditions, HIF1A could bind to and upregulate MLL1, leading to the activation of the MLL1/TEAD4 axis. In vivo studies demonstrated that the administration of MI-3454 significantly enhanced fetal vessel development and increased the thickness of the syncytial layer, thereby supporting fetoplacental growth. CONCLUSIONS: These results revealed a novel epigenetic mechanism underlying the progression of syncytialization with MLL1, and suggest potential avenues for identifying new therapeutic targets for pregnancy-related disorders.


Assuntos
Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide , Placenta , Pré-Eclâmpsia , Animais , Feminino , Humanos , Camundongos , Gravidez , Epigênese Genética , Placenta/metabolismo , Fatores de Transcrição de Domínio TEA , Trofoblastos/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo
7.
Genome Biol ; 24(1): 268, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012744

RESUMO

BACKGROUND: Enhancer dysregulation is one of the important features for cancer cells. Enhancers enriched with H3K4me3 have been implicated to play important roles in cancer. However, their detailed features and regulatory mechanisms have not been well characterized. RESULTS: Here, we profile the landscape of H3K4me3-enriched enhancers (m3Es) in 43 pairs of colorectal cancer (CRC) samples. M3Es are widely distributed in CRC and averagely possess around 10% of total active enhancers. We identify 1322 gain variant m3Es and 367 lost variant m3Es in CRC. The target genes of the gain m3Es are enriched in immune response pathways. We experimentally prove that repression of CBX8 and RPS6KA5 m3Es inhibits target gene expression in CRC. Furthermore, we find histone methyltransferase MLL1 is responsible for depositing H3K4me3 on the identified Vm3Es. We demonstrate that the transcription factor AP1/JUN interacts with MLL1 and regulates m3E activity. Application of a small chemical inhibitor for MLL1 activity, OICR-9429, represses target gene expression of the identified Vm3Es, enhances anti-tumor immunity and inhibits CRC growth in an animal model. CONCLUSIONS: Taken together, our study illustrates the genome-wide landscape and the regulatory mechanisms of m3Es in CRC, and reveals potential novel strategies for cancer treatment.


Assuntos
Neoplasias Colorretais , Histonas , Proteína de Leucina Linfoide-Mieloide , Proteínas Proto-Oncogênicas c-jun , Animais , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fator de Transcrição AP-1/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
8.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37808852

RESUMO

The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81 kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR/Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expression were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the MLL1 complex. Myrlin CRISPRi compromised MLL1 occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting MLL1.

9.
Clin Transl Med ; 13(9): e1410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37712124

RESUMO

BACKGROUND: Predictive biomarkers for oesophageal squamous cell carcinoma (ESCC) immunotherapy are lacking, and immunotherapy resistance remains to be addressed. The role of long noncoding RNA (lncRNA) in ESCC immune escape and immunotherapy resistance remains to be elucidated. METHODS: The tumour-associated macrophage-upregulated lncRNAs and the exosomal lncRNAs highly expressed in ESCC immunotherapy nonresponders were identified by lncRNA sequencing and polymerase chain reaction assays. CRISPR-Cas9 was used to explore the functional roles of the lncRNA. RNA pull-down, MS2-tagged RNA affinity purification (MS2-TRAP) and RNA-binding protein immunoprecipitation (RIP) were performed to identify lncRNA-associated proteins and related mechanisms. In vivo, the humanized PBMC (hu-PBMC) mouse model was established to assess the therapeutic responses of specific lncRNA inhibitors and their combination with programmed cell death protein 1 (PD-1) monoclonal antibody (mAb). Single-cell sequencing, flow cytometry, and multiplex fluorescent immunohistochemistry were used to analyze immune cells infiltrating the tumour microenvironment. RESULTS: We identified a lncRNA that is involved in tumour immune evasion and immunotherapy resistance. High LINC02096 (RIME) expression in plasma exosomes correlates with a reduced response to PD-1 mAb treatment and poor prognosis. Mechanistically, RIME binds to mixed lineage leukaemia protein-1 (MLL1) and prevents ankyrin repeat and SOCS box containing 2 (ASB2)-mediated MLL1 ubiquitination, improving the stability of MLL1. RIME-MLL1 increases H3K4me3 levels in the promoter regions of programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO-1), constitutively increasing the expression of PD-L1/IDO-1 in tumour cells and inhibiting CD8+ T cells infiltration and activation. RIME depletion in huPBMC-NOG mice significantly represses tumour development and improves the effectiveness of PD-1 mAb treatment by activating T-cell-mediated antitumour immunity. CONCLUSIONS: This study reveals that the RIME-MLL1-H3K4me3 axis plays a critical role in tumour immunosuppression. Moreover, RIME appears to be a potential prognostic biomarker for immunotherapy and developing drugs that target RIME may be a new therapeutic strategy that overcomes immunotherapy resistance and benefits patients with ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Animais , Camundongos , Anticorpos Monoclonais , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Leucócitos Mononucleares , Proteína de Leucina Linfoide-Mieloide , Receptor de Morte Celular Programada 1 , RNA Longo não Codificante/genética , Microambiente Tumoral/genética
10.
J Biol Chem ; 299(10): 105193, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633334

RESUMO

Despite significant progress in our understanding of the molecular mechanism of mesenchymal stem cell (MSC) differentiation, less is known about the factors maintaining the stemness and plasticity of MSCs. Here, we show that the NFIB-MLL1 complex plays key roles in osteogenic differentiation and stemness of C3H10T1/2 MSCs. We find that depletion of either NFIB or MLL1 results in a severely hampered osteogenic potential and failed activation of key osteogenic transcription factors, such as Dlx5, Runx2, and Osx, following osteogenic stimuli. In addition, the NFIB-MLL1 complex binds directly to the promoter of Dlx5, and exogenous expression of Myc-Dlx5, but not the activation of either the BMP- or the Wnt-signaling pathway, is sufficient to restore the osteogenic potential of cells depleted of NFIB or MLL1. Moreover, chromatin immunoprecipitation (ChIP) and ChIP-sequencing analysis showed that the NFIB-MLL1 complex mediates the deposition of trimethylated histone H3K4 at both Dlx5 and Cebpa, key regulator genes that function at the early stages of osteogenic and adipogenic differentiation, respectively, in uncommitted C3H10T1/2 MSCs. Surprisingly, the depletion of either NFIB or MLL1 leads to decreased trimethylated histone H3K4 and results in elevated trimethylated histone H3K9 at those developmental genes. Furthermore, gene expression profiling and ChIP-sequencing analysis revealed lineage-specific changes in chromatin landscape and gene expression in response to osteogenic stimuli. Taken together, these data provide evidence for the hitherto unknown role of the NFIB-MLL1 complex in the maintenance and lineage-specific differentiation of C3H10T1/2 MSCs and support the epigenetic regulatory mechanism underlying the stemness and plasticity of MSCs.

11.
Cell Mol Life Sci ; 80(9): 274, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650943

RESUMO

BACKGROUND: The stage, when tissues and organs are growing, is very vulnerable to environmental influences, but it's not clear how exposure during this time causes changes to the epigenome and increases the risk of hormone-related illnesses like uterine fibroids (UFs). METHODS: Developmental reprogramming of myometrial stem cells (MMSCs), the putative origin from which UFs originate, was investigated in vitro and in the Eker rat model by RNA-seq, ChIP-seq, RRBS, gain/loss of function analysis, and luciferase activity assays. RESULTS: When exposed to the endocrine-disrupting chemical (EDC) diethylstilbestrol during Eker rat development, MMSCs undergo a reprogramming of their estrogen-responsive transcriptome. The reprogrammed genes in MMSCs are known as estrogen-responsive genes (ERGs) and are activated by mixed lineage leukemia protein-1 (MLL1) and DNA hypo-methylation mechanisms. Additionally, we observed a notable elevation in the expression of ERGs in MMSCs from Eker rats exposed to natural steroids after developmental exposure to EDC, thereby augmenting estrogen activity. CONCLUSION: Our studies identify epigenetic mechanisms of MLL1/DNA hypo-methylation-mediated MMSC reprogramming. EDC exposure epigenetically targets MMSCs and leads to persistent changes in the expression of a subset of ERGs, imparting a hormonal imprint on the ERGs, resulting in a "hyper-estrogenic" phenotype, and increasing the hormone-dependent risk of UFs.


Assuntos
Disruptores Endócrinos , Leiomioma , Animais , Ratos , Disruptores Endócrinos/toxicidade , Estrogênios , Bioensaio , Leiomioma/induzido quimicamente , Leiomioma/genética , Proteína de Leucina Linfoide-Mieloide , DNA
12.
Cell Rep ; 42(8): 112884, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516964

RESUMO

NUP98 and NUP214 form chimeric fusion proteins that assemble into phase-separated nuclear bodies containing CRM1, a nuclear export receptor. However, these nuclear bodies' function in controlling gene expression remains elusive. Here, we demonstrate that the nuclear bodies of NUP98::HOXA9 and SET::NUP214 promote the condensation of mixed lineage leukemia 1 (MLL1), a histone methyltransferase essential for the maintenance of HOX gene expression. These nuclear bodies are robustly associated with MLL1/CRM1 and co-localized on chromatin. Furthermore, whole-genome chromatin-conformation capture analysis reveals that NUP98::HOXA9 induces a drastic alteration in high-order genome structure at target regions concomitant with the generation of chromatin loops and/or rearrangement of topologically associating domains in a phase-separation-dependent manner. Collectively, these results show that the phase-separated nuclear bodies of nucleoporin fusion proteins can enhance the activation of target genes by promoting the condensation of MLL1/CRM1 and rearrangement of the 3D genome structure.


Assuntos
Leucemia , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Cromatina , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Corpos Nucleares
13.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37163116

RESUMO

Besides its mitochondria-based anti-apoptotic role, Bcl-xL also travels to the nucleus to promote cancer metastasis by upregulating global histone H3 trimethyl Lys4 (H3K4me3) and TGFß transcription. How Bcl-xL is translocated into the nucleus and how nuclear Bcl-xL regulates H3K4me3 modification are not understood. Here, we report that C-terminal Binding Protein 2 (CtBP2) binds Bcl-xL via its N-terminus and translocates Bcl-xL into the nucleus. Knockdown of CtBP2 by shRNA decreases the nuclear portion of Bcl-xL and reverses Bcl-xL-induced cell migration and metastasis in mouse models. Furthermore, knockout of CtBP2 suppresses Bcl-xL transcription. The binding between Bcl-xL and CtBP2 is required for their interaction with MLL1, a histone H3K4 methyltransferase. Pharmacologic inhibition of MLL1 enzymatic activity reverses Bcl-xL-induced H3K4me3 and TGFß mRNA upregulation as well as cell invasion. Moreover, cleavage under targets and release using nuclease (CUT&RUN) coupled with next generation sequencing reveals that H3K4me3 modifications are particularly enriched in the promotor region of genes encoding TGFß and its signaling pathway in the cancer cells overexpressing Bcl-xL. Altogether, the metastatic function of Bcl-xL is mediated by its interaction with CtBP2 and MLL1.

14.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049787

RESUMO

Encoded by the MEN1 gene, menin protein is a fusion protein that is essential for the oncogenic transformation of mixed-lineage leukemia (MLL) and leads to acute leukemia (AL). Therefore, accumulating evidence has demonstrated that inhibition of the high-affinity relationship between menin and mixed-lineage leukemia 1 (MLL1 and KMT2A) is an effective treatment for MLL-rearranged (MLL-r) leukemia in vitro and in vivo. Meanwhile, recent studies found that menin-MLL1 interaction inhibitors exhibited a firm tumor suppressive ability in specific cancer cells, such as prostate cancer, breast cancer, liver cancer, and lung cancer. Overall, it seems to serve as a novel therapeutic means for cancers. Herein, we review the recent progress in exploring the inhibitors of small molecule menin-MLL1 interactions. The molecular mechanisms of these inhibitors' functions and their application prospects in the treatment of AL and cancers are explored.


Assuntos
Leucemia Mieloide Aguda , Leucemia , Humanos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Fatores de Transcrição/uso terapêutico , Doença Aguda
15.
Cancer Cell Int ; 23(1): 36, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841758

RESUMO

BACKGROUND: Mixed lineage leukemia 1-rearranged (MLL1-r) acute leukemia patients respond poorly to currently available treatments and there is a need to develop more effective therapies directly disrupting the Menin‒MLL1 complex. Small-molecule-mediated inhibition of the protein‒protein interaction between Menin and MLL1 fusion proteins is a potential therapeutic strategy for patients with MLL1-r or mutated-nucleophosmin 1 (NPM1c) acute leukemia. In this study, we preclinically evaluated the new compound DS-1594a and its salts. METHODS: We evaluated the preclinical efficacy of DS-1594a as well as DS-1594a·HCl (the HCl salt of DS-1594a) and DS-1594a·succinate (the succinic acid salt of DS-1594a, DS-1594b) in vitro and in vivo using acute myeloid leukemia (AML)/acute lymphoblastic leukemia (ALL) models. RESULTS: Our results showed that MLL1-r or NPM1c human leukemic cell lines were selectively and highly sensitive to DS-1594a·HCl, with 50% growth inhibition values < 30 nM. Compared with cytrabine, the standard chemotherapy drug as AML therapy, both DS-1594a·HCl and DS-1594a·succinate mediated the eradication of potential leukemia-initiating cells by enhancing differentiation and reducing serial colony-forming potential in MLL1-r AML cells in vitro. The results were confirmed by flow cytometry, RNA sequencing, RT‒qPCR and chromatin immunoprecipitation sequencing analyses. DS-1594a·HCl and DS-1594a·succinate exhibited significant antitumor efficacy and survival benefit in MOLM-13 cell and patient-derived xenograft models of MLL1-r or NPM1c acute leukemia in vivo. CONCLUSION: We have generated a novel, potent, orally available small-molecule inhibitor of the Menin-MLL1 interaction, DS-1594a. Our results suggest that DS-1594a has medicinal properties distinct from those of cytarabine and that DS-1594a has the potential to be a new anticancer therapy and support oral dosing regimen for clinical studies (NCT04752163).

16.
Cell Rep ; 41(11): 111829, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516779

RESUMO

Acquired chromosomal instability, especially copy number variations (CNVs), has been considered an important determinant of cancer progression and clinical survival. However, the functional role of aberrant CNV-induced lncRNAs in tumorigenesis remains unexplored. Here, we identify a CNV-induced MSC-antisense-transcript 1 (MAT1) lncRNA that plays an oncogenic role in promoting tumorigenesis of uveal melanoma in orthotopic and metastatic xenografts. In addition, our data suggest that MAT1 interrupts the interaction between the MLL1 complex and the PCDH20 promoter by forming an RNA-DNA triplex structure, subsequently abolishing H3K4 trimethylation and inactivating transcription of tumor suppressor PCDH20 to accelerate tumorigenesis. Our data show an intriguing insulation pattern of H3K4 histone modification in tumorigenesis mediated by a lncRNA, thereby providing an alternative mechanism for noncoding blockers in gene regulation.


Assuntos
RNA Longo não Codificante , Neoplasias Uveais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metilação , Histonas/metabolismo , Variações do Número de Cópias de DNA , Carcinogênese/genética , Neoplasias Uveais/patologia , Transformação Celular Neoplásica/genética , Instabilidade Cromossômica , Regulação Neoplásica da Expressão Gênica
17.
Antioxidants (Basel) ; 11(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36290729

RESUMO

Deoxynivalenol (DON), as a secondary metabolite of fungi, is continually detected in livestock feed and has a high risk to animals and humans. Moreover, pigs are very sensitive to DON. Recently, the role of histone modification has drawn people's attention; however, few studies have elucidated how histone modification participates in the cytotoxicity or genotoxicity induced by mycotoxins. In this study, we used intestinal porcine epithelial cells (IPEC-J2 cells) as a model to DON exposure in vitro. Mixed lineage leukemia 1 (MLL1) regulates gene expression by exerting the role of methyltransferase. Our studies demonstrated that H3K4me3 enrichment was enhanced and MLL1 was highly upregulated upon 1 µg/mL DON exposure in IPEC-J2 cells. We found that the silencing of MLL1 resulted in increasing the apoptosis rate, arresting the cell cycle, and activating the mitogen-activated protein kinases (MAPKs) pathway. An RNA-sequencing analysis proved that differentially expressed genes (DEGs) were enriched in the cell cycle, apoptosis, and tumor necrosis factor (TNF) signaling pathway between the knockdown of MLL1 and negative control groups, which were associated with cytotoxicity induced by DON. In summary, these current results might provide new insight into how MLL1 regulates cytotoxic effects induced by DON via an epigenetic mechanism.

18.
Proc Natl Acad Sci U S A ; 119(38): e2205691119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095189

RESUMO

The human Mixed Lineage Leukemia-1 (MLL1) complex methylates histone H3K4 to promote transcription and is stimulated by monoubiquitination of histone H2B. Recent structures of the MLL1-WRAD core complex, which comprises the MLL1 methyltransferase, WDR5, RbBp5, Ash2L, and DPY-30, have revealed variability in the docking of MLL1-WRAD on nucleosomes. In addition, portions of the Ash2L structure and the position of DPY30 remain ambiguous. We used an integrated approach combining cryoelectron microscopy (cryo-EM) and mass spectrometry cross-linking to determine a structure of the MLL1-WRAD complex bound to ubiquitinated nucleosomes. The resulting model contains the Ash2L intrinsically disordered region (IDR), SPRY insertion region, Sdc1-DPY30 interacting region (SDI-motif), and the DPY30 dimer. We also resolved three additional states of MLL1-WRAD lacking one or more subunits, which may reflect different steps in the assembly of MLL1-WRAD. The docking of subunits in all four states differs from structures of MLL1-WRAD bound to unmodified nucleosomes, suggesting that H2B-ubiquitin favors assembly of the active complex. Our results provide a more complete picture of MLL1-WRAD and the role of ubiquitin in promoting formation of the active methyltransferase complex.


Assuntos
Histona-Lisina N-Metiltransferase , Peptídeos e Proteínas de Sinalização Intracelular , Proteína de Leucina Linfoide-Mieloide , Nucleossomos , Ubiquitinação , Microscopia Crioeletrônica , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Nucleossomos/enzimologia , Ligação Proteica
19.
Biochim Biophys Acta Mol Cell Res ; 1869(11): 119332, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35940372

RESUMO

Ultraviolet (UV) light irradiation generates pyrimidine dimers on DNA, such as cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts. Such dimers distort the high-order DNA structure and prevent transcription and replication. The nucleotide excision repair (NER) system contributes to resolving this type of DNA lesion. There are two pathways that recognize pyrimidine dimers. One acts on transcribed strands of DNA (transcription-coupled NER), and the other acts on the whole genome (global genome-NER; GG-NER). In the latter case, DNA damage-binding protein 2 (DDB2) senses pyrimidine dimers with several histone modification enzymes. We previously reported that histone acetyltransferase binding to ORC1 (HBO1) interacts with DDB2 and facilitates recruitment of the imitation switch chromatin remodeler at UV-irradiated sites via an unknown methyltransferase. Here, we found that the phosphorylated histone methyltransferase mixed lineage leukemia 1 (MLL1) was maintained at UV-irradiated sites in an HBO1-dependent manner. Furthermore, MLL1 catalyzed histone H3K4 methylation and recruited the chromatin remodeler bromodomain adjacent to zinc finger domain 1A (BAZ1A)/ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1). Depletion of MLL1 suppressed BAZ1A accumulation at UV-irradiated sites and inhibited the removal of CPDs. These data indicate that the DDB2-HBO1-MLL1 axis is essential for the recruitment of BAZ1A to facilitate GG-NER.


Assuntos
Leucemia , Dímeros de Pirimidina , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo
20.
J Hematol Oncol ; 15(1): 41, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395864

RESUMO

BACKGROUND: Chromosome translocations involving mixed lineage leukemia 1 (MLL1) cause acute leukemia in most infants and 5-10% children/adults with dismal clinical outcomes. Most frequent MLL1-fusion partners AF4/AFF4, AF9/ENL and ELL, together with CDK9/cyclin-T1, constitute super elongation complexes (SEC), which promote aberrant gene transcription, oncogenesis and maintenance of MLL1-rearranged (MLL1-r) leukemia. Notably, ENL, but not its paralog AF9, is essential for MLL1-r leukemia (and several other cancers) and therefore a drug target. Moreover, recurrent ENL mutations are found in Wilms tumor, the most common pediatric kidney cancer, and play critical roles in oncogenesis. METHODS: Proteolysis-Targeting Chimera (PROTAC) molecules were designed and synthesized to degrade ENL. Biological activities of these compounds were characterized in cell and mouse models of MLL1-r leukemia and other cancers. RESULTS: Compound 1 efficiently degraded ENL with DC50 of 37 nM and almost depleted it at ~ 500 nM in blood and solid tumor cells. AF9 (as well as other proteins in SEC) was not significantly decreased. Compound 1-mediated ENL reduction significantly suppressed malignant gene signatures, selectively inhibited cell proliferation of MLL1-r leukemia and Myc-driven cancer cells with EC50s as low as 320 nM, and induced cell differentiation and apoptosis. It exhibited significant antitumor activity in a mouse model of MLL1-r leukemia. Compound 1 can also degrade a mutant ENL in Wilms tumor and suppress its mediated gene transcription. CONCLUSION: Compound 1 is a novel chemical probe for cellular and in vivo studies of ENL (including its oncogenic mutants) and a lead compound for further anticancer drug development.


Assuntos
Neoplasias Renais , Leucemia Mieloide Aguda , Tumor de Wilms , Animais , Humanos , Camundongos , Carcinogênese , Expressão Gênica , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteólise , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Tumor de Wilms/tratamento farmacológico , Tumor de Wilms/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...