Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725862

RESUMO

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Mitocôndrias , Piroptose , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Camundongos Nus , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
2.
Front Oncol ; 13: 1227789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033505

RESUMO

Introduction: Osteosarcoma is a common bone malignant tumor in adolescents with high mortality and poor prognosis. At present, the progress of osteosarcoma and effective treatment strategies are not clear. This study provides a new potential target for the progression and treatment of osteosarcoma. Methods: The relationship between lncRNA PRR7-AS1 and osteosarcoma was analyzed using the osteosarcoma databases and clinical sample testing. Cell function assays and tumor lung metastasis were employed to study the effects of PRR7-AS1 on tumorigenesis in vivo and in vitro. Potential downstream RNF2 of PRR7-AS1 was identified and explored using RNA pulldown and RIP. The GTRD and KnockTF database were used to predict the downstream target gene, MTUS1, and ChIP-qPCR experiments were used to verify the working mechanismy. Rescue experiments were utilized to confirm the role of MTUS1 in the pathway. Results: Deep mining of osteosarcoma databases combined with clinical sample testing revealed a positive correlation between lncRNA PRR7-AS1 and osteosarcoma progression. Knockdown of PRR7-AS1 inhibited osteosarcoma cell proliferation and metastasis in vitro and in vivo. Mechanistically, RNA pulldown and RIP revealed that PRR7-AS1 may bind RNF2 to play a cancer-promoting role. ChIP-qPCR experiments were utilized to validate the working mechanism of the downstream target gene MTUS1. RNF2 inhibited the transcription of MTUS1 through histone H2A lysine 119 monoubiquitin. Rescue experiments confirmed MTUS1 as a downstream direct target of PRR7-AS1 and RNF2. Discussion: We identified lncRNA PRR7-AS1 as an important oncogene in osteosarcoma progression, indicating that it may be a potential target for diagnosis and prognosis of osteosarcoma.

3.
Diagnostics (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980447

RESUMO

INTRODUCTION: Microtubule-associated tumor suppressor 1 (MTUS1) is a novel tumor suppressor protein involved in cell proliferation, migration, and tumor growth. MTUS1 is thought to be downregulated in various human cancers and associated with poor prognosis. We evaluated the clinicopathologic significance and prognostic value of MTUS1 in colorectal adenocarcinoma. METHODS: Immunohistochemical staining for MTUS1 was performed on tissue microarrays of 393 colorectal adenocarcinoma cases, and MTUS1 staining was classified into high- and low-expression groups. Then, we investigated the correlations between MTUS1 protein expression and various clinicopathological parameters and patient survival. RESULTS: MTUS1 protein was expressed at various grade levels in the cytoplasm of tumor cells, which showed loss or decreased expression of MTUS1. A total of 253 cases (64.4%) were classified into the low MTUS1 protein expression group and 140 cases (35.6%) into the high MTUS1 expression group. A low level of MTUS1 protein significantly correlated with tumor size (p = 0.047), histological grade (p < 0.001), lymphovascular invasion (p < 0.001), perineural invasion (p = 0.047), and lymph node metastasis (p < 0.001). Survival analyses showed that patients with low MTUS1 protein expression had worse overall survival (p = 0.007, log-rank test) and worse recurrence-free survival (p = 0.019, log-rank test) than those with high MTUS1 expression. CONCLUSIONS: Low MTUS1 protein expression is associated with adverse clinicopathological characteristics and poor survival outcomes in patients with colorectal adenocarcinoma. These results suggest that MTUS1 functions as a tumor suppressor in colorectal adenocarcinoma and could be a potential prognostic biomarker.

4.
World J Surg Oncol ; 20(1): 257, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962436

RESUMO

BACKGROUND: The morbidity and mortality of colorectal cancer (CRC) remain high, posing a serious threat to human life and health. The early diagnosis and prognostic evaluation of CRC are two major challenges in clinical practice. MTUS1 is considered a tumour suppressor and can play an important role in inhibiting cell proliferation, migration, and tumour growth. Moreover, the expression of MTUS1 is decreased in different human cancers, including CRC. However, the biological functions and molecular mechanisms of MTUS1 in CRC remain unclear. METHODS: In the present study, data from The Cancer Genome Atlas (TCGA) database were analysed using R statistical software (version 3.6.3.) to evaluate the expression of MTUS1 in tumour tissues and adjacent normal tissues using public databases such as the TIMER and Oncomine databases. Then, 38 clinical samples were collected, and qPCR was performed to verify MTUS1 expression. We also investigated the relationship between MTUS1 expression and clinicopathological characteristics and elucidated the diagnostic and prognostic value of MTUS1 in CRC. In addition, the correlation between MTUS1 expression and immune infiltration levels was identified using the TIMER and GEPIA databases. Furthermore, we constructed and analysed a PPI network and coexpression modules of MTUS1 to explore its molecular functions and mechanisms. RESULTS: CRC tissues exhibited lower levels of MTUS1 than normal tissues. The logistic regression analysis indicated that the expression of MTUS1 was associated with N stage, TNM stage, and neoplasm type. Moreover, CRC patients with low MTUS1 expression had poor overall survival (OS). Multivariate analysis revealed that the downregulation of MTUS1 was an independent prognostic factor and was correlated with poor OS in CRC patients. MTUS1 expression had good diagnostic value based on ROC analysis. Furthermore, we identified a group of potential MTUS1-interacting proteins and coexpressed genes. GO and KEGG enrichment analyses showed that MTUS1 was involved in multiple cancer-related signalling pathways. Moreover, the expression of MTUS1 was significantly related to the infiltration levels of multiple cells. Finally, MTUS1 expression was strongly correlated with various immune marker sets. CONCLUSIONS: Our results indicated that MTUS1 is a promising biomarker for predicting the diagnosis and prognosis of CRC patients. MTUS1 can also become a new molecular target for tumour immunotherapy.


Assuntos
Neoplasias Colorretais , Proliferação de Células , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Regulação para Baixo , Humanos , Prognóstico , Proteínas Supressoras de Tumor/genética
5.
Diagnostics (Basel) ; 11(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34359333

RESUMO

Microtubule-associated tumor suppressor 1 (MTUS1) is thought to be downregulated in arious human cancers, which suggests its role as a tumor suppressor. This study investigated the clinicopathological significance of MTUS1 expression in lung adenocarcinoma. Tissue microarray blocks consisting of 161 cases were constructed, and immunohistochemical staining was used to assess MTUS1 expression. Correlations of MTUS1 expression and clinicopathological parameters were analyzed. In addition, we used public databases and performed bioinformatics analysis. Low level of MTUS1 was significantly associated with higher clinical stage (p = 0.006), higher tumor stage (p = 0.044), lymph node metastasis (p = 0.01), worse histologic grade (p = 0.007), lymphovascular invasion (p = 0.014), and higher Ki-67 proliferation index (p < 0.001). Patients with low MTUS1 expression also showed shorter disease-free survival (p = 0.002) and cancer-specific survival (p = 0.006). Analysis of data from the Cancer Genome Atlas confirmed that the mRNA expression of MTUS1 in lung adenocarcinoma was significantly lower than that of normal lung tissue (p = 0.02), and patients with decreased MTUS1 expression showed significantly shorter overall survival (p = 0.008). These results suggest that MTUS1 may be a potential biomarker for predicting clinical outcomes in lung adenocarcinoma patients.

6.
Cells ; 10(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062782

RESUMO

Breast cancer is the leading cause of death by malignancy among women worldwide. Clinical data and molecular characteristics of breast tumors are essential to guide clinician's therapeutic decisions. In the new era of precision medicine, that aims at personalizing the treatment for each patient, there is urgent need to identify robust companion biomarkers for new targeted therapies. This review focuses on ATIP3, a potent anti-cancer protein encoded by candidate tumor suppressor gene MTUS1, whose expression levels are markedly down-regulated in breast cancer. ATIP3 is a microtubule-associated protein identified both as a prognostic biomarker of patient survival and a predictive biomarker of breast tumors response to taxane-based chemotherapy. We present here recent studies pointing out ATIP3 as an emerging anti-cancer protein and a potential companion biomarker to be combined with future personalized therapy against ATIP3-deficient breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Microtúbulos/metabolismo , Medicina de Precisão/métodos , Proteínas Supressoras de Tumor/genética , Animais , Antineoplásicos/farmacologia , Biomarcadores , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Prognóstico , Taxoides/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809019

RESUMO

Glioblastoma (GBM) is a highly aggressive brain tumor. Resistance mechanisms in GBM present an array of challenges to understand its biology and to develop novel therapeutic strategies. We investigated the role of a TSG, MTUS1/ATIP1 in glioma. Glioma specimen, cells and low passage GBM sphere cultures (GSC) were analyzed for MTUS1/ATIP1 expression at the RNA and protein level. Methylation analyses were done by bisulfite sequencing (BSS). The consequence of chemotherapy and irradiation on ATIP1 expression and the influence of different cellular ATIP1 levels on survival was examined in vitro and in vivo. MTUS1/ATIP1 was downregulated in high-grade glioma (HGG), GSC and GBM cells and hypermethylation at the ATIP1 promoter region seems to be at least partially responsible for this downregulation. ATIP1 overexpression significantly reduced glioma progression by mitigating cell motility, proliferation and facilitate cell death. In glioma-bearing mice, elevated MTUS1/ATIP1 expression prolonged their survival. Chemotherapy, as well as irradiation, recovered ATIP1 expression both in vitro and in vivo. Surprisingly, ATIP1 overexpression increased irradiation-induced DNA-damage repair, resulting in radio-resistance. Our findings indicate that MTUS1/ATIP1 serves as TSG-regulating gliomagenesis, progression and therapy resistance. In HGG, higher MTUS1/ATIP1 expression might interfere with tumor irradiation therapy.

8.
Cell Mol Life Sci ; 78(4): 1765-1779, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32789689

RESUMO

Maintaining the integrity of the mitotic spindle in metaphase is essential to ensure normal cell division. We show here that depletion of microtubule-associated protein ATIP3 reduces metaphase spindle length. Mass spectrometry analyses identified the microtubule minus-end depolymerizing kinesin Kif2A as an ATIP3 binding protein. We show that ATIP3 controls metaphase spindle length by interacting with Kif2A and its partner Dda3 in an Aurora kinase A-dependent manner. In the absence of ATIP3, Kif2A and Dda3 accumulate at spindle poles, which is consistent with reduced poleward microtubule flux and shortening of the spindle. ATIP3 silencing also limits Aurora A localization to the poles. Transfection of GFP-Aurora A, but not kinase-dead mutant, rescues the phenotype, indicating that ATIP3 maintains Aurora A activity on the poles to control Kif2A targeting and spindle size. Collectively, these data emphasize the pivotal role of Aurora kinase A and its mutual regulation with ATIP3 in controlling spindle length.


Assuntos
Aurora Quinase A/genética , Cinesinas/genética , Fosfoproteínas/genética , Fuso Acromático/genética , Proteínas Supressoras de Tumor/genética , Células HeLa , Humanos , Metáfase , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mitose/genética
9.
Anticancer Res ; 40(5): 2961-2967, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366449

RESUMO

BACKGROUND/AIM: Microtubule-associated tumor suppressor 1 (MTUS1) is a novel tumor suppressor involved in proliferation and migration, and down-regulation of MTUS1 is associated with the poor prognosis of several cancers. We evaluated the clinicopathological significance of MTUS1 expression in renal cell carcinoma (RCC). PATIENTS AND METHODS: We assessed MTUS1 expression by immunohistochemical staining of tissue microarrays from 249 cases of RCC. We analyzed the correlation of MTUS1 expression and clinicopathological characteristics. Additionally, we used public databases and performed bioinformatics analysis. RESULTS: We investigated The Cancer Genome Atlas databases and identified that MTUS1 mRNA expression was significantly lower in RCC tissues than in normal tissues. Loss of MTUS1 expression was correlated with high WHO/ISUP nuclear grade, lymphovascular invasion, renal vein thrombus, and high pT stage in patients with RCC. Although there was no statistically significant correlation between MTUS1 expression and patients' prognosis in our cohort, MTUS1 overexpression was significantly correlated with a favorable prognosis in public data. CONCLUSION: Loss of MTUS1 expression in RCC might be a potential biomarker for predicting clinical outcome.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Proteínas Supressoras de Tumor/metabolismo , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/patologia , Masculino , Prognóstico
10.
Mol Cell Oncol ; 7(2): 1709390, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158924

RESUMO

Aneuploidy, an abnormal chromosome number, is a hallmark of cancer. We recently showed that depletion of microtubule-associated protein ATIP3 (AT2 receptor-interacting protein 3) induces aneuploidy and sensitizes breast cancer cells to taxanes. Combining taxane treatment with ATIP3 depletion cooperates to reach a detrimental level of aneuploidy.

11.
In Vivo ; 34(1): 125-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31882471

RESUMO

BACKGROUND/AIM: Microtubule-associated scaffold protein 1 (MTUS1) acts as tumor suppressor in several cancer types. This study assessed the relationship between clinicopathological characteristics and expression of microRNA candidates based on MTUS1 expression in gallbladder cancer (GBC). MATERIALS AND METHODS: MTUS1 expression was evaluated by immunohistochemical staining of tissue microarrays from 109 cases of GBC. The association of MTUS1 expression with clinicopathological factors was explored. Two microRNA candidates (miR-19a-3p, and miR-19b-3p), which were identified by a literature review and computational analysis, were assessed in GBC tissue samples by quantitative real-time polymerase chain reaction. RESULTS: Low MTUS1 expression in GBC was associated with high histological grade, perineural invasion, lymphovascular invasion, high T-stage, advanced TNM stage, poorer disease-free survival, and poorer cancer-specific survival. No statistical association between MTUS1 expression and expression of microRNA candidates was observed. CONCLUSION: MTUS1 may act as tumor suppressor and might be a potential biomarker for predicting prognosis in GBC.


Assuntos
Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Supressoras de Tumor/genética , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Estadiamento de Neoplasias/métodos , Prognóstico
12.
Proc Natl Acad Sci U S A ; 116(47): 23691-23697, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685623

RESUMO

Predictive biomarkers for tumor response to neoadjuvant chemotherapy are needed in breast cancer. This study investigates the predictive value of 280 genes encoding proteins that regulate microtubule assembly and function. By analyzing 3 independent multicenter randomized cohorts of breast cancer patients, we identified 17 genes that are differentially regulated in tumors achieving pathological complete response (pCR) to neoadjuvant chemotherapy. We focused on the MTUS1 gene, whose major product, ATIP3, is a microtubule-associated protein down-regulated in aggressive breast tumors. We show here that low levels of ATIP3 are associated with an increased pCR rate, pointing to ATIP3 as a predictive biomarker of breast tumor chemosensitivity. Using preclinical models of patient-derived xenografts and 3-dimensional models of breast cancer cell lines, we show that low ATIP3 levels sensitize tumors to the effects of taxanes but not DNA-damaging agents. ATIP3 silencing improves the proapoptotic effects of paclitaxel and induces mitotic abnormalities, including centrosome amplification and multipolar spindle formation, which results in chromosome missegregation leading to aneuploidy. As shown by time-lapse video microscopy, ATIP3 depletion exacerbates cytokinesis failure and mitotic death induced by low doses of paclitaxel. Our results favor a mechanism by which the combination of ATIP3 deficiency and paclitaxel treatment induces excessive aneuploidy, which in turn results in elevated cell death. Together, these studies highlight ATIP3 as an important regulator of mitotic integrity and a useful predictive biomarker for a population of chemoresistant breast cancer patients.


Assuntos
Aneuploidia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Neoplasias/fisiologia , Paclitaxel/farmacologia , Proteínas Supressoras de Tumor/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citocinese/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/fisiologia , Estudos Multicêntricos como Assunto/estatística & dados numéricos , Terapia Neoadjuvante , Invasividade Neoplásica/genética , Transplante de Neoplasias , Interferência de RNA , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura , Taxoides/farmacologia , Imagem com Lapso de Tempo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética
13.
Front Pediatr ; 7: 247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338350

RESUMO

Background: The MTUS1 gene encodes a microtubule-associated protein involved in multiple processes including cell polarity and microtubule balance during myocardial development. Aims: To investigate the association between a de novo c. 2617A->C mutation in MTUS1 (NM_001001924.2) and non-compaction of ventricular myocardium (NVM) and explore the potential mechanisms. Methods: A de novo mutation in MTUS1 was identified for a familial pedigree with NVM. Lentiviral vectors containing MTUS1 wild type or the mutation MTUS1 were constructed and co-infected into HEK-293 cells. MTUS1, Rac1/Cdc42, α-tubulin, α/ß-tubulin, polarity protein (PAR6), and the morphology of daughter cells were measured by real-time PCR, Western blot, and immunofluorescence assays, respectively. Results: The lentiviral vectors were constructed successfully. Immunofluorescence assays revealed the fluorescence intensity of α-tubulin to be decreased and α/ß-tubulin to be increased in the mutation MTUS1 group. The fluorescence intensity of PAR6 was higher and morphology of the daughter cells in the mutation group was different from the wild type group. The phosphorylation of Rac1/Cdc42 in the mutation group was significantly lower than in the wild type group. Conclusions: A de novo mutation in MTUS1 decreased the stability of microtubules and increased cell polarity via the Rac1/Cdc42 pathway, which may partly elucidate the mechanism underlying cellular protection in NVM.

14.
Breast Cancer Res Treat ; 173(3): 573-583, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30368744

RESUMO

PURPOSE: The identification of molecular biomarkers for classification of breast cancer is needed to better stratify the patients and guide therapeutic decisions. The aim of this study was to investigate the value of MAPRE1 gene encoding microtubule-end binding proteins EB1 as a biomarker in breast cancer and evaluate whether combinatorial expression of MAPRE1 and MTUS1 gene encoding EB1-negative regulator ATIP3 may improve breast cancer diagnosis and prognosis. METHODS: Probeset intensities for MAPRE1 and MTUS1 genes were retrieved from Exonhit splice array analyses of 45 benign and 120 malignant breast tumors for diagnostic purposes. Transcriptomic analyses (U133 Affymetrix array) of one exploratory cohort of 150 invasive breast cancer patients and two independent series of 130 and 155 samples were compared with clinical data of the patients for prognostic studies. A tissue microarray from an independent cohort of 212 invasive breast tumors was immunostained with anti-EB1 and anti-ATIP3 antibodies. RESULTS: We show that MAPRE1 gene is a diagnostic and prognostic biomarker in breast cancer. High MAPRE1 levels correlate with tumor malignancy, high histological grade and poor clinical outcome. Combination of high-MAPRE1 and low-MTUS1 levels in tumors is significantly associated with tumor aggressiveness and reduced patient survival. IHC studies of combined EB1/ATIP3 protein expression confirmed these results. CONCLUSIONS: These studies emphasize the importance of studying combinatorial expression of EB1 and ATIP3 genes and proteins rather than each biomarker alone. A population of highly aggressive breast tumors expressing high-EB1/low-ATIP3 may be considered for the development of new molecular therapies.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Gradação de Tumores , Prognóstico , Recidiva , Análise de Sobrevida
15.
Asian-Australas J Anim Sci ; 31(8): 1176-1182, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29642667

RESUMO

OBJECTIVE: Progesterone receptor (PGR) and AT-rich interactive domain 1A (ARID1A) have important roles in the establishment and maintenance of pregnancy in the uterus. In present studies, we examined the expression of mitochondrial tumor suppressor 1 (MTUS1) in the murine uterus during early pregnancy as well as in response to ovarian steroid hormone treatment. METHODS: We performed quantitative reverse transcription polymerase chain reaction and immunohistochemistry analysis to investigate the regulation of MTUS1 by ARID1A and determined expression patterns of MTUS1 in the uterus during early pregnancy. RESULTS: The expression of MTUS1 was detected on day 0.5 of gestation (GD 0.5) and then gradually increased until GD 3.5 in the luminal and glandular epithelium. However, the expression of MTUS1 was significantly reduced in the uterine epithelial cells of Pgrcre/+Arid1af/f and Pgr knockout (PRKO) mice at GD 3.5. Furthermore, MTUS1 expression was remarkably induced after P4 treatment in the luminal and glandular epithelium of the wild-type mice. However, the induction of MTUS1 expression was not detected in uteri of Pgrcre/+Arid1af/f or PRKO mice treated with P4. CONCLUSION: These results suggest that MTUS1 is a novel target gene by ARID1A and PGR in the uterine epithelial cells.

16.
FASEB J ; 32(8): 4504-4518, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29558204

RESUMO

Mitochondria are dynamic organelles that are able to change their morphology and cellular distribution by either fission or fusion. However, the molecular mechanisms controlling mitochondrial dynamics in vascular endothelial cells (ECs) remain largely unknown. In this study, we observed that knockdown of microtubule-associated tumor suppressor 1 (MTUS1) in ECs inhibited tube formation and migration, accompanied with decreased promigratory signalings. We showed that MTUS1 was localized in the outer membrane of mitochondria in ECs. Knockdown of MTUS1 disturbed the elongated mitochondrial network and induced the formation of perinuclear clusters of mitochondria. Importantly, mitochondrial motility and fusion were suppressed, whereas generation of reactive oxygen species was increased in MTUS1 knockdown ECs. Mechanistically, we showed that the N-terminal coiled-coil domain of MTUS1 interacted with the mitochondrial membrane proteins, mitofusin-1 and mitofusin-2, to maintain mitochondrial morphology in ECs. This study illustrated a novel role of MTUS1 in mitochondrial morphology and EC angiogenic responses.-Wang, Y., Huang, Y., Liu, Y., Li, J., Hao, Y., Yin, P., Liu, Z., Chen, J., Wang, Y., Wang, N., Zhang, P. Microtubule associated tumor suppressor 1 interacts with mitofusins to regulate mitochondrial morphology in endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
17.
Gene ; 626: 54-63, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28499941

RESUMO

Loss of tumor suppressor activity is a frequent event in the formation and progression of tumors and has been listed as an important hallmark of cancers. Microtubule-Associated Scaffold Protein 1 (MTUS1) is a candidate tumor suppressor gene which is reported to be frequently down-regulated in a variety of human cancers including pancreas, colon, bladder, head-and-neck, ovarian, breast cancers, gastric, lung cancers. It is also reported to be implicated in several types of pathologies such as cardiac hypertrophy, atherosclerosis, and SLE-like lymphoproliferative diseases. Moreover, MTUS1-encoded proteins are shown to be involved in the regulation of vital cellular processes such as proliferation, differentiation, DNA repair, inflammation, vascular remodeling and senescence. However, the current knowledge is very limited about the role of this gene in human cancers as well as other type diseases. Besides, there is no literature report which summarizes and criticizes the importance of MTUS1 in the cellular processes, especially in the processes of carcinogenesis. Accordingly, in this comprehensive review, we tried to shed light on the role of tumor suppressor MTUS1/ATIP in health and disease, putting special emphasis on its role in the development and progression of human cancers as well as associated molecular mechanisms and the reasons behind MTUS1/ATIP deficiency, which have been not well documented previously.


Assuntos
Carcinogênese/genética , Cardiomegalia/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Cardiomegalia/genética , Humanos , Transporte Proteico , Transdução de Sinais , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
18.
Protein Cell ; 8(6): 455-466, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28364280

RESUMO

MTUS1 (microtubule-associated tumor suppressor 1) has been identified that can function as a tumor suppressor gene in many malignant tumors. However, the function and mechanisms underlying the regulation of MTUS1 are unclear. In the present study, we reported that miR-19a and miR-19b (miR-19a/b) promote proliferation and migration of lung cancer cells by targeting MTUS1. First, MTUS1 was proved to function as a tumor suppressor in lung cancer and was linked to cell proliferation and migration promotion. Second, an inverse correlation between miR-19a/b expression and MTUS1 mRNA/protein expression was noted in human lung cancer tissues. Third, MTUS1 was appraised as a direct target of miR-19a/b by bioinformatics analysis. Fourth, direct MTUS1 regulation by miR-19a/b in lung cancer cells was experimentally affirmed by cell transfection assay and luciferase reporter assay. Finally, miR-19a/b were shown to cooperatively repress MTUS1 expression and synergistically regulate MTUS1 expression to promote lung cancer cell proliferation and migration. In conclusion, our findings have provided the first clues regarding the roles of miR-19a/b, which appear to function as oncomirs in lung cancer by downregulating MTUS1.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , RNA Neoplásico/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Células A549 , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/genética , RNA Neoplásico/genética , Proteínas Supressoras de Tumor/genética
19.
Protein & Cell ; (12): 455-466, 2017.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-756996

RESUMO

MTUS1 (microtubule-associated tumor suppressor 1) has been identified that can function as a tumor suppressor gene in many malignant tumors. However, the function and mechanisms underlying the regulation of MTUS1 are unclear. In the present study, we reported that miR-19a and miR-19b (miR-19a/b) promote proliferation and migration of lung cancer cells by targeting MTUS1. First, MTUS1 was proved to function as a tumor suppressor in lung cancer and was linked to cell proliferation and migration promotion. Second, an inverse correlation between miR-19a/b expression and MTUS1 mRNA/protein expression was noted in human lung cancer tissues. Third, MTUS1 was appraised as a direct target of miR-19a/b by bioinformatics analysis. Fourth, direct MTUS1 regulation by miR-19a/b in lung cancer cells was experimentally affirmed by cell transfection assay and luciferase reporter assay. Finally, miR-19a/b were shown to cooperatively repress MTUS1 expression and synergistically regulate MTUS1 expression to promote lung cancer cell proliferation and migration. In conclusion, our findings have provided the first clues regarding the roles of miR-19a/b, which appear to function as oncomirs in lung cancer by downregulating MTUS1.


Assuntos
Feminino , Humanos , Masculino , Células A549 , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Genética , Metabolismo , Patologia , MicroRNAs , Genética , Metabolismo , RNA Neoplásico , Genética , Metabolismo , Proteínas Supressoras de Tumor , Genética
20.
J Mol Cell Cardiol ; 101: 1-10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27789289

RESUMO

BACKGROUND: Endothelial cell activation is thought to be a key event in atherosclerosis. p38 mitogen-activated protein kinase (p38 MAPK) plays an important role in regulating pro-inflammatory cytokine production in endothelial cells (ECs), however, how p38 MAPK is controlled in EC activation remain unclear. In this study, we investigated the effect of mitochondrial tumor suppressor 1 (MTUS1) on p38 MAPK activation, cytokine induction and the underlying molecular mechanisms in ECs. METHODS AND RESULTS: Using qPCR and ELISA methods, we found that knockdown of MTUS1 led to a marked increase in the mRNA and protein expression of E-selectin (SELE) and monocyte chemotactic protein-1 in ECs, which is accompanied with increased phosphorylation of p38 MAPK (Thr180/Tyr182), MKK3/6 (Ser 189) and IκBα (Ser 32). Using luciferase reporter assay, we found that MTUS1 silencing also activated NF-κB transcriptional activity. The inhibition of p38 MAPK and NF-κB pathway was shown to abrogate MTUS1 silencing-induced cytokine expression in ECs. Furthermore, MTUS1 silencing induced p38 MAPK-dependent ubiquitination of cAMP-response element binding protein (CREB) which potentiated CREB-binding protein-mediated NF-κB p65 acetylation and binding to the promoter of the SELE gene. Conversely, adenovirus-mediated overexpression of MTUS1 inhibited p38 MAPK activation in ECs in vitro and in vivo. Importantly, decreased expression of MTUS1 and CREB, accompanied with induced activation of p38 MAPK were observed in aortas of apoE-/- mice after high-fat diet challenge. CONCLUSIONS: Our findings showed that MTUS1 regulates the p38 MAPK-mediated cytokine production in ECs. MTUS1 gene probably plays a protective role against pro-inflammatory response of ECs.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Selectina E/biossíntese , Células Endoteliais/metabolismo , Inativação Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apolipoproteínas E/deficiência , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...