Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.147
Filtrar
1.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38959866

RESUMO

FexGeTe2(x= 3, 5) are two-dimensional ferromagnetic (FM) materials that have gained significant attention from researchers due to their relatively high Curie temperature and tunability. However, the methods for preparing FM nanoparticles (FNPs) and large-area FexGeTe2films are still in the early stages. Here, we studied the magnetic properties of FexGeTe2FNPs exfoliated via wet exfoliation in pure water. The coercive field of Fe3GeTe2FNPs increases significantly, up to 60 times, while that of Fe5GeTe2only slightly increases from that of bulk crystals. Further investigation related to the dimension of nanoparticles and the Henkel plot analysis reveals that the variation in their coercive field stems from the material's thickness-dependent coercive field and the type of term that governs the interaction between single-domain nanoparticles. Our work demonstrates a facile method for preparing FNPs using van der Waals FM materials and tuning their magnetic properties.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38981447

RESUMO

Magnetic nanoparticle (MNP)-mediated precision magnet therapy plays a crucial role in treating various diseases. This therapeutic strategy compensates for the limitations of low spatial resolution and low focusing of magnetic stimulation, and realizes the goal of wireless teletherapy with precise targeting of focal areas. This paper summarizes the preparation methods of magnetic nanomaterials, the properties of magnetic nanoparticles, the biological effects, and the measurement methods for detecting magnetism; discusses the research progress of precision magnetotherapy in the treatment of psychiatric disorders, neurological injuries, metabolic disorders, and bone-related disorders, and looks forward to the future development trend of precision magnet therapy. .

3.
Artigo em Inglês | MEDLINE | ID: mdl-38984908

RESUMO

The synthesis, crystal structure and magnetic properties of an oxamate-containing erbium(III) complex, namely, tetrabutylammonium aqua[N-(2,4,6-trimethylphenyl)oxamato]erbium(III)-dimethyl sulfoxide-water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted oxamate ligands and one water molecule in a nine-coordinated environment, together with one tetrabutylammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) molecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic measurements were carried out for this mononuclear complex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K.

4.
Nano Lett ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989866

RESUMO

Two-dimensional magnet CrI3 is a promising candidate for spintronic devices. Using nonadiabatic molecular dynamics and noncollinear spin time-dependent density functional theory, we investigated hole spin relaxation in two-dimensional CrI3 and its dependence on magnetic configurations, impacted by spin-orbit and electron-phonon interactions. Driven by in-plane and out-of-plane iodine motions, the relaxation rates vary, extending from over half a picosecond in ferromagnetic systems to tens of femtoseconds in certain antiferromagnetic states due to significant spin fluctuations, associated with the nonadiabatic spin-flip in tuning to the adiabatic flip. Antiferromagnetic CrI3 with staggered layer magnetic order notably accelerates adiabatic spin-flip due to enhanced state degeneracy and additional phonon modes. Ferrimagnetic CrI3 shows a transitional behavior between ferromagnetic and antiferromagnetic types as the magnetic moment changes. These insights into the spin dynamics of CrI3 underscore its potential for rapid-response spintronic applications and advance our understanding of two-dimensional materials for spintronics.

5.
Magn Reson Med ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968006

RESUMO

The "5 gauss line" is a phrase that is likely to be familiar to everyone working with MRI, but what is its significance, how was it defined, and what changes are currently in progress? This review explores the history of 5 gauss (0.5 mT) as a threshold for protecting against inadvertently putting cardiac pacemakers, implantable cardioverter defibrillators, and other active implantable medical devices into a "magnet mode." Additionally, it describes the background to the recent change of this threshold to 9 gauss (0.9 mT) in the International Standard IEC 60601-2-33 edition 4.0 that defines basic safety requirements for MRI. Practical implications of this change and some ongoing and emerging issues are also discussed.

6.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893739

RESUMO

Bonded permanent NdFeB magnets are useful in numerous applications, including electric vehicles, and the demand is steadily increasing. A major drawback is corrosion due to inadequate wetting of the magnetic particles by liquid polymers such as polyphenylene sulfide or polyamide. Recently reported methods for corrosion inhibition are summarized, and their applicability is critically evaluated. The phosphorylation of magnetic particles inhibits corrosion but does not enable appropriate properties in harsh environments. The same applies to metallic coatings, which usually contain aluminum and zinc. Advanced epoxy adhesives are a promising solution, although some authors have reported inadequate corrosion resistance. The application of composite coatings seems like an appropriate solution, but the exact mechanisms are yet to be studied.

7.
Materials (Basel) ; 17(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893899

RESUMO

Hydrogenation-Disproportionation-Desorption-Recombination (HDDR) Nd2Fe14B particles have excellent magnetic properties, but the magnetic properties of powder are not uniform across different particle sizes. The remanence and maximum magnetic energy products of samples with a particle size of 120 µm are 14.0 kGs and 41.35 MGOe, while the products of samples with a particle size of 60 µm are only 13.3 kGs and 36.31 MGOe. The macroscopic morphology of HDDR Nd2Fe14B particles and the gradient distribution of microstructures in different micro-regions were observed. By modifying the macroscopic morphology of the particles, the poorly oriented clusters on the surface of the particles were precisely eliminated, and the remanence and maximum magnetic energy products of the particles increased to 14.5 kGs and 45 MGOe, respectively. Compared with the original particles, the samples after mechanical grinding had better grain arrangement. The effects of the nanocrystalline c-axis and field misalignment angle θ on the magnetic properties of HDDR Nd2Fe14B particles were investigated through micromagnetic simulation. The targeted removal of macroscopic defects on the particle surface contributed to a 3.6% increase in remanence and an 8.8% increase in the maximum magnetic energy product, offering a promising approach to enhance the microstructure of high-performance HDDR Nd2Fe14B particles.

8.
Chemphyschem ; : e202400396, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889310

RESUMO

The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.

9.
Heliyon ; 10(11): e32358, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912490

RESUMO

In this work, a bibliometric study was carried out to perform a scientific and technological analysis of exchange-spring magnets, an alternative permanent magnet synthesized by reducing or eliminating the use of critical raw materials, such as rare earths. The bibliometric analysis utilized the Scopus database, Orbit-Intellixir, VOSviewer, Orbit-Intelligence and Loglet Lab 4 software for maturity analysis, keyword network representations, charts and graphs for scientific articles and/or patents. A special analysis was performed on nanocomposite and thin-films systems based on Nd-Fe-B, SmCo5 and Mn-Al-C alloys, either mixed or layered with a soft magnetic phase, where relevant information on their magnetic parameters was compilated in tables, highlighting the nanostructured systems that have been exhibited the best permanent magnet properties. The bibliometric analysis revealed that the primary production of scientific articles is concentrated in industrialized countries, and they are predominantly published in journals dedicated to magnetism. A patents analysis showed that Nissan motors is by far the main applicant, with most of its patents is focused on technological domains related to electrical machinery, apparatus, energy and metallurgy. On the other hand, the S-curve of maturity for scientific articles indicated that the study of exchange-spring magnets is entering a mature state. In contrast, patent production, following a bi-logistic model, is in a saturation stage for the second S-curve. Maturity analyses, employing S-curve, bi-logistic and multi-logistic models, were performed on nanocomposites and thin films based on Nd-Fe-B, SmCo5 and Mn-Al-C alloys, respectively. We found that the investigation in Nd-Fe-B-based alloys is close to enter to a scientific saturation stage, while an average growth stage is observed for the SmCo5 and Mn-Al-C-based alloys. This suggests that research on alternative magnets, capable of fulfilling technological applications where a Nd-Fe-B magnets are commonly used, is a topic of significant interest.

10.
J Clin Med ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930016

RESUMO

Background/Objectives: Anemia is a frequent multifactorial co-morbidity in end-stage kidney disease (ESKD) associated with morbidity and poor QoL. Apart from insufficient erythropoietin formation, iron deficiency (ID) contributes to anemia development. Identifying patients in need of iron supplementation with current ID definitions is difficult since no good biomarker is available to detect actual iron needs. Therefore, new diagnostic tools to guide therapy are needed. Methods: We performed a prospective cohort study analyzing tissue iron content with MRI-based R2*-relaxometry in 20 anemic ESKD patients and linked it with iron biomarkers in comparison to 20 otherwise healthy individuals. Results: ESKD patients had significantly higher liver (90.1 s-1 vs. 36.1 s-1, p < 0.001) and spleen R2* values (119.8 s-1 vs. 19.3 s-1, p < 0.001) compared to otherwise healthy individuals, while their pancreas and heart R2* values did not significantly differ. Out of the 20 ESKD patients, 17 had elevated spleen and 12 had elevated liver R2* values. KDIGO guidelines (focusing on serum iron parameters) would recommend iron supplementation in seven patients with elevated spleen and four patients with elevated liver R2* values. Conclusions: These findings highlight that liver and especially spleen iron concentrations are significantly higher in ESKD patients compared to controls. Tissue iron overload diverged from classical iron parameters suggesting need of iron supplementation. Measurement of MRI-guided tissue iron distribution might help guide treatment of anemic ESKD patients.

11.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930875

RESUMO

Two cobalt(II) complexes [CoL1](OTf)2 (1, L1 = 6,6''-di(anilino)-4'-phenyl-2,2':6',2''-terpyridine) and [CoL2](OTf)2·MeOH (2, L2 = 6,6''-di(N,N-dimethylamino)-4'-phenyl-2,2':6',2''-terpyridine) were synthesized and characterized. Crystal structure analyses showed that the spin carries were coordinated by five N atoms from the neutral pentaaza ligands, forming distorted trigonal bipyramidal coordination environments. Ab initio calculations revealed large easy-axial anisotropy in complexes 1 and 2. Magnetic measurements suggest that complexes 1 and 2 are field-induced single-molecule magnets, whose relaxations are mainly predominated by Raman and direct processes.

12.
Sensors (Basel) ; 24(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931560

RESUMO

We present two magnetic particle imaging (MPI) systems with bore sizes of 75 mm and 100 mm, respectively, using three-dimensionally arranged permanent magnets for excitation and frequency mixing magnetic detection (FMMD) coils for detection. A rotational and a translational stage were combined to move the field free line (FFL) and acquire the MPI signal, thereby enabling simultaneous overall translation and rotational movement. With this concept, the complex coil system used in many MPI systems, with its high energy consumption to generate the drive field, can be replaced. The characteristic signal of superparamagnetic iron oxide (SPIO) nanoparticles was generated via movement of the FFL and acquired using the FMMD coil. The positions of the stages and the occurrence of the f1 + 2f2 harmonics were mapped to reconstruct the spatial location of the SPIO. Image reconstruction was performed using Radon and inverse Radon transformations. As a result, the presented method based on mechanical movement of permanent magnets can be used to measure the MPI, even for samples as large as 100 mm. Our research could pave the way for further technological developments to make the equipment human size, which is one of the ultimate goals of MPI.

13.
Sci Rep ; 14(1): 13095, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849387

RESUMO

Permanent magnet synchronous motor (PMSM) systems have gained popularity in various fields due to their advantages such as high speed, high accuracy, low maintenance, and high reliability. This paper presents the speed tracking control of a permanent magnet synchronous motor (PMSM) using a hybrid fractional order PI and type 2 fuzzy control with fractional order PD control (FOT2F-FOPD). The SRF-PLL observes the motor speed and estimates the rotor's position by interpreting the input voltages of the motor instead of using a sensor. Then, the controller parameters (gain, µ and λ) are tuned based on a novel optimization algorithm called Incomprehensible but Intelligible-in-time (IbI) Logics algorithm (ILA). The proposed controller enhances the performance of the system and regulates the speed of the motor under parameter variations such as the speed and the load. So, the proposed ILA (FOT2F-FOPD) controller is assessed using MATLAB/Simulink simulation and compared with other controller techniques. The proposed technique reduces the settling time, steady state error and overshoot by at least 65%, 54% and 53% respectively under load conditions compared with (PSO, optimized FOPD, FOPI and PI). While at no load condition, the settling time and the error are reduced by 31% and 12.5% respectively with no overshoot in output response. The results show a significant improvement in the performance of motors used with the application of the proposed controller and the employment of the (ILA) optimization compared with FOPI and PI controllers.

14.
Chem Asian J ; : e202400574, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38870468

RESUMO

A new Co(II) complex, [Co(NCS)2(L)2] (1) has been synthesized based on levamisole (L) as a new ligand. Single-crystal X-ray diffraction analyses confirm that the Co(II) ion is having a distorted tetrahedral coordination geometry in the complex. Notably strong intramolecular S∙∙∙S and S∙∙∙N interactions has been confirmed by employing Quantum Theory of Atoms in Molecules (QTAIM). These intramolecular interactions occur among the sulfur and nitrogen atoms of the levamisole ligands and also the nitrogen atoms of the thiocyanate. Direct current (dc) magnetic analyses reveal presence of zero field splitting (ZFS) and large magnetic anisotropy on Co(II). Detailed ab initio ligand field theory calculations quantitatively predicted the magnitude of ZFS. Prominent field-induced single-ion magnet (SIM) behavior was observed for 1 from dynamic magnetization measurements. Slow magnetic relaxation follows an Orbach mechanism with the effective energy barrier Ueff = 29.6 (7) K and relaxation time to = 1.4 (4) × 10-9 s.

15.
Natl Sci Rev ; 11(7): nwae165, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38883305

RESUMO

This article highlights a research study on the fabrication of a 25.2 T ultra-high field NMR magnet for an extreme condition user facility in China.

16.
Exp Biol Med (Maywood) ; 249: 10037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854792

RESUMO

In-ovo imaging using avian eggs has been described as a potential alternative to animal testing using rodents. However, imaging studies are hampered by embryonal motion producing artifacts. This study aims at systematically comparing isoflurane, desflurane and sevoflurane in three different concentrations in ostrich embryos. Biomagnetic signals of ostrich embryos were recorded analyzing cardiac action and motion. Ten groups comprising eight ostrich embryos each were investigated: Control, isoflurane (2%, 4%, and 6%), desflurane (6%, 12%, and 18%) and sevoflurane (3%, 5%, and 8%). Each ostrich egg was exposed to the same narcotic gas and concentration on development day (DD) 31 and 34. Narcotic gas exposure was upheld for 90 min and embryos were monitored for additional 75 min. Toxicity was evaluated by verifying embryo viability 24 h after the experiments. Initial heart rate of mean 148 beats/min (DD 31) and 136 beats/min (DD 34) decreased over time by 44-48 beats/minute. No significant differences were observed between groups. All narcotic gases led to distinct movement reduction after mean 8 min. Embryos exposed to desflurane 6% showed residual movements. Isoflurane 6% and sevoflurane 8% produced motion-free time intervals of mean 70 min after discontinuation of narcotic gas exposure. Only one embryo death occurred after narcotic gas exposure with desflurane 6%. This study shows that isoflurane, desflurane and sevoflurane are suitable for ostrich embryo immobilization, which is a prerequisite for motion-artifact free imaging. Application of isoflurane 6% and sevoflurane 8% is a) safe as no embryonal deaths occurred after exposure and b) effective as immobilization was observed for approx. 70 min after the end of narcotic gas exposure. These results should be interpreted with caution regarding transferability to other avian species as differences in embryo size and incubation duration exist.


Assuntos
Desflurano , Embrião não Mamífero , Isoflurano , Struthioniformes , Animais , Struthioniformes/embriologia , Embrião não Mamífero/efeitos dos fármacos , Anestésicos Inalatórios , Sevoflurano/efeitos adversos , Sevoflurano/farmacologia , Entorpecentes/toxicidade , Imobilização
17.
J Magn Reson ; 364: 107711, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38879928

RESUMO

In the design of ultrahigh field nuclear magnetic resonance (NMR) superconducting magnets, it typically requires a high homogeneous magnetic field in the diameter of spherical volume (DSV) to obtain high spectrum resolution. However, shimming technique presents challenges due to the magnet bore space limitations, as accurate measurement of magnetic field distribution is very difficult, especially for customized micro-bore magnets. In this study, we introduced an active shimming method that utilized iterative adjustment of shim coil currents to improve the magnetic field homogeneity based on the full width at half maximum (FWHM) of the spectrum. The proposed method can determine the optimal set of currents for shim coils, effectively enhancing spatial field homogeneity by converging the FWHM. Experimental validation on a 25 T NMR superconducting magnet demonstrated the efficacy of the proposed method. Specifically, the active shimming method improved the field homogeneity of a 10 mm DSV from 7.09 ppm to 2.27 ppm with only four shim coils, providing a superior magnetic field environment for solid NMR and further magnetic resonance imaging (MRI) experiment. Furthermore, the proposed method can be promoted to more customized micro-bore magnets that require high magnetic field homogeneity.

18.
Angew Chem Int Ed Engl ; : e202404271, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700507

RESUMO

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4) ⋅ 4H2O (H2quinha=quinaldichydroxamic acid, HClsal=5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4) ⋅ 3H2O (HClsaldt=4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S=0 to high-spin S=1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

19.
ISA Trans ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38797647

RESUMO

In this paper, a novel fixed-time non-singular terminal sliding mode control (NFNTSMC) method with an adaptive neural network (ANN) is proposed for permanent magnet synchronous motor (PMSM) system to improve PMSM performance. For nominal PMSM system without disturbance, a novel fixed-time non-singular terminal sliding mode control is designed to achieve fixed-time convergence property to improve the dynamic performance of the system. However, parameters mismatch and external load disturbances generally exist in PMSM system, the controller designed by NFNTSMC requires a large switching gain to ensure the robustness of the system, which will cause high-frequency sliding mode chattering. Therefore, an adaptive radial basis function (RBF) neural network is designed to approximate the unknown nonlinear lumped disturbance including parameters mismatch and external load disturbances online, and then the output of the neural network can be compensated to the NFNTSMC controller to reduce the switching gain and sliding mode chattering. Finally, the fixed-time convergence property and stability of the system are proved by Lyapunov method. The simulation and experimental results show that the presented strategy possesses satisfactory dynamic performance and strong robustness for PMSM system. And the proposed control scheme also provides an effective and systematic idea of the controller design for PMSM.

20.
J Adv Nurs ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803125

RESUMO

AIM: To examine if and how selected German hospitals use nurse-sensitive clinical indicators and perspectives on national/international benchmarking. DESIGN: Qualitative study. METHODS: In 2020, 18 expert interviews were conducted with key informants from five purposively selected hospitals, being the first in Germany implementing Magnet® or Pathway®. Interviews were analyzed using content analysis with deductive-inductive coding. The study followed the COREQ guideline. RESULTS: Three major themes emerged: first, limited pre-existence of and necessity for nurse-sensitive data. Although most interviewees reported data collection for hospital-acquired pressure ulcers and falls with injuries, implementation varied and interviewees highlighted the necessity to develop additional nurse-sensitive indicators for the German context. Second, the theme creating an enabling data environment comprised building clinicians' acceptance, establishing a data culture, and reducing workload by using electronic health records. Third, challenges and opportunities in establishing benchmarking were identified but most interviewees called for a national or European benchmarking system. CONCLUSION: The need for further development of nurse-sensitive clinical indicators and its implementation in practice was highlighted. Several actions were suggested at hospital level to establish an enabling data environment in clinical care, including a nationwide or European benchmarking system. IMPLICATIONS FOR THE PROFESSION AND PATIENT CARE: Involving nurses in data collection, comparison and benchmarking of nurse-sensitive indicators and their use in practice can improve quality of patient care. IMPACT: Nurse-sensitive indicators were rarely collected, and a need for action was identified. The study results show research needs on nurse-sensitive indicators for Germany and Europe. Measures were identified to create an enabling data environment in hospitals. An initiative was started in Germany to establish a nurse-sensitive benchmarking capacity. PATIENT OR PUBLIC CONTRIBUTION: Clinical practitioners and nurse/clinical managers were interviewed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...