RESUMO
Objetivo: O presente trabalho explora a percepção de gestores das áreas de Tecnologia e Inovação de hospitais privados brasileiros acerca do uso da inteligência artificial (IA) na saúde, com foco específico na personalização da experiência do paciente nesses hospitais. Métodos: Este trabalho se caracteriza como uma pesquisa descritiva transversal quantitativa. Foi desenvolvido um questionário com 14 questões que foi distribuído a uma amostra de gestores de tecnologia e inovação em hospitais, com o apoio da Associação Nacional de Hospitais Privados (ANAHP). O questionário foi disponibilizado em versão online à base de 122 hospitais associados à ANAHP. Resultados: Foram obtidas 30 respostas completas (aproximadamente 25% da base total), conquistando percepções sobre as vantagens, desvantagens e desafios éticos e técnicos relacionados ao emprego da IA na área clínica, particularmente em ambientes hospitalares. As respostas coletadas ratificaram o otimismo e a reserva dos profissionais de tecnologia e inovação em hospitais privados quanto ao poder e aos impactos da IA na personalização da experiência do paciente, bem como indicaram a necessidade de treinamento adequado para os funcionários desses hospitais, a fim de maximizar os benefícios da IA como ferramenta de apoio à tomada de decisão. Conclusões: Este trabalho é uma fonte de consulta para instituições de saúde que considerem utilizar a IA na personalização da experiência do paciente e queiram estabelecer treinamentos de pessoal baseados nesses princípios. Desse modo, os resultados aqui obtidos oferecem orientações valiosas para a adoção plena de IA no setor de saúde.
Objective: This study explores the perception of managers in the Technology and Innovation areas of Brazilian private hospitals regarding the use of artificial intelligence (AI) in healthcare, specifically focusing on patient experience personalization in these hospitals. Methods: This study is characterized as a quantitative cross-sectional descriptive research. A questionnaire with 14 questions was developed and distributed to a sample of technology and innovation managers in hospitals, with the support of the National Association of Private Hospitals (NAPH). The questionnaire was made available online to a base of 122 hospitals associated with NAPH. Results: 30 complete responses were obtained (nearly 25% of the total base), capturing perceptions on the advantages, disadvantages, and ethical and technical challenges related to the use of AI in clinical settings, particularly in hospital environments. The collected responses affirmed the optimism and caution of technology and innovation professionals in private hospitals regarding the power and impacts of AI on patient experience personalization, and indicated the need for adequate training for employees in these hospitals to maximize the benefits of AI as a decision support tool. Conclusions: This study serves as a reference for healthcare institutions considering the use of AI in patient experience personalization and aiming to establish personnel training based on these principles. Thus, the results obtained here offer valuable guidance for the full adoption of AI in the healthcare sector.
RESUMO
Introduction: the Coronavirus Disease 2019 (COVID-19) is a viral disease which has been declared a pandemic by the WHO. Diagnostic tests are expensive and are not always available. Researches using machine learning (ML) approach for diagnosing SARS-CoV-2 infection have been proposed in the literature to reduce cost and allow better control of the pandemic. Objective: we aim to develop a machine learning model to predict if a patient has COVID-19 with epidemiological data and clinical features. Methods: we used six ML algorithms for COVID-19 screening through diagnostic prediction and did an interpretative analysis using SHAP models and feature importances. Results: our best model was XGBoost (XGB) which obtained an area under the ROC curve of 0.752, a sensitivity of 90%, a specificity of 40%, a positive predictive value (PPV) of 42.16%, and a negative predictive value (NPV) of 91.0%. The best predictors were fever, cough, history of international travel less than 14 days ago, male gender, and nasal congestion, respectively. Conclusion: we conclude that ML is an important tool for screening with high sensitivity, compared to rapid tests, and can be used to empower clinical precision in COVID-19, a disease in which symptoms are very unspecific.
Introdução: a Doença do Coronavírus 2019 (COVID-19) é uma doença viral que foi declarada uma pandemia pela OMS. Testes diagnósticos são caros e nem sempre estão disponíveis. Pesquisas utilizando a abordagem de aprendizado de máquina (ML) para o diagnóstico de infecção por SARS-CoV-2 têm sido propostas na literatura para reduzir custos e permitir melhor controle da pandemia.Objetivo: nosso objetivo é desenvolver um modelo de aprendizado de máquina para prever se um paciente tem COVID-19 com dados epidemiológicos e características clínicas.Método: usamos seis algoritmos de ML para triagem de COVID-19 por meio de predição diagnóstica e fizemos uma análise interpretativa usando modelos SHAP e importâncias de recursos.Resultados: nosso melhor modelo foi o XGBoost (XGB) que obteve área sob a curva ROC de 0,752, sensibilidade de 90%, especificidade de 40%, valor preditivo positivo (VPP) de 42,16% e valor preditivo negativo ( VPL) de 91,0%. Os melhores preditores foram febre, tosse, história de viagem internacional há menos de 14 dias, sexo masculino e congestão nasal, respectivamente.Conclusão: Concluímos que o ML é uma importante ferramenta de triagem com alta sensibilidade, em comparação aos testes rápidos, e pode ser usado para potencializar a precisão clínica na COVID-19, doença em que os sintomas são muito inespecíficos.