Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biol Proced Online ; 26(1): 13, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750435

RESUMO

BACKGROUND: Pseudomyxoma peritonei (PMP) is a rare peritoneal mucinous carcinomatosis with largely unknown underlying molecular mechanisms. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is the only therapeutic option; however, despite its use, recurrence with a fatal outcome is common. The lack of molecular characterisation of PMP and other mucinous tumours is mainly due to the physicochemical properties of mucin. RESULTS: This manuscript describes the first protocol capable of breaking the mucin barrier and isolating proteins from mucinous tumours. Briefly, mucinous tumour samples were homogenised and subjected to liquid chromatography using two specific columns to reduce mainly glycoproteins, albumins and immunoglobulin G. The protein fractions were then subjected to mass spectrometry analysis and the proteomic profile obtained was analysed using various bioinformatic tools. Thus, we present here the first proteome analysed in PMP and identified a distinct mucin isoform profile in soft compared to hard mucin tumour tissues as well as key biological processes/pathways altered in mucinous tumours. Importantly, this protocol also allowed us to identify MUC13 as a potential tumour cell marker in PMP. CONCLUSIONS: In sum, our results demonstrate that this protein isolation protocol from mucin will have a high impact, allowing the oncology research community to more rapidly advance in the knowledge of PMP and other mucinous neoplasms, as well as develop new and effective therapeutic strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38498072

RESUMO

There has been a surge of interest in recent years in understanding the intricate mechanisms underlying cancer progression and treatment resistance. One molecule that has recently emerged in these mechanisms is MUC13 mucin, a transmembrane glycoprotein. Researchers have begun to unravel the molecular complexity of MUC13 and its impact on cancer biology. Studies have shown that MUC13 overexpression can disrupt normal cellular polarity, leading to the acquisition of malignant traits. Furthermore, MUC13 has been associated with increased cancer plasticity, allowing cells to undergo epithelial-mesenchymal transition (EMT) and metastasize. Notably, MUC13 has also been implicated in the development of chemoresistance, rendering cancer cells less responsive to traditional treatment options. Understanding the precise role of MUC13 in cellular plasticity, and chemoresistance could pave the way for the development of targeted therapies to combat cancer progression and enhance treatment efficacy.

3.
Dig Liver Dis ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38369410

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. Extensive research is currently directed at identifying novel targets for its diagnosis and treatment. AIMS: We investigated the biological functions and clinical significance of mucin-type N-acetylglucosaminyltransferase 3 (GCNT3) in HCC. METHODS: Variations in the mRNA expression of GCNT3 were examined in normal and HCC tissues. Cell function assays and animal models characterized the effects of GCNT3 on the proliferation, invasion, and migration abilities of HCC cells. Western blot and immunofluorescence analyses were performed to explore further the specific mechanisms whereby GCNT3 affects HCC progression. RESULTS: There is a strong correlation between GCNT3 overexpression and tumor formation and metastasis in vivo and in vitro. GCNT3 acted as a regulator of the synthesis of mucin-type O-glycans by interacting with mucin 13 (MUC13) to regulate its expression levels, activating the GSK3ß/ß-catenin signaling pathway. The activation of GSK3ß/ß-catenin signaling by GCNT3 was mitigated by MUC13 knockdown. In clinical HCC specimens, GCNT3 expression was upregulated in HCC tissues compared to non-tumor tissues. Further, there was a significant correlation between high GCNT3 expression and poor patient survival. CONCLUSIONS: GCNT3 regulated tumor progression in HCC through the MUC13/GSK3-ß/ß-catenin signaling pathway.

4.
Cell Mol Gastroenterol Hepatol ; 16(6): 985-1009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37660948

RESUMO

BACKGROUND & AIMS: MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action. METHODS: Muc13-/- and wild-type littermate mice were gavaged with 2 isogenic strains of S Tm after pre-conditioning with streptomycin. We assessed clinical parameters, cecal histology, local and systemic bacterial load, and proinflammatory cytokines after infection. Cecal enteroids and epithelial cell lines were used to evaluate the mechanism of MUC13 activity after infection. The interaction between bacterial SiiE and MUC13 was assessed by using siiE-deficient Salmonella. RESULTS: S Tm-infected Muc13-/- mice had increased disease activity, histologic damage, and higher local and systemic bacterial loads. Mechanistically, we found that S Tm binds to MUC13 through its giant SiiE adhesin and that MUC13 acts as a pathogen-binding decoy shed from the epithelial cell surface after pathogen engagement, limiting bacterial invasion. In addition, MUC13 reduces epithelial cell death and intestinal barrier breakdown by enhancing nuclear factor kappa B signaling during infection, independent of its decoy function. CONCLUSIONS: We show for the first time that MUC13 plays a critical role in antimicrobial defense against pathogenic S Tm at the intestinal mucosal surface by both acting as a releasable decoy limiting bacterial invasion and reducing pathogen-induced cell death. This further implicates the cell surface mucin family in mucosal defense from bacterial infection.


Assuntos
Infecções Bacterianas , Mucinas , Animais , Camundongos , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/patologia , Mucinas/metabolismo , Salmonella typhimurium/metabolismo
5.
Discov Oncol ; 14(1): 123, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395858

RESUMO

BACKGROUND: Esophageal cancer is one of the most common malignant tumors in the world, which is characterized by poor prognosis, aggressiveness, and poor survival. Mucin 13 (MUC13) is a member of the membrane-bound mucin and located on chromosome 3q21.2 and consists of α and ß subunits. It has been found that MUC13 is overexpressed in a variety of tumor cells and acts a vital role in the invasiveness and malignant progression of several types of tumors. However, the role and regulatory mechanism of MUC13 in the progression of esophageal cancer remain unclear. METHODS: The expression level of MUC13 was detected in 15 esophageal cancer tissues and 15 pairs of adjacent nontumor tissues by immunohistochemistry (IHC). In addition, the expression of MUC13 mRNA level in human esophageal cancer cell lines (EC9706 and ECA109 and TE-1) was measured by qRT-PCR. In vitro, after silencing MUC13 with lentiviral interference technology, CCK8 assay, clone formation assay, and flow cytometry were applied to investigate the proliferation activity, clone formation ability and anti-apoptosis ability of EC9706 and ECA109 cells. The tumor xenograft growth assay was used to confirm the influence of MUC13 knockdown on the growth of esophageal tumors in vivo. The qRT-PCR assay and western blot experiments were taken to study the mechanism of MUC13 regulating the proproliferation and antiapoptotic of esophageal cancer. RESULTS: The results showed that MUC13 was overexpressed in esophageal cancer tissues and cell lines (EC9706 and ECA109 and TE-1), especially in EC9706 and ECA109 cells, but low expressed in human esophageal epithelial cell line (HEEC). Next, silencing MUC13 inhibits proliferation, blocks cell cycle progression, and promotes cell apoptosis in vitro, and restrains the growth of esophageal cancer tissues in vivo. Finally, MUC13 affects the proproliferation and antiapoptotic by regulating the expression of GLANT14, MUC3A, MUC1, MUC12, and MUC4 that closely related to O-glycan process. CONCLUSIONS: This study proved that MUC13 is an important molecule that regulates the O-glycan process and then affects the progress of esophageal cancer. MUC13 may be a novel therapeutic target for patients with esophageal cancer.

6.
Comput Struct Biotechnol J ; 21: 2845-2857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37216018

RESUMO

Big data analysis holds a considerable influence on several aspects of biomedical health science. It permits healthcare providers to gain insights from large and complex datasets, leading to improvements in the understanding, diagnosis, medication, and restraint of pathological conditions including cancer. The incidences of pancreatic cancer (PanCa) are sharply rising, and it will become the second leading cause of cancer related deaths by 2030. Various traditional biomarkers are currently in use but are not optimal in sensitivity and specificity. Herein, we determine the role of a new transmembrane glycoprotein, MUC13, as a potential biomarker of pancreatic ductal adenocarcinoma (PDAC) by using integrative big data mining and transcriptomic approaches. This study is helpful to identify and appropriately segment the data related to MUC13, which are scattered in various data sets. The assembling of the meaningful data, representation strategy was used to investigate the MUC13 associated information for the better understanding regarding its structural, expression profiling, genomic variants, phosphorylation motifs, and functional enrichment pathways. For further in-depth investigation, we have adopted several popular transcriptomic methods like DEGseq2, coding and non-coding transcript, single cell seq analysis, and functional enrichment analysis. All these analyzes suggest the presence of three nonsense MUC13 genomic transcripts, two protein transcripts, short MUC13 (s-MUC13, non-tumorigenic or ntMUC13), and long MUC13 (L-MUC13, tumorigenic or tMUC13), several important phosphorylation sites in tMUC13. Altogether, this data confirms that importance of tMUC13 as a potential biomarker, therapeutic target of PanCa, and its significance in pancreatic pathobiology.

7.
Oncol Lett ; 25(2): 72, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36688110

RESUMO

MUC13, a transmembrane mucin glycoprotein, is overexpressed in colorectal cancer (CRC), however, its regulation and functions are not fully understood. It has been shown that MUC13 protects colonic epithelial cells from apoptosis. Therefore, studying MUC13 and MUC13-regulated pathways may reveal promising therapeutic approaches for CRC treatment. Growing evidence suggests that microRNAs (miRs) are involved in the development and progression of CRC. In the present study, the MUC13-miR-4647 axis was addressed in association with survival of patients. miR-4647 is predicted in silico to bind to the MUC13 gene and was analyzed by RT-qPCR in 187 tumors and their adjacent non-malignant mucosa of patients with CRC. The impact of previously mentioned genes on survival and migration abilities of cancer cells was validated in vitro. Significantly upregulated MUC13 (P=0.02) in was observed tumor tissues compared with non-malignant adjacent mucosa, while miR-4647 (P=0.05) showed an opposite trend. Higher expression levels of MUC13 (log-rank P=0.05) were associated with worse patient's survival. The ectopic overexpression of studied miR resulted in decreased migratory abilities and worse survival of cells. Attenuated MUC13 expression levels confirmed the suppression of colony forming of CRC cells. In summary, the present data suggested the essential role of MUC13-miR-4647 in patients' survival, and this axis may serve as a novel therapeutic target. It is anticipated MUC13 may hold significant potential in the screening, diagnosis and treatment of CRC.

8.
Clin Chem Lab Med ; 61(3): 464-472, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36380677

RESUMO

OBJECTIVES: Ovarian cancer is the most lethal gynecological malignancy in developed countries. One of the key associations with the high mortality rate is diagnosis at late stages. This clinical limitation is primarily due to a lack of distinct symptoms and detection at the early stages. The ovarian cancer biomarker, CA125, is mainly effective for identifying serous ovarian carcinomas, leaving a gap in non-serous ovarian cancer detection. Mucin 13 (MUC13) is a transmembrane, glycosylated protein with aberrant expression in malignancies, including ovarian cancer. We explored the potential of MUC13 to complement CA125 as an ovarian cancer biomarker, by evaluating its ability to discriminate serous and non-serous subtypes of ovarian cancer at FIGO stages I-IV from benign conditions. METHODS: We used our newly developed, high sensitivity ELISA to measure MUC13 protein in a large, well-defined cohort of 389 serum samples from patients with ovarian cancer and benign conditions. RESULTS: MUC13 and CA125 serum levels were elevated in malignant compared to benign cases (p<0.0001). Receiver-operating characteristic (ROC) curve analysis showed similar area under the curve (AUC) of 0.74 (MUC13) and 0.76 (CA125). MUC13 concentrations were significantly higher in mucinous adenocarcinomas compared to benign controls (p=0.0005), with AUC of 0.80. MUC13 and CA125 showed significant elevation in early-stage cases (stage I-II) in relation to benign controls (p=0.0012 and p=0.014, respectively). CONCLUSIONS: We report the novel role of MUC13 as a serum ovarian cancer biomarker, where it could complement CA125 for detecting some subtypes of non-serous ovarian carcinoma and early-stage disease.


Assuntos
Mucinas , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/metabolismo , Carcinoma Epitelial do Ovário/diagnóstico , Antígeno Ca-125 , Curva ROC , Biomarcadores Tumorais
9.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G239-G254, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819177

RESUMO

The small GTPase, Rab11a, regulates vesicle trafficking and cell polarity in epithelial cells through interaction with Rab11 family-interacting proteins (Rab11-FIPs). We hypothesized that deficiency of Rab11-FIP1 would affect mucosal integrity in the intestine. Global Rab11FIP1 knockout (KO) mice were generated by deletion of the second exon. Pathology of intestinal tissues was analyzed by immunostaining of colonic sections and RNA-sequencing of isolated colonic epithelial cells. A low concentration of dextran sodium sulfate (DSS, 2%) was added to drinking water for 5 days, and injury score was compared between Rab11FIP1 KO, Rab11FIP2 KO, and heterozygous littermates. Rab11FIP1 KO mice showed normal fertility and body weight gain. More frequent lymphoid patches and infiltration of macrophages and neutrophils were identified in Rab11FIP1 KO mice before the development of rectal prolapse compared with control mice. The population of trefoil factor 3 (TFF3)-positive goblet cells was significantly lower, and the ratio of proliferative to nonproliferative cells was higher in Rab11FIP1 KO colons. Transcription signatures indicated that Rab11FIP1 deletion downregulated genes that mediate stress tolerance response, whereas genes mediating the response to infection were significantly upregulated, consistent with the inflammatory responses in the steady state. Lack of Rab11FIP1 also resulted in abnormal accumulation of subapical vesicles in colonocytes and the internalization of transmembrane mucin, MUC13, with Rab14. After DSS treatment, Rab11FIP1 KO mice showed greater body weight loss and more severe mucosal damage than those in heterozygous littermates. These findings suggest that Rab11FIP1 is important for cytoprotection mechanisms and for the maintenance of colonic mucosal integrity.NEW & NOTEWORTHY Although Rab11FIP1 is important in membrane trafficking in epithelial cells, the gastrointestinal phenotype of Rab11FIP1 knockout (KO) mice had never been reported. This study demonstrated that Rab11FIP1 loss induces mistrafficking of Rab14 and MUC13 and decreases in colonic goblet cells, resulting in impaired mucosal integrity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Colite , Proteínas de Membrana , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Colite/metabolismo , Colo/metabolismo , Sulfato de Dextrana , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana/genética , Camundongos Knockout
10.
Epigenomics ; 14(24): 1579-1591, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36916275

RESUMO

Aim: To explore the function and underlying mechanism of MUC13 in hepatocellular carcinoma (HCC) oncogenesis. Materials & Methods: Online databases and software were used to perform analyses of expression, methylation and enrichment pathway. Experiments were performed to confirm the results using HCC cells in vitro. Results: MUC13 was upregulated in HCC and liver cancer stem cells (CSCs) and had a positive influence on CSC generation. Further analyses revealed that MUC13 with promoter hypomethylated was regulated by DNA demethylase TET3, which was overexpressed in HCC and liver CSCs. Conclusion: These results strongly suggested that high TET3 expression in liver CSCs may mediate MUC13 upregulation via promoter hypomethylation and thereby contribute to hepatocellular carcinogenesis.


To understand the function and mechanism of MUC13 in hepatocellular carcinogenesis, online databases and software were used to analyze MUC13 expression, promoter methylation and enrichment pathway. Experiments were also performed to further confirm the results in vitro. MUC13 was upregulated in hepatocellular carcinoma (HCC) and had a positive influence on cancer stem cell (CSC) generation. Further analyses revealed that MUC13 with promoter hypomethylated was regulated by DNA demethylase TET3, which was overexpressed in HCC and liver CSCs. Importantly, it was revealed that MUC13 with promoter hypomethylated, was regulated by TET3, which was overexpressed in HCC and liver CSCs. These results strongly suggest that high TET3 expression in liver CSCs may mediate promoter hypomethylation and expression upregulation of MUC13, thereby contributing to hepatocellular carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Dioxigenases , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Metilação de DNA , Transformação Celular Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Mucinas/genética , Mucinas/metabolismo , Dioxigenases/genética
11.
Cell Rep ; 34(7): 108757, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596425

RESUMO

The intestine is under constant exposure to chemicals, antigens, and microorganisms from the external environment. Apical aspects of transporting epithelial cells (enterocytes) form a brush-border membrane (BBM), shaped by packed microvilli coated with a dense glycocalyx. We present evidence showing that the glycocalyx forms an epithelial barrier that prevents exogenous molecules and live bacteria from gaining access to BBM. We use a multi-omics approach to investigate the function and regulation of membrane mucins exposed on the BBM during postnatal development of the mouse small intestine. Muc17 is identified as a major membrane mucin in the glycocalyx that is specifically upregulated by IL-22 as part of an epithelial defense repertoire during weaning. High levels of IL-22 at time of weaning reprogram neonatal postmitotic progenitor enterocytes to differentiate into Muc17-expressing enterocytes, as found in the adult intestine during homeostasis. Our findings propose a role for Muc17 in epithelial barrier function in the small intestine.


Assuntos
Glicocálix/metabolismo , Interleucinas/metabolismo , Intestino Delgado/metabolismo , Mucinas/metabolismo , Adulto , Animais , Células CHO , Cricetulus , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Desmame , Interleucina 22
12.
J Crohns Colitis ; 14(7): 974-994, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32003421

RESUMO

BACKGROUND AND AIMS: There is evidence for a disturbed intestinal barrier function in inflammatory bowel diseases [IBD] but the underlying mechanisms are unclear. Because mucins represent the major components of the mucus barrier and disturbed mucin expression is reported in the colon of IBD patients, we studied the association between mucin expression, inflammation and intestinal permeability in experimental colitis. METHODS: We quantified 4-kDa FITC-dextran intestinal permeability and the expression of cytokines, mucins, junctional and polarity proteins at dedicated time points in the adoptive T cell transfer and dextran sodium sulfate [DSS]-induced colitis models. Mucin expression was also validated in biopsies from IBD patients. RESULTS: In both animal models, the course of colitis was associated with increased interleukin-1ß [IL-1ß] and tumour necrosis factor-α [TNF-α] expression and increased Muc1 and Muc13 expression. In the T cell transfer model, a gradually increasing Muc1 expression coincided with gradually increasing 4-kDa FITC-dextran intestinal permeability and correlated with enhanced IL-1ß expression. In the DSS model, Muc13 expression coincided with rapidly increased 4-kDa FITC-dextran intestinal permeability and correlated with TNF-α and Muc1 overexpression. Moreover, a significant association was observed between Muc1, Cldn1, Ocln, Par3 and aPKCζ expression in the T cell transfer model and between Muc13, Cldn1, Jam2, Tjp2, aPkcζ, Crb3 and Scrib expression in the DSS model. Additionally, MUC1 and MUC13 expression was upregulated in inflamed mucosa of IBD patients. CONCLUSIONS: Aberrantly expressed MUC1 and MUC13 might be involved in intestinal barrier dysfunction upon inflammation by affecting junctional and cell polarity proteins, indicating their potential as therapeutic targets in IBD.


Assuntos
Colite Ulcerativa/fisiopatologia , Colite/fisiopatologia , Doença de Crohn/fisiopatologia , Citocinas/metabolismo , Mucinas/genética , Mucinas/metabolismo , Actinas/metabolismo , Animais , Linfócitos T CD4-Positivos/transplante , Moléculas de Adesão Celular/genética , Colite/induzido quimicamente , Colite/imunologia , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Sulfato de Dextrana , Dextranos/farmacocinética , Modelos Animais de Doenças , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos SCID , Quinase de Cadeia Leve de Miosina/genética , Permeabilidade , Peroxidase/metabolismo , Proteínas de Junções Íntimas/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Micron ; 130: 102822, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31927412

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal cancers in the United States. This is partly due to the difficulty in early detection of this disease as well as poor therapeutic responses to currently available regimens. Our previous reports suggest that mucin 13 (MUC13, a transmembrane mucin common to gastrointestinal cells) is aberrantly expressed in this disease state, and has been implicated with a worsened prognosis and an enhanced metastatic potential in PanCa. However, virtually no information currently exists to describe the biophysical ramifications of this protein. METHODS: To demonstrate the biophysical effect of MUC13 in PanCa, we generated overexpressing and knockdown model cell lines for PanCa and subsequently subjected them to various biophysical experiments using atomic force microscopy (AFM) and cellular aggregation studies. RESULTS: AFM-based nanoindentation data showed significant biophysical effects with MUC13 modulation in PanCa cells. The overexpression of MUC13 in Panc-1 cells led to an expected decrease in modulus, and a corresponding decrease in adhesion. With MUC13 knockdown, HPAF-II cells exhibited an increased modulus and adhesion. These results were confirmed with altered cell-cell adhesion as seen with aggregation assays. CONCLUSIONS: MUC13 led to significant biophysical changes in PanCa cells and which exhibited characteristic phenotypic changes in cells demonstrated in previous work from our lab. This work gives insight into the use of biophysical measurements that could be used to help diagnose or monitor cancers as well as determine the effects of genetic alterations at a mechanical level.


Assuntos
Mucinas/genética , Neoplasias Pancreáticas/genética , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pancreáticas/patologia , Prognóstico
14.
Cells ; 9(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906106

RESUMO

Pancreatic cancer (PanCa) is one of the leading causes of death from cancer in the United States. The current standard treatment for pancreatic cancer is gemcitabine, but its success is poor due to the emergence of drug resistance. Natural products have been widely investigated as potential candidates in cancer therapies, and cucurbitacin D (Cuc D) has shown excellent anticancer properties in various models. However, there is no report on the therapeutic effect of Cuc D in PanCa. In the present study, we investigated the effects of the Cuc D on PanCa cells in vitro and in vivo. Cuc D inhibited the viability of PanCa cells in a dose and time dependent manner, as evident by MTS assays. Furthermore, Cuc D treatment suppressed the colony formation, arrest cell cycle, and decreased the invasion and migration of PanCa cells. Notably, our findings suggest that mucin 13 (MUC13) is down-regulated upon Cuc D treatment, as demonstrated by Western blot and qPCR analyses. Furthermore, we report that the treatment with Cuc D restores miR-145 expression in PanCa cells/tissues. Cuc D treatment suppresses the proliferation of gemcitabine resistant PanCa cells and inhibits RRM1/2 expression. Treatment with Cuc D effectively inhibited the growth of xenograft tumors. Taken together, Cuc D could be utilized as a novel therapeutic agents for the treatment/sensitization of PanCa.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Triterpenos/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Mucinas/genética , Mucinas/metabolismo , Neoplasias Pancreáticas , Relação Estrutura-Atividade , Triterpenos/administração & dosagem , Triterpenos/química , Triterpenos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
15.
Clin Chem Lab Med ; 56(11): 1945-1953, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29768245

RESUMO

BACKGROUND: Mucin 13 (MUC13) is a cell surface glycoprotein aberrantly expressed in a variety of epithelial carcinomas. Thus far, the role of MUC13 in various diseases remains elusive. To the best of our knowledge, this is the first study to examine the potential of MUC13 as a serum biomarker in a variety of carcinomas and other conditions. METHODS: We developed a recombinant MUC13 protein, mouse monoclonal antibodies and enzyme immunoassay (ELISA) for MUC13. We used this assay to measure MUC13 levels in the supernatants of cancer cell lines and a large cohort of serum samples from healthy and diseased individuals. RESULTS: MUC13 is secreted from cancer cell lines, with highest levels found in ovarian cancer cell lines. MUC13 levels in human sera were significantly increased in patients with renal failure and 20%-30% of patients with ovarian, liver, lung and other cancers. MUC13 was also elevated in 70% of patients with active cutaneous melanoma, but not uveal melanoma. Furthermore, we identified significant MUC13 elevations in the serum of patients with vasculitis (ANCA-positive) autoantibodies, but not in those with inflammatory bowel disease. CONCLUSIONS: Serum MUC13 is frequently elevated not only in a variety of malignant cases but also in some benign pathologies, thus appearing to be a non-specific disease biomarker. Nonetheless, serum MUC13 is clearly highly elevated in some carcinoma patients, and its relationship with tumor progression in this context warrant further research. Future studies that examine the correlation between serum MUC13 levels to stage of cancer could elucidate prognostic potential.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Mucinas/análise , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/metabolismo , Biomarcadores Tumorais/sangue , Carcinoma/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Melanoma/diagnóstico , Melanoma/metabolismo , Mucinas/sangue , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
16.
Pancreatology ; 18(4): 407-412, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29650332

RESUMO

BACKGROUND: Intraductal papillary mucinous neoplasm (IPMN) of the pancreas is a primary pancreatic ductal epithelial neoplasm with the potential to develop into an invasive adenocarcinoma. This study aimed to investigate the clinicopathologic and prognostic significance of four potential biomarkers for the preoperative evaluation of patients with IPMN. MATERIALS AND METHODS: Clinicopathologic materials from 104 patients with IPMN who underwent surgical resection at Jichi Medical University Hospital were analyzed. IPMNs (110 lesions in total) were histologically classified into low-grade IPMN (Group 1; n = 68), high-grade IPMN (Group 2; n = 16), or IPMN with an associated invasive carcinoma (Group 3; n = 26). We evaluated the immunohistochemical expression of MUC13, AGR2, FUT8, and FXYD3, which were previously reported to be overexpressed in pancreatic ductal adenocarcinoma. RESULTS: The expression of MUC13 was more common in Group 3 compared with groups 1 and 2 (p < 0.001) and was associated with poor prognosis (p = 0.004). The expression of MUC13 was not associated with age, sex, tumor location, histological subtype, lymphatic or vascular invasion, or neural invasion. In most cases of IPMN, the loss of expression of AGR2 appeared to show an association with tumor recurrence and poorly differentiated histology of invasive carcinoma; however, this association was not statistically significant. The expressions of FUT8 and FXYD3were not associated with the clinicopathological features of IPMNs. CONCLUSIONS: The results suggest that MUC13 overexpression and loss of expression of AGR2 may predict the progression of IPMN and an unfavorable prognosis in patients with IPMN.


Assuntos
Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Mucinas/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas/genética , Adenocarcinoma Mucinoso/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mucinas/análise , Mucoproteínas , Proteínas Oncogênicas , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Prognóstico , Proteínas/análise , Estudos Retrospectivos , Fatores Sexuais
17.
J Nat Sci ; 3(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28616589

RESUMO

Emergence of the role of MicroRNA-145 (miR-145) as a tumor suppressor in pancreatic cancer, offers its potential for novel therapeutic interventions. Our recently published studies demonstrate clinical significance of miR-145 in pancreatic cancer and suggest that the dysregulation of miR-145 in human pancreatic tumors draws in parallel with the aberrant expression of an oncogenic mucin, MUC13. These studies also present a novel therapeutic strategy of restoring the downregulated levels of miR-145 in pancreatic cancer via nanoparticle mediated efficient delivery system.

18.
Int J Cancer ; 140(10): 2351-2363, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28205224

RESUMO

Metastatic renal cell carcinoma is a largely incurable disease, and existing treatments targeting angiogenesis and tyrosine kinase receptors are only partially effective. Here we reveal that MUC13, a cell surface mucin glycoprotein, is aberrantly expressed by most renal cell carcinomas, with increasing expression positively correlating with tumor grade. Importantly, we demonstrated that high MUC13 expression was a statistically significant independent predictor of poor survival in two independent cohorts, particularly in stage 1 cancers. In cultured renal cell carcinoma cells MUC13 promoted proliferation and induced the cell cycle regulator, cyclin D1, and inhibited apoptosis by inducing the anti-apoptotic proteins, BCL-xL and survivin. Silencing of MUC13 expression inhibited migration and invasion, and sensitized renal cancer cells to killing by the multi-kinase inhibitors used clinically, sorafenib and sunitinib, and reversed acquired resistance to these drugs. Furthermore, we demonstrated that MUC13 promotion of renal cancer cell growth and survival is mediated by activation of nuclear factor κB, a transcription factor known to regulate the expression of genes that play key roles in the development and progression of cancer. These results show that MUC13 has potential as a prognostic marker for aggressive early stage renal cell cancer and is a plausible target to sensitize these tumors to therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Renais/patologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais/patologia , Mucinas/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Western Blotting , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Indóis/administração & dosagem , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Estadiamento de Neoplasias , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Prognóstico , Pirróis/administração & dosagem , Sorafenibe , Sunitinibe , Taxa de Sobrevida , Células Tumorais Cultivadas
19.
J Innate Immun ; 9(3): 281-299, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052300

RESUMO

Mucosal surfaces line our body cavities and provide the interaction surface between commensal and pathogenic microbiota and the host. The barrier function of the mucosal layer is largely maintained by gel-forming mucin proteins that are secreted by goblet cells. In addition, mucosal epithelial cells express cell-bound mucins that have both barrier and signaling functions. The family of transmembrane mucins consists of diverse members that share a few characteristics. The highly glycosylated extracellular mucin domains inhibit invasion by pathogenic bacteria and can form a tight mesh structure that protects cells in harmful conditions. The intracellular tails of transmembrane mucins can be phosphorylated and connect to signaling pathways that regulate inflammation, cell-cell interactions, differentiation, and apoptosis. Transmembrane mucins play important roles in preventing infection at mucosal surfaces, but are also renowned for their contributions to the development, progression, and metastasis of adenocarcinomas. In general, transmembrane mucins seem to have evolved to monitor and repair damaged epithelia, but these functions can be highjacked by cancer cells to yield a survival advantage. This review presents an overview of the current knowledge of the functions of transmembrane mucins in inflammatory processes and carcinogenesis in order to better understand the diverse functions of these multifunctional proteins.


Assuntos
Células Epiteliais/metabolismo , Inflamação/imunologia , Proteínas de Membrana/metabolismo , Mucinas/metabolismo , Mucosa/metabolismo , Neoplasias/imunologia , Animais , Células Epiteliais/imunologia , Humanos
20.
Oncotarget ; 8(5): 7548-7558, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27911274

RESUMO

BACKGROUND: Mucin13 (MUC13) is a transmembrane glycoprotein that is aberrantly expressed in ovarian and gastro-intestinal tumors, but its role in renal cell carcinoma remains elusive. The purpose of this study is to evaluate the prognostic value of MUC13 expression in patients with non-metastatic clear cell renal cell carcinoma (ccRCC) after surgical resection. RESULTS: MUC13 high expression was associated with high Fuhrman grade (p < 0.001), high SSIGN score (p = 0.011), early recurrence (p < 0.001) and poor survival (p < 0.001). Multivariate Cox regression analysis identified MUC13 expression as an independent prognostic factor for RFS and OS of ccRCC patients. A nomogram integrating MUC13 expression and other independent prognosticators was established to predict RFS and OS of ccRCC patients. Optimal agreement was shown between the predictions and observations in calibration curves. MATERIALS AND METHODS: This study enrolled 410 postoperative non-metastatic ccRCC patients at a single institution. Clinicopathologic variables, recurrence-free survival (RFS), and overall survival (OS) were recorded. MUC13 expression was detected by immunohistochemical staining in tumor specimens. Association of MUC13 expression with clinicopathological factors was explored. Kaplan-Meier analysis was performed to compare survival curves. Univariate and multivariate Cox regression models were used to analyze the impact of prognostic factors on RFS and OS. A prognostic nomogram was constructed based on the independent prognostic factors identified by multivariate analysis. CONCLUSIONS: MUC13 high expression is a novel independent adverse prognostic factor of clinical outcome in non-metastatic ccRCC patients after surgery.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Renais/química , Carcinoma de Células Renais/cirurgia , Neoplasias Renais/química , Neoplasias Renais/cirurgia , Mucinas/análise , Nefrectomia , Adulto , Idoso , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Distribuição de Qui-Quadrado , China , Técnicas de Apoio para a Decisão , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Gradação de Tumores , Recidiva Local de Neoplasia , Nefrectomia/efeitos adversos , Nefrectomia/mortalidade , Nomogramas , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...