Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.476
Filtrar
1.
Sci Rep ; 14(1): 15065, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956384

RESUMO

This study aimed to apply pathomics to predict Matrix metalloproteinase 9 (MMP9) expression in glioblastoma (GBM) and investigate the underlying molecular mechanisms associated with pathomics. Here, we included 127 GBM patients, 78 of whom were randomly allocated to the training and test cohorts for pathomics modeling. The prognostic significance of MMP9 was assessed using Kaplan-Meier and Cox regression analyses. PyRadiomics was used to extract the features of H&E-stained whole slide images. Feature selection was performed using the maximum relevance and minimum redundancy (mRMR) and recursive feature elimination (RFE) algorithms. Prediction models were created using support vector machines (SVM) and logistic regression (LR). The performance was assessed using ROC analysis, calibration curve assessment, and decision curve analysis. MMP9 expression was elevated in patients with GBM. This was an independent prognostic factor for GBM. Six features were selected for the pathomics model. The area under the curves (AUCs) of the training and test subsets were 0.828 and 0.808, respectively, for the SVM model and 0.778 and 0.754, respectively, for the LR model. The C-index and calibration plots exhibited effective estimation abilities. The pathomics score calculated using the SVM model was highly correlated with overall survival time. These findings indicate that MMP9 plays a crucial role in GBM development and prognosis. Our pathomics model demonstrated high efficacy for predicting MMP9 expression levels and prognosis of patients with GBM.


Assuntos
Glioblastoma , Aprendizado de Máquina , Metaloproteinase 9 da Matriz , Humanos , Glioblastoma/patologia , Glioblastoma/mortalidade , Glioblastoma/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Máquina de Vetores de Suporte , Adulto , Estimativa de Kaplan-Meier , Curva ROC , Biomarcadores Tumorais/metabolismo
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1209-1216, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38977352

RESUMO

OBJECTIVE: To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma (ESCC). METHODS: We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients. GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog, and TIMER online tool was used to analyze the correlations among TßR1, MMP-2, and MMP-9 in esophageal cancer. RESULTS: Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated. Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age, gender, or tumor differentiation. The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time. Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-ß signaling pathway, and the expressions of MMP-2/MMP-9 and TßR1 were positively correlated. In cultured ESCC cells, Nanog knockdown significantly decreased the expression of TßR1, p-Smad2/3, MMP-2, and MMP-9 and strongly inhibited cell migration. CONCLUSION: The high expressions of Nanog, MMP-2, and MMP-9, which are positively correlated, are closely related with invasion depth, lymph node metastasis, and prognosis of ESCC. Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-ß signaling pathway, and its high expression promotes migration of ESCC cells.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Metástase Linfática , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Proteína Homeobox Nanog , Invasividade Neoplásica , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Fator de Crescimento Transformador beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Prognóstico , Masculino , Feminino
3.
BMC Oral Health ; 24(1): 756, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951854

RESUMO

OBJECTIVE: Oral lichen planus carries a risk for malignancy. The pathogenesis of the disease is mediated by various inflammatory mediators. Several mediators could be responsible for the oncogenic behavior in certain cases. Hypoxia-inducible factor-1a (HIF-1), and its possible correlation to Galactin-3 (Gal-3) and matrix metalloproteinase-9 (MMP-9) over expression represents an important indicator for malignant transformation. The investigation of these factors may present evidence-based information on malignant transformation of the disease. SUBJECTS AND METHODS: The study investigated the expression of HIF-1, Gla-3 and MMP-9 in tissue samples of OLP compared to control subjects of un-inflamed gingival overgrowth. 20 biospecimen were allocated in each group. RESULTS: Immunohistochemical findings of OLP showed immunoreactivity for Galectin 3, HIF1a and MMP-9 by most of the epithelial cells. There was a positive correlation between HIF1α and MMP-9, r = 0.9301 (P-value < 0.00001). A positive correlation was detected between Galectin 3 and MMP-9, r = 0.7292 (P-value = 0.000264) between Galectin 3 and HIF1α, r = 0.5893 (P-value = 0.006252). CONCLUSION: These findings confirm the hypothesis that the adaptive pathways to hypoxia as Gal 3 and MMP-9 expressions and their HIF-1 may play a crucial role in carcinogenesis of OLP.


Assuntos
Galectina 3 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Líquen Plano Bucal , Metaloproteinase 9 da Matriz , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Líquen Plano Bucal/metabolismo , Líquen Plano Bucal/patologia , Galectina 3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Galectinas/metabolismo , Adulto , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Estudos de Casos e Controles , Imuno-Histoquímica , Proteínas Sanguíneas
4.
Neuropharmacology ; : 110054, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950691

RESUMO

Vasogenic brain edema, a potentially life-threatening consequence following an acute ischemic stroke, is a major clinical problem. This research aims to explore the therapeutic benefits of nimodipine, a calcium channel blocker, in mitigating vasogenic cerebral edema and preserving blood-brain barrier (BBB) function in an ischemic stroke rat model. In this research, animals underwent the induction of ischemic stroke via a 60-minute blockage of the middle cerebral artery and treated with a nonhypotensive dose of nimodipine (1 mg/kg/day) for a duration of five days. The wet/dry method was employed to identify cerebral edema, and the Evans blue dye extravasation technique was used to assess the permeability of the BBB. Furthermore, immunofluorescence staining was utilized to assess the protein expression levels of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). The study also examined mitochondrial function by evaluating mitochondrial swelling, succinate dehydrogenase (SDH) activity, the collapse of mitochondrial membrane potential (MMP), and the generation of reactive oxygen species (ROS). Post-stroke administration of nimodipine led to a significant decrease in cerebral edema and maintained the integrity of the BBB. The protective effects observed were associated with a reduction in cell apoptosis as well as decreased expression of MMP-9 and ICAM-1. Furthermore, nimodipine was observed to reduce mitochondrial swelling and ROS levels while simultaneously restoring MMP and SDH activity. These results suggest that nimodipine may reduce cerebral edema and BBB breakdown caused by ischemia/reperfusion. This effect is potentially mediated through the reduction of MMP-9 and ICAM-1 levels and the enhancement of mitochondrial function.

5.
Heliyon ; 10(12): e32592, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38952360

RESUMO

Background: Resveratrol is a natural phenolic compound widely found in plants. Previous studies have suggested its neuroprotective role in cerebral ischemia due to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. Intranasal administration of resveratrol enhances its capacity to penetrate the blood-brain barrier, increasing therapeutic efficacy and safety. Objective: We aimed to examine the therapeutic potential of intranasal administration of resveratrol treatment in rats exposed to cerebral ischemia. Methods: Sixty-four male rats were divided into three groups: the sham group, which was exposed to only surgical stress; the vehicle and resveratrol groups, which received intranasal vehicle or 50 mg/kg resveratrol for 7 days following middle cerebral artery occlusion, respectively. We assessed the modified neurologic severity scores, wire hanging tests, blood-brain barrier disruption, brain water content, and infarct volume. Levels of matrix metalloproteinase-9, nuclear factor-kappa B, B-cell lymphoma protein 2, and B-cell lymphoma protein 2-associated X messenger RNA expression were examined. Results: At 3- and 7-days post-ischemia, rats receiving intranasal resveratrol had lower modified neurological severity scores and a smaller brain infarct volume than the rats receiving vehicle. Additionally, the intranasal resveratrol-treated rats showed significantly prolonged wire-hanging performance at the 7-day mark post-ischemia compared to the vehicle group. The blood-brain barrier disruption and brain water content were significantly lower in the resveratrol group than in the vehicle group. Furthermore, the resveratrol-treated group displayed lower expression of Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B in contrast to the vehicle group, while the difference in expression levels of B-cell lymphoma protein 2-associated X and B-cell lymphoma protein 2 were not significant. Conclusion: Intranasal administration of resveratrol showed neuroprotective effects on ischemic stroke by improving neurobehavioral function, reducing blood-brain barrier disruption, cerebral edema, and infarct volume. This treatment also downregulated Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B expression, indicating its potential as a therapeutic option for ischemic stroke.

6.
Biomater Adv ; 163: 213937, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38968788

RESUMO

PURPOSE: In chronic hyperglycemia, the advanced glycation end product (AGE) interacts with its receptor (RAGE) and contributes to impaired wound healing by inducing oxidative stress, generating dysfunctional macrophages, and prolonging the inflammatory response. Additionally, uncontrolled levels of proteases, including metallomatrix protease-9 (MMP-9), in the diabetic wound bed degrade the extracellular matrix (ECM) and biological cues that augment healing. A multifunctional antimicrobial hydrogel (Immuno-gel) containing RAGE and MMP-9 inhibitors can regulate the wound microenvironment and promote scar-free healing. RESULTS: Immuno-gel was characterized and the wound healing efficacy was determined in vitro cell culture and in vivo diabetic Wistar rat wound model using ELISA, Western blot, and Immunofluorescence staining. The Immuno-gel exhibited a highly porous morphology with excellent in vitro cytocompatibility. AGE-stimulated macrophages treated with the Immuno-gel released higher levels of pro-healing cytokines in vitro. In the hydrogel-wound interface of diabetic Wistar rats, Immuno-gel treatment significantly reduced MMP-9 and NF-κB expression and enhanced pro-healing (M2) macrophage population and pro-healing cytokines. CONCLUSION: Altogether, this study suggests that Immuno-gel simultaneously attenuates macrophage dysfunction through the inhibition of AGE/RAGE signaling and reduces MMP-9 overexpression, both of which favor scar-free healing. The combinatorial treatment with RAGE and MMP-9 inhibitors via Immuno-gel simultaneously modulates the diabetic wound microenvironment, making it a promising novel treatment to accelerate diabetic wound healing.

7.
Sci Rep ; 14(1): 13899, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886354

RESUMO

The current investigation aims to study the embryonic dermis formed in the early stages of development and identify the initial interstitial components of the dermis that serve as biological and structural scaffolds for the development of the dermal tissue. To investigate the dermal structure, the current study used morphological and immunological techniques. TCs identified by TEM. They had a cell body and unique podomeres and podoms. They formed a 3D network spread throughout the dermis. Homocellular contact established between them, as well as heterocellular contacts with other cells. Immunohistochemical techniques using specific markers for TCss CD34, CD117, and VEGF confirmed TC identification. TCs represent the major interstitial component in the dermal tissue. They established a 3D network, enclosing other cells and structures. Expression of VEGF by TC promotes angiogenesis. TCs establish cellular contact with sprouting endothelial cells. At the site of cell junction with TCs, cytoskeletal filaments identified and observed to form the pseudopodium core that projects from endothelial cells. TCs had proteolytic properties that expressed MMP-9, CD68, and CD21. Proteolytic activity aids in the removal of components of the extracellular matrix and the phagocytosis of degraded remnants to create spaces to facilitate the development of new dermal structures. In conclusion, TCs organized the scaffold for the development of future dermal structures, including fibrous components and skin appendages. Studying dermal TCs would be interested in the possibility of developing therapeutic strategies for treating different skin disorders and diseases.


Assuntos
Derme , Imuno-Histoquímica , Telócitos , Telócitos/metabolismo , Telócitos/citologia , Derme/metabolismo , Derme/citologia , Humanos , Antígenos CD34/metabolismo , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos CD/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Molécula CD68
8.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891934

RESUMO

Despite the significant changes that unfold during the subacute phase of stroke, few studies have examined recovery abilities during this critical period. As neuroinflammation subsides and tissue degradation diminishes, the processes of neuroplasticity and angiogenesis intensify. An important factor in brain physiology and pathology, particularly neuroplasticity, is matrix metalloproteinase 9 (MMP-9). Its activity is modulated by tissue inhibitors of metalloproteinases (TIMPs), which impede substrate binding and activity by binding to its active sites. Notably, TIMP-1 specifically targets MMP-9 among other matrix metalloproteinases (MMPs). Our present study examines whether MMP-9 may play a beneficial role in psychological functions, particularly in alleviating depressive symptoms and enhancing specific cognitive domains, such as calculation. It appears that improvements in depressive symptoms during rehabilitation were notably linked with baseline MMP-9 plasma levels (r = -0.36, p = 0.025), and particularly so with the ratio of MMP-9 to TIMP-1, indicative of active MMP-9 (r = -0.42, p = 0.008). Furthermore, our findings support previous research demonstrating an inverse relationship between pre-rehabilitation MMP-9 serum levels and post-rehabilitation motor function. Crucially, our study emphasizes a positive correlation between cognition and motor function, highlighting the necessity of integrating both aspects into rehabilitation planning. These findings demonstrate the potential utility of MMP-9 as a prognostic biomarker for delineating recovery trajectories and guiding personalized treatment strategies for stroke patients during the subacute phase.


Assuntos
Metaloproteinase 9 da Matriz , Acidente Vascular Cerebral , Inibidor Tecidual de Metaloproteinase-1 , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/metabolismo , Humanos , Inibidor Tecidual de Metaloproteinase-1/sangue , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Masculino , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/sangue , Feminino , Estudos Prospectivos , Idoso , Recuperação de Função Fisiológica , Pessoa de Meia-Idade , Reabilitação do Acidente Vascular Cerebral , Biomarcadores/sangue
9.
Front Neurol ; 15: 1307319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836002

RESUMO

Background: Migraines affect one billion individuals globally, with a higher occurrence among young adults and women. A significant survey in the United States indicated that 17.1% of women and 5.6% of men suffer from migraines. This study seeks to investigate the potential connection between NLRP3 and MMP9 in migraine pathology. Methods: The research involved searching databases such as PubMed, Scopus, Science Direct, Google Scholar, and Proquest, with the search concluding on March 31, 2024. Following PRISMA guidelines, PICO data were collected, focusing exclusively on animal models induced by Nitroglycerine (10 mg/kg), while excluding clinical studies. Results: The study, originally registered in Prospero Reg. No. CRD42022355893, conducted bias analysis using SYRCLE's RoB tool and evaluated author consensus using GraphPad v9.5.1. Out of 7,359 search results, 22 papers met the inclusion criteria. Inter-rater reliability among reviewers was assessed using Cohen's kappa statistics. Conclusion: This review summarizes 22 preclinical studies on Nitroglycerin (NTG), NLRP3, MMP9, and related biomarkers in migraine. They reveal that NTG, especially at 10 mg/kg, consistently induces migraine-like symptoms in rodents by activating NLRP3 inflammasome and stimulating proinflammatory molecule production. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, CRD42022355893.

10.
Obstet Gynecol Sci ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862014

RESUMO

Objective: This study aimed to investigate the levels of chitinase-3-like protein-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), and monocyte chemoattractant protein-1 (MCP-1) in adenomyosis, as compared to normal myometrial tissue. These biomarkers may be useful for determining potential treatment targets. Methods: This was a correlative, analytical, and observational study with a cross-sectional design. Participants with a diagnosis of moderate-to-severe adenomyosis, as determined through transvaginal ultrasonography and histological examination, and who underwent laparotomy or laparoscopic surgery for the treatment of adenomyosis, were enrolled in the study. Unlike other studies that recruited healthy women as controls, our study used adenomyotic and healthy nonadenomyotic myometria obtained from the same individual. The levels of CHI3L1, MMP-9, and MCP-1 in the biopsy samples were determined using enzyme-linked immunoassay kits, according to the manufacturer's protocol. Results: A highly significant increase in the levels of CHI3L1, MMP-9, and MCP-1 was found in adenomyotic tissues compared to nonadenomyotic tissues (P<0.001). A significant positive correlation was found between CHI3L1 and MMP-9 levels (r=0.463; P=0.008), CHI3L1 and MCP-1 levels (r=0.594; P<0.001), and MCP-1 and MMP-9 levels (r=0.680; P<0.001) in adenomyotic tissues. Conclusion: CHI3L1 may play a role in the pathogenesis of adenomyosis via the regulation of the MCP-1 and MMP-9 pathways. Therefore, these molecules may serve as biomarkers and potential therapeutic targets for adenomyosis.

11.
Anal Chim Acta ; 1315: 342798, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879217

RESUMO

BACKGROUND: MMP-9 plays a crucial role in regulating the degradation of proteins within the extracellular matrix (ECM). This process closely correlates with the occurrence, development, invasion, and metastasis of various tumors, each exhibiting diverse levels of MMP-9 expression. However, the accuracy of detection results using the single-mode method is compromised due to the coexistence of multiple biologically active substances in the ECM. RESULTS: Therefore, in this study, a tri-modal detection system is proposed to obtain more accurate information by cross-verifying the results. Herein, we developed a tri-modal assay using the ZIF-8@Au NPs@S QDs composite as a multifunctional signal probe, decorated with DNA for the specific capture of MMP9. Notably, the probe demonstrated high conductivity, fluorescence response and mimicked enzyme catalytic activity. The capture segments of hybrid DNA specifically bind to MMP9 in the presence of MMP9, causing the signal probe to effortlessly detach the sensor interface onto the sample solution. Consequently, the sensor current performance is weakened, with the colorimetric and fluorescent signals becoming stronger with increasing MMP9 concentration. Notably, the detection range of the tri-modal sensor platform spans over 10 orders of magnitude, verifying notable observations of MMP-9 secretion in four tumor cell lines with chemotherapeutic drugs. Furthermore, the reliability of the detection results can be enhanced by employing pairwise comparative analysis. SIGNIFICANCE: This paper presents an effective strategy for detecting MMP9, which can be utilized for both the assessment of MMP-9 in cell lines and for analyzing the activity and mechanisms involved in various tumors.


Assuntos
Antineoplásicos , Colorimetria , Técnicas Eletroquímicas , Matriz Extracelular , Metaloproteinase 9 da Matriz , Estruturas Metalorgânicas , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/análise , Humanos , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Estruturas Metalorgânicas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Espectrometria de Fluorescência , Ouro/química , Técnicas Biossensoriais/métodos
12.
Front Oncol ; 14: 1371307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863623

RESUMO

Background: Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-ß1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-ß1 hastens the invasive outgrowth of TNBC cells at the molecular level. Methods: LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively. Results: Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-κB (NF-κB). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-ß activated kinase 1 (TAK1) were required for the activation of NF-κB through Iκß kinase kinase (IKKα/ß) phosphorylation. Conclusion: Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-ß1-TRAF4-TAK1-IKKα/ß-Iκßα-NF-κB-MMP9, is crucial for TNBC cell invasiveness.

13.
Pharmacol Res ; 206: 107285, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942342

RESUMO

Heart failure (HF) is the leading cause of morbidity and mortality in cardiovascular diseases, being responsible for many hospitalizations annually. HF is considered a public health problem with significant economic and social impact, which makes searches essential for strategies that improve the ability to predict and diagnose HF. In this way, biomarkers can help in risk stratification for a more personalized approach to patients with HF. Preclinical and clinical evidence shows the participation of matrix metalloproteinase 9 (MMP-9) in the HF process. In this review, we will demonstrate the critical role that MMP-9 plays in cardiac remodeling and dysfunction. We will also show its importance as a blood biomarker in acute and chronic HF patients.

14.
J Immunoassay Immunochem ; 45(4): 362-381, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38863179

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease indicated by joint inflammation and cartilage destruction. Matrix metalloproteinase (MMP) enzymes play an influential role in inflammation by affecting the invasion and degradation of anatomical barriers. In this way, the current study investigated the relationship between the MMP-9-1562C/T gene polymorphism and this enzyme's serum level in RA. METHODS: The serum levels of MMP-9 in RA patients and healthy controls were measured using the enzyme-linked immunosorbent assay (ELISA). RA was confirmed using rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP), and C-reactive protein (CRP). Then the MMP-9-1562C/T gene polymorphism was analyzed utilizing polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). Also, multivariate analysis investigated the connection between this polymorphism and the risk of RA. RESULTS: In this study, the increase of MMP-9 in patients due to the development of single nucleotide polymorphism in the promoter region of this gene (-1562 C→T) was confirmed by increasing the frequency of heterozygous genotype (CT). Logistic regression analysis also demonstrated that the chance of development of RA is higher in people with CT/CC genotype than in other alleles. CONCLUSIONS: We demonstrated that MMP-9-1562C/T gene polymorphism can play a significant role in the occurrence of RA.


Assuntos
Artrite Reumatoide , Metaloproteinase 9 da Matriz , Polimorfismo de Nucleotídeo Único , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/sangue , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Adulto
15.
J Agric Food Chem ; 72(26): 14678-14683, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38910321

RESUMO

Matrix metalloproteinase 9 (MMP9), an MMP isozyme, plays a crucial role in tumor progression by degrading basement membranes. It has therefore been proposed that the pharmacological inhibition of MMP9 expression or activity could inhibit tumor metastasis. We previously isolated two novel methoxylated flavones, casedulones A and B, from the leaves and/or roots of Casimiroa edulis La Llave and determined that these casedulones have antitumor activity that acts via the reduction of MMP9. Here, we examined how these casedulones suppress lipopolysaccharide (LPS)-induced MMP9 expression in human monocytic THP-1 cells. The casedulones suppressed the LPS-induced signal transducer and activator of transcription 3 (STAT3) pathway, which participates in MMP9 induction. In addition, AG490 and S3I-201, inhibitors of Janus kinase (JAK) and STAT3, suppressed LPS-mediated MMP9 induction, suggesting that the casedulones suppressed MMP9 induction through the inhibition of JAK/STAT3 pathways. Based on the findings that cycloheximide, an inhibitor of de novo protein synthesis, completely inhibited LPS-mediated MMP9 induction, the role of de novo proteins in MMP9 induction was further investigated. We found that the casedulones inhibited the induction of interleukin-6 (IL-6), a key inflammatory cytokine that participates in STAT3 activation. Moreover, tumor necrosis factor-α (TNFα)-mediated MMP9 induction was significantly suppressed in the presence of the casedulones. Taken together, these findings suggest that casedulones inhibit the IL-6/STAT3 and TNFα pathways, which all involve LPS-mediated MMP9 induction.


Assuntos
Flavonas , Janus Quinases , Metaloproteinase 9 da Matriz , Extratos Vegetais , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Necrose Tumoral alfa , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonas/farmacologia , Flavonas/química , Janus Quinases/metabolismo , Janus Quinases/genética , Transdução de Sinais/efeitos dos fármacos
16.
Biomedicine (Taipei) ; 14(2): 74-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939099

RESUMO

Background: Metastasis of breast cancer cells to distant sites including lungs, liver, lymph node, brain and many more have substantially affected the overall survival outcome and distant metastasis free survival rate amongst the diseased individuals. Several pre-clinical and clinical studies were carried out to determine the potency of vigorous inhibitors but they extensively deteriorated the patient's quality of life. Hence, there exists an urgent need to explore potent natural remedy to fight against metastatic breast cancer. Methods: Ayurvedic medicinal plants documented in literature for their ability to fight against breast cancer was screened and their respective active moieties were evaluated to exert inhibitory effect against MMP9. Drug like efficacy of phytochemicals were determined using Molecular docking, MD Simulation, ADMET and MM-PBSA and were further compared with synthetic analogs i.e. Doxycycline. Results: Out of 1000 phytochemicals, 12 exerted highest binding affinity (BA) even more than -9.0 kcal/mol that was significantly higher in comparison to Doxycycline which exhibited BA of -7.3 kcal/mol. In comparison to 37 × 30 × 37 Å, 53 × 45 × 66 Å offered best binding site and the highest BA was exhibited by Viscosalactone at LYS104, ASP185, MET338, LEU39, ASN38. During MD Simulation, Viscosalactone-MMP9 complex remained stable for 20 ns and the kinetic, electrostatic and potential energies were observed to be better than Doxycycline. Furthermore, Viscosalactone obtained from Withania somnifera justified the Lipinski's Rule of 5. Conclusion: Viscosalactone obtained from W. somnifera may act as promising drug candidate to fight against metastatic breast cancer.

17.
Biomed Pharmacother ; 177: 117033, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941889

RESUMO

Melanoma cells express high levels of CD73 that produce extracellular immunosuppressive adenosine. Changes in the CD73 expression occur in response to tumor environmental factors, contributing to tumor phenotype plasticity and therapeutic resistance. Previously, we have observed that CD73 expression can be up-regulated on the surface of melanoma cells in response to nutritional stress. Here, we explore the mechanism by which melanoma cells release soluble CD73 under low nutrient availability and whether this might be affected by agents targeting the proto-oncogene B-Raf (BRAF). We found that starved melanoma cells can release high levels of CD73, able to convert AMP into adenosine, and this activity is abrogated by selective CD73 inhibitors, APCP or PSB-12489. The release of CD73 from melanoma cells is mediated by the matrix metalloproteinase MMP-9. Indeed, MMP-9 inhibitors significantly reduce the levels of CD73 released from the cells, while its surface levels increase. Of relevance, melanoma cells, harboring an activating BRAF mutation, upon treatment with dabrafenib or vemurafenib, show a strong reduction of CD73 cell expression and reduced levels of CD73 released into the extracellular space. Conversely, melanoma cells resistant to dabrafenib show high expression of membrane-bound CD73 and soluble CD73 released into the culture medium. In summary, our data indicate that CD73 is released from melanoma cells. The expression of CD73 is associated with response to BRAF inhibitors. Melanoma cells developing resistance to dabrafenib show increased expression of CD73, including soluble CD73 released from cells, suggesting that CD73 is involved in acquiring resistance to treatment.

18.
Medicina (Kaunas) ; 60(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38929525

RESUMO

Background and Objectives: The rise in global diabetes cases, reaching a staggering 529 million in 2021 from 108 million in 1980, underscores the urgency of addressing its complications, notably macrovascular ones like coronary artery, cerebrovascular, and peripheral artery diseases, which contribute to over 50% of diabetes mortality. Atherosclerosis, linked to hyperglycemia-induced endothelial dysfunction, is pivotal in cardiovascular disease development. Cytokines, including pentraxin 3 (PTX3), copeptin, lipoprotein(a) [Lp(a)], and matrix metalloproteinase-9 (MMP-9), influence atherosclerosis progression and plaque vulnerability. Inhibiting atherosclerosis progression is crucial, especially in diabetic individuals. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs), increasingly used for type 2 diabetes, show promise in reducing the cardiovascular risk, sparking interest in their effects on atherogenesis. This study sought to examine the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on biomarkers that indicate the instability of atherosclerotic plaques. These biomarkers include pentraxin 3 (PTX3), copeptin (CPC), matrix metalloproteinase-9 (MMP-9), and lipoprotein(a) [Lp(a)]. Materials and Methods: A total of 34 participants, ranging in age from 41 to 81 years (with an average age of 61), who had been diagnosed with type 2 diabetes mellitus (with a median HbA1c level of 8.8%), dyslipidemia, and verified atherosclerosis using B-mode ultrasonography, were included in the study. All subjects were eligible to initiate treatment with a GLP-1 RA-dulaglutide. Results: Significant reductions in anthropometric parameters, blood pressure, fasting glucose levels, and HbA1c levels were observed posttreatment. Moreover, a notable decrease in biochemical markers associated with atherosclerotic plaque instability, particularly PTX3 and MMP-9 (p < 0.001), as well as Lp(a) (p < 0.05), was evident following the GLP-1 RA intervention. Conclusions: These findings underscore the potential of GLP-1 RAs in mitigating atherosclerosis progression and plaque vulnerability, thus enhancing cardiovascular outcomes in individuals with type 2 diabetes mellitus.


Assuntos
Biomarcadores , Proteína C-Reativa , Citocinas , Diabetes Mellitus Tipo 2 , Peptídeos Semelhantes ao Glucagon , Hipoglicemiantes , Metaloproteinase 9 da Matriz , Placa Aterosclerótica , Proteínas Recombinantes de Fusão , Componente Amiloide P Sérico , Humanos , Projetos Piloto , Biomarcadores/sangue , Pessoa de Meia-Idade , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Feminino , Placa Aterosclerótica/sangue , Placa Aterosclerótica/tratamento farmacológico , Proteína C-Reativa/análise , Componente Amiloide P Sérico/análise , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Peptídeos Semelhantes ao Glucagon/farmacologia , Metaloproteinase 9 da Matriz/sangue , Idoso , Citocinas/sangue , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Lipoproteína(a)/sangue , Glicopeptídeos , Fragmentos Fc das Imunoglobulinas
19.
Cell Commun Signal ; 22(1): 344, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937789

RESUMO

BACKGROUND: Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS: EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS: EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION: Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.


Assuntos
Vesículas Extracelulares , Proteínas de Ligação a RNA , Macrófagos Associados a Tumor , Peixe-Zebra , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Macrófagos Associados a Tumor/metabolismo , Células HCT116 , MicroRNAs/genética , MicroRNAs/metabolismo , Movimento Celular/genética , Macrófagos/metabolismo
20.
J Colloid Interface Sci ; 672: 266-278, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843679

RESUMO

Diabetic wound, which is chronic skin disease, poses a significant challenge in clinical practice because of persistent inflammation and impaired angiogenesis. Recently, hydrogen has emerged as a novel therapeutic agent due to its superior antioxidant and anti-inflammatory properties. In this study, we engineered a poly (lactic-co-glycolic acid) (PLGA) electrospun nanofibre membrane loaded with citric acid (CA) and iron (Fe) nanoparticles, referred to as Fe@PLGA + CA. Our in vitro assays demonstrated that the Fe@PLGA + CA membrane continuously generated and released hydrogen molecules via a chemical reaction between Fe and CA in an acidic microenvironment created by CA. We also discovered that hydrogen can ameliorate fibroblast migration disorders by reducing the levels of matrix metalloproteinase 9 (MMP9). Furthermore, we confirmed that hydrogen can scavenge or biochemically neutralise accumulated reactive oxygen species (ROS), inhibit pro-inflammatory responses, and induce anti-inflammatory reactions. This, in turn, promotes vessel formation, wound-healing and accelerates skin regeneration. These findings open new possibilities for using elemental iron in skin dressings and bring us one step closer to implementing hydrogen-releasing biomedical materials in clinical practice.


Assuntos
Hidrogênio , Nanofibras , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Cicatrização , Cicatrização/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanofibras/química , Hidrogênio/química , Hidrogênio/farmacologia , Animais , Ferro/química , Nanopartículas Metálicas/química , Membranas Artificiais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...