Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Vet Rec ; 192(1): e2182, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36129410

RESUMO

BACKGROUND: A cross-species jump was confirmed in 2018, when a novel recombinant myxoma virus (MYXV) (ha-MYXV) caused high mortality in Iberian hare (Lepus granatensis) in the Iberian Peninsula. METHOD: The aim of this study was to evaluate the main lesions, tissular distribution and target cells of ha-MYXV in Iberian hare. Gross postmortem examinations and histological and immunohistochemical studies to detect ha-MYXV were carried out in 28 animals that were confirmed as ha-MYXV positive by PCR. RESULTS: The main macroscopic lesions were bilateral blepharoconjunctivitis, epistaxis, intense congestion and oedema in several organs and some internal haemorrhages. Visible myxomas were not found. Histopathological examination revealed hyperplastic epidermis with predominant hyperkeratosis and myxoid matrix in the dermis. ha-MYXV-positive keratinocytes showed hydropic degeneration and cytoplasmic inclusion bodies. Alveolar oedema, interstitial pneumonia, dramatic lymphoid depletion in the spleen and necrosis in the liver and testis were observed. ha-MYXV was mainly detected in epithelial and myxoma cells in the skin, and also in macrophages, lymphocytes, fibroblasts and endothelial cells in several organs, as well as in hepatocytes and Leydig cells. LIMITATIONS: A non-homogeneous number of samples were included in all the animals. Future experimental studies with controlled variables are necessary. CONCLUSION: These findings correspond to an unusual form of myxomatosis, characterised by an acute or hyperacute presentation.


Assuntos
Lebres , Myxoma virus , Masculino , Animais , Antígenos Virais , Células Endoteliais , Pele
2.
Transbound Emerg Dis ; 69(6): 3637-3650, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36219552

RESUMO

The 2018 outbreak of myxomatosis in the Iberian hare (Lepus granatensis) has been hypothesized to originate from a species jump of the rabbit-associated myxoma virus (MYXV), after natural recombination with an unknown poxvirus. Iberian hares were long considered resistant to myxomatosis as no prior outbreaks were reported. To provide insights into the emergence of this recombinant virus (ha-MYXV), we investigated serum samples from 451 Iberian hares collected over two time periods almost two decades apart, 1994-1999 and 2017-2019 for the presence of antibodies and MYXV-DNA. First, we screened all serum samples using a rabbit commercial indirect ELISA (iELISA) and then tested a subset of these samples in parallel using indirect immunofluorescence test (IFT), competitive ELISA (cELISA) and qPCR targeting M000.5L/R gene conserved in MYXV and ha-MYXV. The cut-off of iELISA relative index 10 = 6.1 was selected from a semiparametric finite mixture analysis aiming to minimize the probability of false positive results. Overall, MYXV related-antibodies were detected in 57 hares (12.6%) including 38 apparently healthy hares (n = 10, sampled in 1994-1999, none MYXV-DNA positive, and n = 28 sampled in 2017-2019 of which four were also ha-MYXV-DNA positive) and 19 found-dead and ha-MYXV-DNA-positive sampled in 2018-2019. Interestingly, four seronegative hares sampled in 1997 were MYXV-DNA positive by qPCR, the result being confirmed by sequencing of three of them. For the Iberian hares hunted or live trapped (both apparently health), seroprevalence was significantly higher in 2017-2019 (13.0%, CI95% 9.2-18.2%) than in 1994-1999 (5.4%, CI95% 3.0-9.6%) (p = .009). Within the second period, seroprevalence was significantly higher in 2019 compared to 2017 (24.7 vs 1.7% considering all the sample, p = .007), and lower during the winter than the autumn (p < .001). While our molecular and serological results show that Iberian hares have been in contact with MYXV or an antigenically similar virus at least since 1996, they also show an increase in seroprevalence in 2018-2019. The remote contact with MYXV may have occurred with strains that circulated in rabbits, or with unnoticed strains already circulating in Iberian hare populations. This work strongly suggests the infection of Iberian hares with MYXV or an antigenically related virus, at least 20 years before the severe virus outbreaks were registered in 2018.


Assuntos
Lebres , Myxoma virus , Animais , Coelhos , Estudos Retrospectivos , Estudos Soroepidemiológicos , DNA Viral , Estações do Ano , Myxoma virus/genética
3.
Transbound Emerg Dis ; 69(4): 1684-1690, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35366052

RESUMO

Myxomatosis is an emergent disease in the Iberian hare (Lepus granatensis). In this species, the disease is caused by a natural recombinant virus (ha-myxoma virus [MYXV]) identified for the first time in 2018 and has since been responsible for a large number of outbreaks in Spain and Portugal. The ha-MYXV, which harbours a 2.8 Kb insert-disrupting gene M009L, can also infect and cause disease in wild and domestic rabbits, despite being less frequently identified in rabbits. During the laboratory investigations of wild leporids found dead in Portugal carried out within the scope of a Nacional Surveillance Plan (Dispatch 4757/17, MAFDR), co-infection events by classic (MYXV) and naturally recombinant (ha-MYXV) strains were detected in both one Iberian hare and one European wild rabbit (Oryctolagus cuniculus algirus). These two cases were initially detected by a multiplex qPCR detection of MYXV and ha-MYXV and subsequently confirmed by conventional PCR and sequencing of the M009L gene, which contains an ha-MYXV-specific insertion. To our knowledge, this is the first documented report of co-infection by classic MYXV and ha-MYXV strains either in Iberian hare or in European wild rabbit. It is also the first report of infection of an Iberian hare by a classic MYXV strain. These findings highlight the continuous evolution of the MYXV and the frequent host range changes that justify the nonstop monitoring of the sanitary condition of wild Leporidae populations in the Iberian Peninsula.


Assuntos
Coinfecção , Lebres , Myxoma virus , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Especificidade de Hospedeiro , Myxoma virus/genética , Filogenia , Coelhos
4.
Vaccines (Basel) ; 10(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35334987

RESUMO

The recent emergence of a new myxoma virus capable of causing disease in the Iberian hare (Lepus granatensis) has resulted in numerous outbreaks with high mortality leading to the reduction, or even the disappearance, of many local populations of this wild species in the Iberian Peninsula. Currently, the available vaccines that prevent myxomatosis in domestic rabbits caused by classic strains of myxoma virus have not been assessed for use in Iberian hares. The main objective of this study was to evaluate the efficacy of commercial rabbit vaccines in Iberian hares and wild rabbits against the natural recombinant myxoma virus (ha-MYXV), bearing in mind its application in specific scenarios where capture is possible, such as genetic reserves. The study used a limited number of animals (pilot study), 15 Iberian hares and 10 wild rabbits. Hares were vaccinated with Mixohipra-FSA vaccine (Hipra) and Mixohipra-H vaccine (Hipra) using two different doses, and rabbits were vaccinated with the Mixohipra-H vaccine or the Nobivac Myxo-RHD PLUS (MSD Animal Health) using the recommended doses for domestic rabbits. After the vaccination trials, the animals were challenged with a wild type strain of ha-MYXV. The results showed that no protection to ha-MYXV challenge was afforded when a commercial dose of Mixohipra-FSA or Mixohipra-H vaccine was used in hares. However, the application of a higher dose of Mixohipra-FSA vaccine may induce protection and could possibly be used to counteract the accelerated decrease of wild hare populations due to ha-MYXV emergence. The two commercial vaccines (Mixohipra-H and Nobivac Myxo-RHD PLUS) tested in wild rabbits were fully protective against ha-MYXV infection. This knowledge gives more insights into ha-MYXV management in hares and rabbits and emphasises the importance of developing a vaccine capable of protecting wild populations of Iberian hare and wild rabbit towards MYXV and ha-MYXV strains.

5.
Hist. ciênc. saúde-Manguinhos ; 28(supl.1): 103-122, out.-dez. 2021. graf
Artigo em Português | LILACS | ID: biblio-1360462

RESUMO

Resumo O artigo analisa a singularidade dos processos históricos, científicos e políticos que vão da descoberta da doença que passou a ser conhecida como mixomatose infecciosa, causada pelo vírus do mixoma (MYXV), à sua aplicação no controle de uma praga de coelhos na Austrália. A narrativa segue especialmente as pesquisas de Henrique de Beaurepaire Aragão, pesquisador do Instituto Oswaldo Cruz, e posteriormente os esforços da cientista Jean Macnamara para promover pesquisas e implementar o MYXV na Austrália. Foram consultadas notas de pesquisa de cientistas, documentos oficiais que registraram o desenvolvimento dos experimentos, bem como periódicos. Nesse processo, foi considerado o desenvolvimento histórico do campo de estudos da virologia e controle biológico.


Abstract This article analyzes the singularity of historical, scientific, and political processes from the discovery of the disease caused by the myxoma virus (MYXV) that came to be known as infectious myxomatosis to the application of this virus against a plague of rabbits in Australia. This narrative focuses on research by Henrique de Beaurepaire Aragão, a researcher at the Oswaldo Cruz Institute, and later efforts by the scientist Jean Macnamara to promote studies and implement MYXV in Australia. The scientists' research notes were consulted, along with official documents recording the experiments and periodicals. In this process, the historical development of virology and biological controls as a field of study was also considered.


Assuntos
Coelhos , Controle de Pragas , Controle Biológico de Vetores , Mixomatose Infecciosa , Austrália , Virologia , História do Século XX
6.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769480

RESUMO

A natural recombinant myxoma virus (referred to as ha-MYXV or MYXV-Tol08/18) emerged in the Iberian hare (Lepus granatensis) and the European rabbit (Oryctolagus cuniculus) in late 2018 and mid-2020, respectively. This new virus is genetically distinct from classic myxoma virus (MYXV) strains that caused myxomatosis in rabbits until then, by acquiring an additional 2.8 Kbp insert within the m009L gene that disrupted it into ORFs m009L-a and m009L-b. To distinguish ha-MYXV from classic MYXV strains, we developed a robust qPCR multiplex technique that combines the amplification of the m000.5L/R duplicated gene, conserved in all myxoma virus strains including ha-MYXV, with the amplification of two other genes targeted by the real-time PCR systems designed during this study, specific either for classic MYXV or ha-MYXV strains. The first system targets the boundaries between ORFs m009L-a and m009L-b, only contiguous in classic strains, while the second amplifies a fragment within gene m060L, only present in recombinant MYXV strains. All amplification reactions were validated and normalized by a fourth PCR system directed to a housekeeping gene (18S rRNA) conserved in eukaryotic organisms, including hares and rabbits. The multiplex PCR (mPCR) technique described here was optimized for Taqman® and Evagreen® systems allowing the detection of as few as nine copies of viral DNA in the sample with an efficiency > 93%. This real-time multiplex is the first fast method available for the differential diagnosis between classic and recombinant MYXV strains, also allowing the detection of co-infections. The system proves to be an essential and effective tool for monitoring the geographical spread of ha-MYXV in the hare and wild rabbit populations, supporting the management of both species in the field.


Assuntos
Lagomorpha/virologia , Myxoma virus , Mixomatose Infecciosa/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Animais Selvagens , Diagnóstico Diferencial , Transferência Genética Horizontal/genética , Tipagem Molecular/métodos , Tipagem Molecular/veterinária , Myxoma virus/classificação , Myxoma virus/genética , Mixomatose Infecciosa/virologia , Coelhos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espanha
7.
Transbound Emerg Dis ; 68(3): 1275-1282, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32786107

RESUMO

Myxomatosis is an infectious disease caused by the myxoma virus (MYXV), which has very high mortality rates in European wild rabbits (Oryctolagus cuniculus). While sporadic cases of myxomatosis have also been reported in some hare species, these lagomorphs are considered to have a low susceptibility to MYXV infection. In the present study, we describe the spatiotemporal evolution and main epidemiological findings of novel hare MYXV (ha-MYXV or MYXV-Tol) epidemics in Iberian hares (Lepus granatensis) in Spain. In the period 2018-2020, a total of 487 hares from 372 affected areas were confirmed to be MYXV-infected by PCR. ha-MYXV outbreaks were detected in most of the Spanish regions where the Iberian hare is present. The spatial distribution was not homogeneous, with most outbreaks concentrated in the southern and central parts of Spain. Consecutive outbreaks reported in the last two years suggest endemic circulation in Spain of this emerging virus. A retrospective study carried out just after the first epidemic period (2018-2019) revealed that the virus could have been circulating since June 2018. The number of outbreaks started to rise in July, peaked during the first half of August and October and then decreased sharply until January 2019. The apparent mean mortality rate was 55.4% (median: 70%). The results indicated high susceptibility of the Iberian hare to ha-MYXV infection, but apparent resistance in the sympatric hare species present in Spain and less infectivity in European rabbits. The novel ha-MYXV has had significant consequences on the health status of Iberian hare populations in Spain, which is of animal health and conservation concern. The present study contributes to a better understanding of ha-MYXV emergence and will provide valuable information for the development of control strategies. Further research is warranted to assess the impact of this emerging virus on wild lagomorph populations and to elucidate its ecological implications for Iberian Mediterranean ecosystems.


Assuntos
Epidemias/veterinária , Monitoramento Epidemiológico/veterinária , Lebres , Myxoma virus/isolamento & purificação , Infecções por Poxviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Animais , Feminino , Masculino , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/virologia , Estudos Retrospectivos , Espanha/epidemiologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/virologia
8.
Transbound Emerg Dis ; 68(4): 2616-2621, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33119958

RESUMO

Myxomatosis is an emergent disease in the Iberian hare, having been considered a rabbit disease for decades. Genome sequencing of the strains obtained from Iberian hares with myxomatosis showed these to be distinct from the classical ones that circulated in rabbits since the virus introduction in Europe, in 1952. The main genomic difference in this natural recombinant hare myxoma virus (ha-MYXV) is the presence of an additional 2.8 kb region disrupting the M009L gene and adding a set of genes homologous to the myxoma virus (MYXV) genes M060R, M061R, M064R, M065R and M066R originated in Poxviruses. After the emergence of this recombinant virus (ha-MYXV) in hares, in the summer of 2019, the ha-MYXV was not detected in rabbit surveys, suggesting an apparent species segregation with the MYXV classic strains persistently circulating in rabbits. Recently, a group of six unvaccinated European rabbits (Oryctolagus cuniculus cuniculus) from a backyard rabbitry in South Portugal developed signs of myxomatosis (anorexia, dyspnoea, oedema of eyelids, head, ears, external genitals and anus, and skin myxomas in the base of the ears). Five of them died within 24-48 hr of symptom onset. Molecular analysis revealed that only the recombinant MYXV was present. This is the first documented report of a recombinant hare myxoma virus in farm rabbits associated with high mortality, which increases the concern for the future of both the Iberian hare and wild rabbits and questions the safety of the rabbit industry. This highlights the urgent need to evaluate the efficacy of available vaccines against this new MYXV.


Assuntos
Myxoma virus , Mixoma , Viroses , Agricultura , Animais , Fazendas , Mixoma/veterinária , Myxoma virus/genética , Coelhos , Viroses/veterinária
9.
Viruses ; 12(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028004

RESUMO

In late 2018, an epidemic myxomatosis outbreak emerged on the Iberian Peninsula leading to high mortality in Iberian hare populations. A recombinant Myxoma virus (strains MYXV-Tol and ha-MYXV) was rapidly identified, harbouring a 2.8 kbp insertion containing evolved duplicates of M060L, M061L, M064L, and M065L genes from myxoma virus (MYXV) or other Poxviruses. Since 2017, 1616 rabbits and 125 hares were tested by a qPCR directed to M000.5L/R gene, conserved in MYXV and MYXV-Tol/ha-MYXV strains. A subset of the positive samples (20%) from both species was tested for the insert with MYXV being detected in rabbits and the recombinant MYXV in hares. Recently, three wild rabbits were found dead South of mainland Portugal, showing skin oedema and pulmonary lesions that tested positive for the 2.8 kbp insert. Sequencing analysis showed 100% similarity with the insert sequences described in Iberian hares from Spain. Viral particles were observed in the lungs and eyelids of rabbits by electron microscopy, and isolation in RK13 cells attested virus infectivity. Despite that the analysis of complete genomes may predict the recombinant MYXV strains' ability to infect rabbit, routine analyses showed species segregation for the circulation of MYXV and recombinant MYXV in wild rabbit and in Iberian hares, respectively. This study demonstrates, however, that recombinant MYXV can effectively infect and cause myxomatosis in wild rabbits and domestic rabbits, raising serious concerns for the future of the Iberian wild leporids while emphasises the need for the continuous monitoring of MYXV and recombinant MYXV in both species.


Assuntos
Genoma Viral , Lebres/virologia , Myxoma virus/genética , Myxoma virus/isolamento & purificação , Coelhos/virologia , Animais , Feminino , Masculino , Mixomatose Infecciosa/patologia , Mixomatose Infecciosa/virologia , Portugal , Espanha
10.
Mol Ther Oncolytics ; 18: 171-188, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32695875

RESUMO

Multiple myeloma (MM) is a hematological malignancy of monoclonal plasma cells that remains incurable. Standard treatments for MM include myeloablative regimens and autologous cell transplantation for eligible patients. A major challenge of these treatments is the relapse of the disease due to residual MM in niches that become refractory to treatments. Therefore, novel therapies are needed in order to eliminate minimal residual disease (MRD). Recently, our laboratory reported that virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an allogeneic transplant mouse model. In this study, we demonstrate the capacity of donor autologous murine leukocytes, pre-armed with MYXV, to eliminate MRD in a BALB/c MM model. We report that MYXV-armed bone marrow (BM) carrier leukocytes are therapeutically superior to MYXV-armed peripheral blood mononuclear cells (PBMCs) or free virus. Importantly, when cured survivor mice were re-challenged with fresh myeloma cells, they developed immunity to the same MM that had comprised MRD. In vivo imaging demonstrated that autologous carrier cells armed with MYXV were very efficient at delivery of MYXV into the recipient tumor microenvironment. Finally, we demonstrate that treatment with MYXV activates the secretion of pro-immune molecules from the tumor bed. These results highlight the utility of exploiting autologous leukocytes to enhance tumor delivery of MYXV to treat MRD in vivo.

11.
Vaccines (Basel) ; 8(2)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456120

RESUMO

Myxoma virus (MYXV) is the prototypic member of the Leporipoxvirus genus of the Poxviridae family of viruses. In nature, MYXV is highly restricted to leporids and causes a lethal disease called myxomatosis only in European rabbits (Oryctologous cuniculus). However, MYXV has been shown to also productively infect various types of nonrabbit transformed and cancer cells in vitro and in vivo, whereas their normal somatic cell counterparts undergo abortive infections. This selective tropism of MYXV for cancer cells outside the rabbit host has facilitated its development as an oncolytic virus for the treatment of different types of cancers. Like other poxviruses, MYXV possesses a large dsDNA genome which encodes an array of dozens of immunomodulatory proteins that are important for host and cellular tropism and modulation of host antiviral innate immune responses, some of which are rabbit-specific and others can function in nonrabbit cells as well. This review summarizes the functions of one such MYXV host range protein, M029, an ortholog of the larger superfamily of poxvirus encoded E3-like dsRNA binding proteins. M029 has been identified as a multifunctional protein involved in MYXV cellular and host tropism, antiviral responses, and pathogenicity in rabbits.

12.
Methods Mol Biol ; 1937: 189-209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706397

RESUMO

Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.


Assuntos
Engenharia Genética/métodos , Vetores Genéticos/genética , Poxviridae/crescimento & desenvolvimento , Cultura de Vírus/métodos , Animais , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Terapia Genética , Humanos , Poxviridae/genética , Transgenes , Células Vero
13.
Mol Ther Oncolytics ; 6: 90-99, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28875159

RESUMO

A therapeutic approach to improve treatment outcome of ovarian cancer (OC) in patients is urgently needed. Myxoma virus (MYXV) is a candidate oncolytic virus that infects to eliminate OC cells. We found that in vitro MYXV treatment enhances cisplatin or gemcitabine treatment by allowing lower doses than the corresponding IC50 calculated for primary OC cells. MYXV also affected OC patient ascites-associated CD14+ myeloid cells, one of the most abundant immunological components of the OC tumor environment; without causing cell death, MYXV infection reduces the ability of these cells to secrete cytokines such as IL-10 that are signatures of the immunosuppressive tumor environment. We found that pretreatment with replication-competent but not replication-defective MYXV-sensitized tumor cells to later cisplatin treatments to drastically improve survival in a murine syngeneic OC dissemination model. We thus conclude that infection with replication-competent MYXV before cisplatin treatment markedly enhances the therapeutic benefit of chemotherapy. Treatment with replication-competent MYXV followed by cisplatin potentiated splenocyte activation and IFNγ expression, possibly by T cells, when splenocytes from treated mice were stimulated with tumor cell antigen ex vivo. The impact on immune responses in the tumor environment may thus contribute to the enhanced antitumor activity of combinatorial MYXV-cisplatin treatment.

14.
Virology ; 503: 94-102, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28157624

RESUMO

In humans, deleterious mutations in the sterile α motif domain protein 9 (SAMD9) gene are associated with cancer, inflammation, weakening of the immune response, and developmental arrest. However, the biological function of SAMD9 and its sequence-structure relationships remain to be characterized. Previously, we found that an essential host range factor, M062 protein from myxoma virus (MYXV), antagonized the function of human SAMD9. In this study, we examine the interaction between M062 and human SAMD9 to identify regions that are critical to SAMD9 function. We also characterize the in vitro kinetics of the interaction. In an infection assay, exogenous expression of SAMD9 N-terminus leads to a potent inhibition of wild-type MYXV infection. We reason that this effect is due to the sequestration of viral M062 by the exogenously expressed N-terminal SAMD9 region. Our studies reveal the first molecular insight into viral M062-dependent mechanisms that suppress human SAMD9-associated antiviral function.


Assuntos
Myxoma virus/metabolismo , Proteínas/antagonistas & inibidores , Proteínas Virais/metabolismo , Células A549 , Animais , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Especificidade de Hospedeiro , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Myxoma virus/genética , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas Virais/genética
15.
Viruses ; 8(3): 85, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27011200

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a curative potential for many hematologic malignancies and blood diseases. However, the success of allo-HSCT is limited by graft-versus-host disease (GVHD), an immunological syndrome that involves inflammation and tissue damage mediated by donor lymphocytes. Despite immune suppression, GVHD is highly incident even after allo-HSCT using human leukocyte antigen (HLA)-matched donors. Therefore, alternative and more effective therapies are needed to prevent or control GVHD while preserving the beneficial graft-versus-cancer (GVC) effects against residual disease. Among novel therapeutics for GVHD, oncolytic viruses such as myxoma virus (MYXV) are receiving increased attention due to their dual role in controlling GVHD while preserving or augmenting GVC. This review focuses on the molecular basis of GVHD, as well as state-of-the-art advances in developing novel therapies to prevent or control GVHD while minimizing impact on GVC. Recent literature regarding conventional and the emerging therapies are summarized, with special emphasis on virotherapy to prevent GVHD. Recent advances using preclinical models with oncolytic viruses such as MYXV to ameliorate the deleterious consequences of GVHD, while maintaining or improving the anti-cancer benefits of GVC will be reviewed.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/terapia , Terapia Viral Oncolítica/métodos , Animais , Avaliação Pré-Clínica de Medicamentos , Doença Enxerto-Hospedeiro/fisiopatologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Myxoma virus/crescimento & desenvolvimento , Transplante Homólogo/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...