Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mol Biol Rep ; 51(1): 766, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877370

RESUMO

BACKGROUND: Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS: Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS: In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS: As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.


Assuntos
Canais de Cloreto , Sequenciamento do Exoma , Mutação , Miotonia Congênita , Humanos , Miotonia Congênita/genética , Miotonia Congênita/diagnóstico , Sequenciamento do Exoma/métodos , Canais de Cloreto/genética , Feminino , Masculino , Egito , Criança , Adolescente , Mutação/genética , Pré-Escolar , Adulto Jovem , Lactente , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adulto , Linhagem , Eletromiografia
2.
Muscle Nerve ; 70(2): 240-247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38855810

RESUMO

INTRODUCTION/AIMS: Myotonia congenita (MC) is the most common hereditary channelopathy in humans. Characterized by muscle stiffness, MC may be transmitted as either an autosomal dominant (Thomsen) or a recessive (Becker) disorder. MC is caused by variants in the voltage-gated chloride channel 1 (CLCN1) gene, important for the normal repolarization of the muscle action potential. More than 250 disease-causing variants in the CLCN1 gene have been reported. This study provides an MC genotype-phenotype spectrum in a large cohort of Greek patients and focuses on novel variants and disease epidemiology, including additional insights for the variant CLCN1:c.501C > G. METHODS: Sanger sequencing for the entire coding region of the CLCN1 gene was performed. Targeted segregation analysis of likely candidate variants in additional family members was performed. Variant classification was based on American College of Medical Genetics (ACMG) guidelines. RESULTS: Sixty-one patients from 47 unrelated families were identified, consisting of 51 probands with Becker MC (84%) and 10 with Thomsen MC (16%). Among the different variants detected, 11 were novel and 16 were previously reported. The three most prevalent variants were c.501C > G, c.2680C > T, and c.1649C > G. Additionally, c.501C > G was detected in seven Becker cases in-cis with the c.1649C > G. DISCUSSION: The large number of patients in whom a diagnosis was established allowed the characterization of genotype-phenotype correlations with respect to both previously reported and novel findings. For the c.501C > G (p.Phe167Leu) variant a likely nonpathogenic property is suggested, as it only seems to act as an aggravating modifying factor in cases in which a pathogenic variant triggers phenotypic expression.


Assuntos
Canais de Cloreto , Genótipo , Miotonia Congênita , Humanos , Miotonia Congênita/genética , Canais de Cloreto/genética , Feminino , Masculino , Grécia/epidemiologia , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Adulto Jovem , Adolescente , Criança , Idoso , Mutação , Pré-Escolar , Estudos de Associação Genética , Fenótipo
3.
Rinsho Shinkeigaku ; 64(5): 344-348, 2024 May 24.
Artigo em Japonês | MEDLINE | ID: mdl-38644209

RESUMO

A Japanese woman experienced slowness of movement in her early teens and difficulty in opening her hands during pregnancy. On admission to our hospital at 42 years of age, she showed grip myotonia with warm-up phenomenon. However, she had neither muscle weakness, muscle atrophy, cold-induced symptomatic worsening nor episodes of transient weakness of the extremities. Needle electromyography of the first dorsal interosseous and anterior tibial muscles demonstrated myotonic discharges. Whole exome sequencing of the patient revealed a heterozygous single-base substitution in the CLCN1 gene (c.1028T>G, p.F343C). The same substitution was identified in affected members of her family (mother and brother) by Sanger sequencing, but not in healthy family members (father and a different brother). We diagnosed myotonia congenita (Thomsen disease) with a novel CLCN1 mutation in this pedigree. This mutation causes a single amino acid substitution in the I-J extracellular loop region of CLCN1. Amino acid changes in the I-J loop region are rare in an autosomal-dominantly inherited form of myotonia congenita. We think that this pedigree is precious to understand the pathogenesis of myotonia congenita.


Assuntos
Canais de Cloreto , Mutação , Miotonia Congênita , Linhagem , Humanos , Miotonia Congênita/genética , Canais de Cloreto/genética , Feminino , Adulto , Substituição de Aminoácidos , Masculino
4.
Cureus ; 16(2): e53981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38469025

RESUMO

Congenital myotonia represents a rare group of genetically inherited conditions. It can be either autosomal dominant (Thomsen) or autosomal recessive (Becker). It is characterized by muscular hypertrophy, proximal weakness, and myotonia, or impaired relaxation after contraction. These are due to mutations in the CLC1 gene. A 14-year-old male child presented with complaints of gradually progressive weakness for five years. Weakness was more pronounced in the proximal muscle groups. The weakness worsened after rest and improved with activity. This led to absenteeism and affected his school performance. Clinical examination showed generalized muscular hypertrophy with pronounced hypertrophy of the calf muscles. A neurological examination showed significant myotonia and impaired relaxation after making a fist. The diagnosis of myotonia was confirmed by electromyography, which produced a dive-bomber sound on insertion. Next-generation sequencing revealed a homozygous eight-base pair insertion in exon 19 of the CLCN1 gene. This mutation has not been reported in the existing literature for myotonia congenita. The child was started on mexiletine and improved significantly. Presently, the patient is on regular medications and doing well on follow-up. Though rare, congenital myotonia is an important cause of neuromuscular weakness. It can be easily diagnosed with a thorough clinical examination and routine testing for myotonia in all children with weakness. The treatment is relatively simple and can give the patient significant relief. Myotonia can be easily diagnosed clinically, and pharmacotherapy and proper monitoring can remarkably improve patients' quality of life.

5.
J Neuromuscul Dis ; 10(5): 915-924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355912

RESUMO

BACKGROUND: Myotonia congenita is the most common form of nondystrophic myotonia and is caused by Mendelian inherited mutations in the CLCN1 gene encoding the voltage-gated chloride channel of skeletal muscle. OBJECTIVE: The study aimed to describe the clinical and genetic spectrum of Myotonia congenita in a large pediatric cohort. METHODS: Demographic, genetic, and clinical data of the patients aged under 18 years at time of first clinical attendance from 11 centers in different geographical regions of Türkiye were retrospectively investigated. RESULTS: Fifty-four patients (mean age:15.2 years (±5.5), 76% males, with 85% Becker, 15% Thomsen form) from 40 families were included. Consanguineous marriage rate was 67%. 70.5% of patients had a family member with Myotonia congenita. The mean age of disease onset was 5.7 (±4.9) years. Overall 23 different mutations (2/23 were novel) were detected in 52 patients, and large exon deletions were identified in two siblings. Thomsen and Becker forms were observed concomitantly in one family. Carbamazepine (46.3%), mexiletine (27.8%), phenytoin (9.3%) were preferred for treatment. CONCLUSIONS: The clinical and genetic heterogeneity, as well as the limited response to current treatment options, constitutes an ongoing challenge. In our cohort, recessive Myotonia congenita was more frequent and novel mutations will contribute to the literature.


Assuntos
Miotonia Congênita , Masculino , Humanos , Criança , Adolescente , Idoso , Lactente , Pré-Escolar , Feminino , Miotonia Congênita/genética , Estudos Retrospectivos , Canais de Cloreto/genética , Mutação , Músculo Esquelético
6.
Neuromuscul Disord ; 33(3): 270-273, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796140

RESUMO

We provide an up-to-date and accurate minimum point prevalence of genetically defined skeletal muscle channelopathies which is important for understanding the population impact, planning for treatment needs and future clinical trials. Skeletal muscle channelopathies include myotonia congenita (MC), sodium channel myotonia (SCM), paramyotonia congenita (PMC), hyperkalemic periodic paralysis (hyperPP), hypokalemic periodic paralysis (hypoPP) and Andersen- Tawil Syndrome (ATS). Patients referred to the UK national referral centre for skeletal muscle channelopathies and living in UK were included to calculate the minimum point prevalence using the latest data from the Office for National Statistics population estimate. We calculated a minimum point prevalence of all skeletal muscle channelopathies of 1.99/100 000 (95% CI 1.981-1.999). The minimum point prevalence of MC due to CLCN1 variants is 1.13/100 000 (95% CI 1.123-1.137), SCN4A variants which encode for PMC and SCM is 0.35/100 000 (95% CI 0.346 - 0.354) and for periodic paralysis (HyperPP and HypoPP) 0.41/100 000 (95% CI 0.406-0.414). The minimum point prevalence for ATS is 0.1/100 000 (95% CI 0.098-0.102). There has been an overall increase in point prevalence in skeletal muscle channelopathies compared to previous reports, with the biggest increase found to be in MC. This can be attributed to next generation sequencing and advances in clinical, electrophysiological and genetic characterisation of skeletal muscle channelopathies.


Assuntos
Síndrome de Andersen , Canalopatias , Paralisia Periódica Hipopotassêmica , Transtornos Miotônicos , Paralisia Periódica Hiperpotassêmica , Humanos , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hipopotassêmica/genética , Prevalência , Canalopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Mutação , Músculo Esquelético , Transtornos Miotônicos/genética , Síndrome de Andersen/genética
7.
Rev. neurol. (Ed. impr.) ; 76(4): 147-150, Feb 16, 2023. tab
Artigo em Espanhol | IBECS | ID: ibc-216042

RESUMO

Introducción: La miotonía congénita es la forma más común de miotonía de causa genética y se produce por mutaciones en el gen CLCN1. Puede heredarse de manera autosómica dominante o recesiva. Presentamos una serie de casos para actualizar su incidencia en nuestro medio, para describir su fenotipo en relación con el genotipo encontrado y, además, revisamos las mutaciones encontradas, entre las que aportamos una nueva alteración no descrita. Casos clínicos. Se revisaron las historias clínicas de pacientes con diagnóstico de miotonía congénita estudiados y seguidos en la consulta de neurología pediátrica en un hospital de tercer nivel entre los años 2015 y 2020. Se recogieron variables demográficas (edad y sexo), curso de la enfermedad (edad de inicio, síntomas y signos, tiempo transcurrido hasta el diagnóstico y evolución clínica), antecedentes familiares y evaluación de la respuesta al tratamiento. Se identificaron cinco casos con diagnóstico clínico de miotonía congénita (tres con enfermedad de Becker y dos con enfermedad de Thomsen). La incidencia en relación con el número de nacimientos la estimamos en 1:15.000 recién nacidos para los casos con fenotipo Becker y en 1:21.000 recién nacidos para los fenotipos Thomsen. Hallamos una mutación probablemente patogénica no descrita previamente (CLCN1: c.824T>C). Conclusiones: La incidencia aproximada en nuestro medio fue superior a la previamente conocida y describimos una nueva mutación no descrita: c.824T>C, con predictores de patogenicidad, que se comportó como un fenotipo recesivo Becker, pero con inicio más temprano.(AU)


Introduction: Myotonia congenita is the most common form of genetic myotonia and is caused by mutations in the CLCN1 gene. It can be inherited in an autosomal dominant or recessive manner. We present a series of cases to update its incidence in our environment, to describe its phenotype in relation to the genotype found, and we also review the mutations found, among which we provide a new, undescribed alteration. Cases report: The medical records of patients with a diagnosis of congenital myotonia studied and followed up in the pediatric neurology section in a tertiary hospital between the years 2015-2020 were reviewed. Demographic variables (age, sex), disease course (age of onset, symptoms and signs, time elapsed until diagnosis, clinical evolution), family history and evaluation of response to treatment were collected. Five cases with a clinical diagnosis of myotonia congenita were identified (three with Becker’s disease and two with Thomsen’s disease). The incidence in relation to the number of births is estimated at 1:15,000 newborns for cases with the Becker phenotype and 1:21,000 newborns for the Thomsen phenotypes. We found a probably pathogenic mutation not previously described (CLCN1: c.824T> C). Conclusions: the approximate incidence in our environment was higher than previously known and we describe a new, undescribed mutation: c.824T> C with pathogenicity predictors that behaved like a Becker recessive phenotype but with an earlier debut.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Distrofia Muscular de Duchenne , Miotonia Congênita , Incidência , Genótipo , Fenótipo , Prontuários Médicos , Neurologia , Doenças do Sistema Nervoso
8.
Front Neurosci ; 16: 1010242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523432

RESUMO

Optically pumped magnetometers (OPM) are quantum sensors that enable the contactless, non-invasive measurement of biomagnetic muscle signals, i.e., magnetomyography (MMG). Due to the contactless recording, OPM-MMG might be preferable to standard electromyography (EMG) for patients with neuromuscular diseases, particularly when repetitive recordings for diagnostic and therapeutic monitoring are mandatory. OPM-MMG studies have focused on recording physiological muscle activity in healthy individuals, whereas research on neuromuscular patients with pathological altered muscle activity is non-existent. Here, we report a proof-of-principle study on the application of OPM-MMG in patients with neuromuscular diseases. Specifically, we compare the muscular activity during maximal isometric contraction of the left rectus femoris muscle in three neuromuscular patients with severe (Transthyretin Amyloidosis in combination with Pompe's disease), mild (Charcot-Marie-Tooth disease, type 2), and without neurogenic, but myogenic, damage (Myotonia Congenita). Seven healthy young participants served as the control group. As expected, and confirmed by using simultaneous surface electromyography (sEMG), a time-series analysis revealed a dispersed interference pattern during maximal contraction with high amplitudes. Furthermore, both patients with neurogenic damage (ATTR and CMT2) showed a reduced variability of the MMG signal, quantified as the signal standard deviation of the main component of the frequency spectrum, highlighting the reduced possibility of motor unit recruitment due to the loss of motor neurons. Our results show that recording pathologically altered voluntary muscle activity with OPM-MMG is possible, paving the way for the potential use of OPM-MMG in larger studies to explore the potential benefits in clinical neurophysiology.

9.
Front Neurol ; 13: 1011956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212636

RESUMO

Myotonia congenita is a rare neuromuscular disorder caused by CLCN1 mutations resulting in delayed muscle relaxation. Extramuscular manifestations are not considered to be present in chloride skeletal channelopathies, although recently some cardiac manifestations have been described. We report a family with autosomal dominant myotonia congenita and Brugada syndrome. Bearing in mind the previously reported cases of cardiac arrhythmias in myotonia congenita patients, we discuss the possible involvement of the CLCN1-gene mutations in primary cardiac arrhythmia.

10.
Front Pharmacol ; 13: 958196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034862

RESUMO

Myotonia congenita (MC) is an inherited rare disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. It is caused by loss-of-function mutations in the skeletal muscle chloride channel ClC-1, important for the stabilization of resting membrane potential and for the repolarization phase of action potentials. Thanks to in vitro functional studies, the molecular mechanisms by which ClC-1 mutations alter chloride ion influx into the cell have been in part clarified, classifying them in "gating-defective" or "expression-defective" mutations. To date, the treatment of MC is only palliative because no direct ClC-1 activator is available. An ideal drug should be one which is able to correct biophysical defects of ClC-1 in the case of gating-defective mutations or a drug capable to recover ClC-1 protein expression on the plasma membrane for trafficking-defective ones. In this study, we tested the ability of niflumic acid (NFA), a commercial nonsteroidal anti-inflammatory drug, to act as a pharmacological chaperone on trafficking-defective MC mutants (A531V, V947E). Wild-type (WT) or MC mutant ClC-1 channels were expressed in HEK293 cells and whole-cell chloride currents were recorded with the patch-clamp technique before and after NFA incubation. Membrane biotinylation assays and western blot were performed to support electrophysiological results. A531V and V947E mutations caused a decrease in chloride current density due to a reduction of ClC-1 total protein level and channel expression on the plasma membrane. The treatment of A531V and V947E-transfected cells with 50 µM NFA restored chloride currents, reaching levels similar to those of WT. Furthermore, no significant difference was observed in voltage dependence, suggesting that NFA increased protein membrane expression without altering the function of ClC-1. Indeed, biochemical experiments confirmed that V947E total protein expression and its plasma membrane distribution were recovered after NFA incubation, reaching protein levels similar to WT. Thus, the use of NFA as a pharmacological chaperone in trafficking defective ClC-1 channel mutations could represent a good strategy in the treatment of MC. Because of the favorable safety profile of this drug, our study may easily open the way for confirmatory human pilot studies aimed at verifying the antimyotonic activity of NFA in selected patients carrying specific ClC-1 channel mutations.

11.
Neurol Neurochir Pol ; 56(5): 399-403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35792560

RESUMO

INTRODUCTION: In myotonia congenita (MC), activation with exercise or cooling can induce transient changes in compound motor action potential (CMAP) parameters, thus providing a guide to genetic analysis. MATERIAL AND METHODS: We performed the short exercise test (SET) and the short exercise test with cooling (SETC) in 30 patients with genetically confirmed Becker disease (BMC) to estimate their utility in the diagnosis of BMC. RESULTS: Although we observed a significant decrease in CMAP amplitude immediately after maximal voluntary effort in both tests in the whole BMC group, in men this decline was significantly smaller than in women, especially in SET. Clinical implications/future directions: In men with a clinical suspicion of BMC, a small decrease in CMAP amplitude in SET together with a typical decline in SETC does not exclude the diagnosis of BMC. Our results show a sex-specific difference in chloride channel function in BMC, which needs further investigation.


Assuntos
Miotonia Congênita , Feminino , Humanos , Masculino , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Caracteres Sexuais , Eletromiografia , Potenciais de Ação/fisiologia , Mutação
12.
Muscle Nerve ; 66(2): 148-158, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644941

RESUMO

INTRODUCTION/AIMS: Consistency of differences between non-dystrophic myotonias over time measured by standardized clinical/patient-reported outcomes is lacking. Evaluation of longitudinal data could establish clinically relevant endpoints for future research. METHODS: Data from prospective observational study of 95 definite/clinically suspected non-dystrophic myotonia participants (six sites in the United States, United Kingdom, and Canada) between March 2006 and March 2009 were analyzed. Outcomes included: standardized symptom interview/exam, Short Form-36, Individualized Neuromuscular Quality of Life (INQoL), electrophysiological short/prolonged exercise tests, manual muscle testing, quantitative grip strength, modified get-up-and-go test. Patterns were assigned as described by Fournier et al. Comparisons were restricted to confirmed sodium channelopathies (SCN4A, baseline, year 1, year 2: n = 34, 19, 13), chloride channelopathies (CLCN1, n = 32, 26, 18), and myotonic dystrophy type 2 (DM2, n = 9, 6, 2). RESULTS: Muscle stiffness was the most frequent symptom over time (54.7%-64.7%). Eyelid myotonia and paradoxical handgrip/eyelid myotonia were more frequent in SCN4A. Grip strength and combined manual muscle testing remained stable. Modified get-up-and-go showed less warm up in SCN4A but remained stable. Median post short exercise decrement was stable, except for SCN4A (baseline to year 2 decrement difference 16.6% [Q1, Q3: 9.5, 39.2]). Fournier patterns type 2 (CLCN1) and 1 (SCN4A) were most specific; 40.4% of participants had a change in pattern over time. INQoL showed higher impact for SCN4A and DM2 with scores stable over time. DISCUSSION: Symptom frequency and clinical outcome assessments were stable with defined variability in myotonia measures supporting trial designs like cross over or combined n-of-1 as important for rare disorders.


Assuntos
Canalopatias , Miotonia Congênita , Miotonia , Distrofia Miotônica , Canais de Cloreto/genética , Força da Mão , Humanos , Mutação , Miotonia/diagnóstico , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida
13.
Front Neurol ; 13: 830707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350395

RESUMO

Introduction: Non-dystrophic myotonias (NDMs) are skeletal muscle ion channelopathies caused by CLCN1 or SCN4A mutations. This study aimed to describe the clinical, myopathological, and genetic analysis of NDM in a large Chinese cohort. Methods: We reviewed the clinical manifestations, laboratory results, electrocardiogram, electromyography, muscle biopsy, genetic analysis, treatment, and follow-up of 20 patients (from 18 families) with NDM. Results: Cases included myotonia congenita (MC, 17/20) and paramyotonia congenita (PMC, 3/20). Muscle stiffness and hypertrophy, grip and percussion myotonia, and the warm-up phenomenon were frequently observed in MC and PMC patients. Facial stiffness, eye closure myotonia, and cold sensitivity were more common in PMC patients and could be accompanied by permanent weakness. Nine MC patients and two PMC patients had cardiac abnormalities, mainly manifested as cardiac arrhythmia, and the father of one patient died of sudden cardiac arrest. Myotonic runs in electromyography were found in all patients, and seven MC patients had mild myopathic changes. There was no difference in muscle pathology between MC and PMC patients, most of whom had abnormal muscle fiber type distribution or selective muscle fiber atrophy. Nineteen CLCN1 variants were found in 17 MC patients, among which c.795T>G (p.D265E) was a new variant, and two SCN4A variants were found in three PMC patients. The patients were treated with mexiletine and/or carbamazepine, and the symptoms of myotonia were partially improved. Conclusions: MC and PMC have considerable phenotypic overlap. Genetic investigation contributes to identifying the subtype of NDM. The muscle pathology of NDM lacks specific changes.

14.
Channels (Austin) ; 16(1): 35-46, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35170402

RESUMO

Myotonia congenita (MC) is a rare genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1), encoding the voltage-gated chloride channel ClC-1 in skeletal muscle. Our study reported the clinical and molecular characteristics of six patients with MC and systematically review the literature on Chinese people. We retrospectively analyzed demographics, clinical features, family history, creatine kinase (CK), electromyography (EMG), treatment, and genotype data of our patients and reviewed the clinical data and CLCN1 mutations in literature. The median ages at examination and onset were 26.5 years (range 11-50 years) and 6.5 years (range 1.5-11 years), respectively, in our patients, and 21 years (range 3.5-65 years, n = 45) and 9 years (range 0.5-26 years, n = 50), respectively, in literature. Similar to previous reports, myotonia involved limb, lids, masticatory, and trunk muscles to varying degrees. Warm-up phenomenon (5/6), percussion myotonia (3/5), and grip myotonia (6/6) were common. Menstruation triggered myotonia in females, not observed in Chinese patients before. The proportion of abnormal CK levels (4/5) was higher than data from literature. Electromyography performed in six patients revealed myotonic changes (100%). Five novel CLCN1 mutations, including a splicing mutation (c.853 + 4A>G), a deletion mutation (c.2010_2014del), and three missense mutations (c.2527C>T, c.1727C>T, c.2017 G > C), were identified. The c.892 G > A (p.A298T) mutation was the most frequent mutation in the Chinese population. Our study expanded the clinical and genetic spectrum of patients with MC in the China. The MC phenotype in Chinese people is not different from that found in the West, while the genotype is different.


Assuntos
Miotonia Congênita , Miotonia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Canais de Cloreto/genética , Feminino , Humanos , Lactente , Pessoa de Meia-Idade , Mutação , Miotonia/genética , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Estudos Retrospectivos , Adulto Jovem
15.
Brain ; 145(2): 607-620, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34529042

RESUMO

High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.


Assuntos
Miotonia Congênita , Miotonia , Canais de Cloreto/genética , Humanos , Mutação/genética , Miotonia/genética , Miotonia Congênita/genética , Fenótipo
16.
Front Genet ; 13: 972007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36659963

RESUMO

Myotonia congenita (MC) is a rare neuromuscular disease caused by mutations within the CLCN1 gene encoding skeletal muscle chloride channels. MC is characterized by delayed muscle relaxation during contraction, resulting in muscle stiffness. There is a lack of MC case reports and data on the prevalence among Malaysians. We report a clinical case of a 50-year-old woman presents with muscle stiffness and cramp episodes that started in early childhood. She had difficulty initiating muscle movement and presented with transient muscle weakness after rest, which usually improved after repeated contraction (warm-up phenomenon). She was diagnosed with MC after myotonic discharge on electromyography (EMG). Her brother had similar symptoms; however, no additional family members showed MC symptoms. Serum creatine kinase levels were elevated in both the proband and her brother with 447 U/L and 228 U/L recorded, respectively. Genetic analysis by whole-exome sequencing (WES) revealed a previously reported pathogenic CLCN1 gene variant c.1667T>A (p.I556N). Genetic screening of all family members revealed that the same variant was observed in the children of both the proband and her brother; however, the children did not present with either clinical or electrophysiological MC symptoms. The multiplex ligation-dependent probe amplification (MLPA) analysis conducted identified neither exon deletion nor duplication in CLCN1. In conclusion, this report describes the first case of MC in Malaysia in which incomplete penetrance observed in this family is caused by a known pathogenic CLCN1 variant.

17.
Appl Clin Genet ; 14: 473-479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938096

RESUMO

BACKGROUND: Becker's type myotonia congenita is an autosomal recessive nondystrophic skeletal muscle disorder characterized by muscle stiffness and the inability of muscle relaxation after voluntary contraction. It is caused by mutations in the CLCN1 gene, which encodes for a chloride channel mainly expressed in the striated muscle. Most cases have been reported in the European population, and only mexiletine has demonstrated a randomized placebo-controlled, double-blinded effectiveness. CASE PRESENTATION: We present two male siblings from Colombia with Latino ancestry, without parental consanguinity, with myotonia during voluntary movements, muscle hypertrophy of lower extremities, transient weakness, and severe muscle fatigue after exercise from three years of age. A genetic panel for dystrophic muscle disorders and a muscle biopsy were both negative. Genetic testing was performed in their second decade of life. Both patients' exomic sequencing test reported the mutation c.1129C >T (p.Arg377*) affecting exon 10 of the CLCN1, generating a premature stop codon. This mutation was described as pathogenic and observed in only one other patient in the United Kingdom. CONCLUSION: To our knowledge, these are the first cases of Becker's type myotonia congenita reported in Colombia. Increasing awareness of healthcare providers for this type of disease in the region could lead to the identification of undiagnosed patients. Limited availability of medical geneticists as well as genetic testing may be the cause of the lack of previous description of cases, in addition to the delay in the diagnosis of the patients. Further epidemiological studies can reveal underdiagnosed myotonias in the country and in the Latin-American region.

18.
Front Pediatr ; 9: 759505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790634

RESUMO

Background: CLCN1-related myotonia congenita (MC) is one of the most common forms of non-dystrophic myotonia, in which muscle relaxation is delayed after voluntary or evoked contraction. However, there is limited data of clinical and molecular spectrum of MC patients in China. Patients and Methods: Five patients with myotonia congenita due to mutations in CLCN1 gene were enrolled, which were identified through trio-whole-exome sequencing or panel-based next-generation sequencing test. The clinical presentation, laboratory data, electrophysiological tests, muscular pathology feature, and genetic results were collected and reviewed. We also searched all previously reported cases of MC patients with genetic diagnosis in Chinese populations, and their data were reviewed. Results: The median onset age of five patients was 3.0 years old, ranging from 1.0 to 5.0 years old, while the median age of admit was 5.0 years old, ranging from 3.5 to 8.8 years old. Five patients complained of muscle stiffness when rising from chairs or starting to climb stairs (5/5, 100.0%), four patients complained of delayed relaxation of their hands after forceful grip (4/5, 80.0%), all of which improved with exercise (warm-up phenomenon) (5/5, 100%). Electromyogram was conducted in five patients, which all revealed myotonic change (100%). Genetic tests revealed nine potential disease-causing variants in CLCN1 gene, including two novel variants: c.962T>A (p.V321E) and c.1250A>T (p.E417V). Literature review showed that 43 MC Chinese patients with genetic diagnosis have been reported till now (including our five patients). Forty-seven variants in CLCN1 gene were found, which consisted of 33 missense variants, 6 nonsense variants, 5 frame-shift variants, and 3 splicing variants. Variants in exon 8, 15, 12, and 16 were most prevalent, while the most common variants were c.892G>A (p.A298T) (n = 9), c.139C>T (p.R47W) (n = 3), c.1205C>T(p.A402V) (n = 3), c.1657A>T (p.I553F) (n = 3), c.1679T>C (p.M560T) (n = 3), c.350A>G (p.D117G) (n = 2), c.762C>G (p.C254W) (n = 2), c.782A>G (P.Y261C) (n = 2), and c.1277C>A (p.T426N) (n = 2). Conclusion: Our results reported five CLCN1-related MC patients, which expanded the clinical and genetic spectrum of MC patients in China. Based on literature review, 43MC Chinese patients with genetic diagnosis have been reported till now, and variants in exon eight were most prevalent in Chinese MC patients while c.892G>A (p.A298T) was probably a founder mutation.

19.
Genes (Basel) ; 12(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34828398

RESUMO

Inherited channelopathies are a clinically and heritably heterogeneous group of disorders that result from ion channel dysfunction. The aim of this study was to characterize the clinicopathologic features of a Belgian Blue x Holstein crossbred calf with paradoxical myotonia congenita, craniofacial dysmorphism, and myelodysplasia, and to identify the most likely genetic etiology. The calf displayed episodes of exercise-induced generalized myotonic muscle stiffness accompanied by increase in serum potassium. It also showed slight flattening of the splanchnocranium with deviation to the right side. On gross pathology, myelodysplasia (hydrosyringomielia and segmental hypoplasia) in the lumbosacral intumescence region was noticed. Histopathology of the muscle profile revealed loss of the main shape in 5.3% of muscle fibers. Whole-genome sequencing revealed a heterozygous missense variant in KCNG1 affecting an evolutionary conserved residue (p.Trp416Cys). The mutation was predicted to be deleterious and to alter the pore helix of the ion transport domain of the transmembrane protein. The identified variant was present only in the affected calf and not seen in more than 5200 other sequenced bovine genomes. We speculate that the mutation occurred either as a parental germline mutation or post-zygotically in the developing embryo. This study implicates an important role for KCNG1 as a member of the potassium voltage-gated channel group in neurodegeneration. Providing the first possible KCNG1-related disease model, we have, therefore, identified a new potential candidate for related conditions both in animals and in humans. This study illustrates the enormous potential of phenotypically well-studied spontaneous mutants in domestic animals to provide new insights into the function of individual genes.


Assuntos
Doenças dos Bovinos/genética , Canalopatias/veterinária , Miotonia Congênita/veterinária , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Bovinos , Doenças dos Bovinos/patologia , Canalopatias/genética , Canalopatias/patologia , Endogamia , Mutação , Miotonia Congênita/genética , Miotonia Congênita/patologia , Fenótipo
20.
Neuromuscul Disord ; 31(11): 1124-1135, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34702654

RESUMO

The MYOMEX study was a multicentre, randomised, double-blind, placebo-controlled, cross-over study aimed to compare the effects of mexiletine vs. placebo in patients with myotonia congenita (MC) and paramyotonia congenita (PC). The primary endpoint was the self-reported score of stiffness severity on a 100 mm visual analogic scale (VAS). Mexiletine treatment started at 200 mg/day and was up-titrated by 200 mg increment each three days to reach a maximum dose of 600 mg/day for total treatment duration of 18 days for each cross-over period. The modified intent-to-treat population included 25 patients (13 with MC and 12 with PC; mean age, 43.0 years; male, 68.0%). The median VAS score for mexiletine was 71.0 at baseline and decreased to 16.0 at the end of the treatment while the score did not change for placebo (81.0 at baseline vs. 78.0 at end of treatment). A mixed effects linear model analysis on ranked absolute changes showed a significant effect of treatment (p < 0.001). The overall score of the Individualized Neuromuscular Quality of Life questionnaire (INQoL) was significantly improved (p < 0.001). No clinically significant adverse events were reported. In conclusion, mexiletine improved stiffness and quality of life in patients with nondystrophic myotonia and was well tolerated.


Assuntos
Mexiletina/uso terapêutico , Miotonia/tratamento farmacológico , Adulto , Idoso , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/tratamento farmacológico , Transtornos Miotônicos/tratamento farmacológico , Qualidade de Vida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...