Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.917
Filtrar
1.
Mol Imaging ; 23: 15353508241261583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952400

RESUMO

Objective: To investigate the performance of diffusion-tensor imaging (DTI) and hydrogen proton magnetic resonance spectroscopy (1H-MRS) parameters in predicting the immunohistochemistry (IHC) biomarkers of glioma. Methods: Patients with glioma confirmed by pathology from March 2015 to September 2019 were analyzed, the preoperative DTI and 1H-MRS images were collected, apparent diffusion coefficient (ADC) and fractional anisotropy (FA), in the lesion area were measured, the relative values relative ADC (rADC) and relative FA (rFA) were obtained by the ratio of them in the lesion area to the contralateral normal area. The peak of each metabolite in the lesion area of 1H-MRS image: N-acetylaspartate (NAA), choline (Cho), and creatine (Cr), and metabolite ratio: NAA/Cho, NAA/(Cho + Cr) were selected and calculated. The preoperative IHC data were collected including CD34, Ki-67, p53, S-100, syn, vimentin, NeuN, Nestin, and glial fibrillary acidic protein. Results: One predicting parameter of DTI was screened, the rADC of the Ki-67 positive group was lower than that of the negative group. Two parameters of 1H-MRS were found to have significant reference values for glioma grades, the NAA and Cr decreased as the grade of glioma increased, moreover, Ki-67 Li was negatively correlated with NAA and Cr. Conclusion: NAA and Cr have potential application value in predicting glioma grades and tumor proliferation activity. Only rADC has predictive value for Ki-67 expression among DTI parameters.


Assuntos
Neoplasias Encefálicas , Glioma , Imuno-Histoquímica , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto Jovem
2.
BMC Neurol ; 24(1): 235, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969967

RESUMO

BACKGROUND: Mild traumatic brain injury (mTBI) can result in lasting brain damage that is often too subtle to detect by qualitative visual inspection on conventional MR imaging. Although a number of FDA-cleared MR neuroimaging tools have demonstrated changes associated with mTBI, they are still under-utilized in clinical practice. METHODS: We investigated a group of 65 individuals with predominantly mTBI (60 mTBI, 48 due to motor-vehicle collision, mean age 47 ± 13 years, 27 men and 38 women) with MR neuroimaging performed in a median of 37 months post-injury. We evaluated abnormalities in brain volumetry including analysis of left-right asymmetry by quantitative volumetric analysis, cerebral perfusion by pseudo-continuous arterial spin labeling (PCASL), white matter microstructure by diffusion tensor imaging (DTI), and neurometabolites via magnetic resonance spectroscopy (MRS). RESULTS: All participants demonstrated atrophy in at least one lobar structure or increased lateral ventricular volume. The globus pallidi and cerebellar grey matter were most likely to demonstrate atrophy and asymmetry. Perfusion imaging revealed significant reductions of cerebral blood flow in both occipital and right frontoparietal regions. Diffusion abnormalities were relatively less common though a subset analysis of participants with higher resolution DTI demonstrated additional abnormalities. All participants showed abnormal levels on at least one brain metabolite, most commonly in choline and N-acetylaspartate. CONCLUSION: We demonstrate the presence of coup-contrecoup perfusion injury patterns, widespread atrophy, regional brain volume asymmetry, and metabolic aberrations as sensitive markers of chronic mTBI sequelae. Our findings expand the historic focus on quantitative imaging of mTBI with DTI by highlighting the complementary importance of volumetry, arterial spin labeling perfusion and magnetic resonance spectroscopy neurometabolite analyses in the evaluation of chronic mTBI.


Assuntos
Neuroimagem , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Atrofia/patologia , Circulação Cerebrovascular/fisiologia , Espectroscopia de Ressonância Magnética/métodos
3.
J Transl Med ; 22(1): 622, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965536

RESUMO

BACKGROUND: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly. Noninvasive 1H magnetic resonance spectroscopy (MRS) can measure in vitro and in vivo concentration of key metabolites which may potentially serve as biomarkers of response to kinase inhibition. METHODS: We employed mantle cell lymphoma (MCL) cell lines demonstrating markedly diverse sensitivity of inhibition of Bruton's tyrosine kinase (BTK) regarding their growth and studied in-depth effects of the inhibition on various aspects of cell metabolism including metabolite synthesis using metabolomics, glucose and oxidative metabolism by Seahorse XF technology, and concentration of index metabolites lactate, alanine, total choline and taurine by 1H MRS. RESULTS: Effective BTK inhibition profoundly suppressed key cell metabolic pathways, foremost pyrimidine and purine synthesis, the citrate (TCA) cycle, glycolysis, and pyruvate and glutamine/alanine metabolism. It also inhibited glycolysis and amino acid-related oxidative metabolism. Finally, it profoundly and quickly decreased concentration of lactate (a product of mainly glycolysis) and alanine (an indicator of amino acid metabolism) and, less universally total choline both in vitro and in vivo, in the MCL xenotransplant model. The decrease correlated directly with the degree of inhibition of lymphoma cell expansion and tumor growth. CONCLUSIONS: Our results indicate that BTK inhibition exerts a broad and profound suppressive effect on cell metabolism and that the affected index metabolites such as lactate, alanine may serve as early, sensitive, and reliable biomarkers of inhibition in lymphoma patients detectable by noninvasive MRS-based imaging method. This kind of imaging-based detection may also be applicable to other kinase inhibitors, as well as diverse lymphoid and non-lymphoid malignancies.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Linfoma de Célula do Manto , Inibidores de Proteínas Quinases , Humanos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Animais , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Biomarcadores/metabolismo
4.
Cureus ; 16(6): e61716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975464

RESUMO

In this article, we report the third case of chloride voltage-gated channel 2 (CLCN2)-related leukoencephalopathy (CC2L) in Japan. The patient presented with headache, vertigo, and mild visual impairment. The CLCN2 variant of the patient, NM_004366.6:c.61dup, p.(Leu21Profs*27), was also found in two other Japanese patients as this variant is relatively common in the Japanese population. Magnetic resonance imaging (MRI) revealed T2 prolongation with reduced diffusion in the bilateral posterior limbs of the internal capsule, cerebral peduncles, and superior and middle cerebellar peduncles. Magnetic resonance spectroscopy (MRS) of normal-appearing white matter revealed decreased choline content. This represents the first evidence of decreased choline levels in CC2L, highlighting the superior sensitivity of MRS over MRI.

5.
Mol Ther Methods Clin Dev ; 32(2): 101272, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38946937

RESUMO

Alpha-mannosidosis is caused by a genetic deficiency of lysosomal alpha-mannosidase, leading to the widespread presence of storage lesions in the brain and other tissues. Enzyme replacement therapy is available but is not approved for treating the CNS, since the enzyme does not penetrate the blood-brain barrier. However, intellectual disability is a major manifestation of the disease; thus, a complimentary treatment is needed. While enzyme replacement therapy into the brain is technically feasible, it requires ports and frequent administration over time that are difficult to manage medically. Infusion of adeno-associated viral vectors into the cerebrospinal fluid is an attractive route for broadly targeting brain cells. We demonstrate here the widespread post-symptomatic correction of the globally distributed storage lesions by infusion of a high dose of AAV1-feline alpha-mannosidase (fMANB) into the CSF via the cisterna magna in the gyrencephalic alpha-mannosidosis cat brain. Significant improvements in clinical parameters occurred, and widespread global correction was documented pre-mortem by non-invasive magnetic resonance imaging. Postmortem analysis demonstrated high levels of MANB activity and reversal of lysosomal storage lesions throughout the brain. Thus, CSF treatment by adeno-associated viral vector gene therapy appears to be a suitable complement to systemic enzyme replacement therapy to potentially treat the whole patient.

6.
Neurobiol Dis ; 199: 106574, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914172

RESUMO

Proton magnetic resonance spectroscopy (1H-MRS) allows measuring specific brain metabolic alterations in Huntington's disease (HD), and these metabolite profiles may serve as non-invasive biomarkers associated with disease progression. Despite this potential, previous findings are inconsistent. Accordingly, we performed a meta-analysis on available in vivo1H-MRS studies in premanifest (Pre-HD) and symptomatic HD stages (Symp-HD), and quantified neurometabolic changes relative to controls in 9 Pre-HD studies (227 controls and 188 mutation carriers) and 14 Symp-HD studies (326 controls and 306 patients). Our results indicated decreased N-acetylaspartate and creatine in the basal ganglia in both Pre-HD and Symp-HD. The overall level of myo-inositol was decreased in Pre-HD while increased in Symp-HD. Besides, Symp-HD patients showed more severe metabolism disruption than Pre-HD patients. Taken together, 1H-MRS is important for elucidating progressive metabolite changes from Pre-HD to clinical conversion; N-acetylaspartate and creatine in the basal ganglia are already sensitive at the preclinical stage and are promising biomarkers for tracking disease progression; overall myo-inositol is a possible characteristic metabolite for distinguishing HD stages.

7.
Sci Rep ; 14(1): 14806, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926483

RESUMO

Multiple sclerosis (MS) is a chronic and progressive neurological disorder, characterized by neuroinflammation and demyelination within the central nervous system (CNS). The etiology and the pathogenesis of MS are still unknown. Till now, no satisfactory treatments, diagnostic and prognostic biomarkers are available for MS. Therefore, we aimed to investigate metabolic alterations in patients with MS compared to controls and across MS subtypes. Metabolic profiles of serum samples from patients with MS (n = 90) and healthy control (n = 30) were determined by Nuclear Magnetic Resonance (1H-NMR) Spectroscopy using cryogenic probe. This approach was also utilized to identify significant differences between the metabolite profiles of the MS groups (primary progressive, secondary progressive, and relapsing-remitting) and the healthy controls. Concentrations of nine serum metabolites (adenosine triphosphate (ATP), tryptophan, formate, succinate, glutathione, inosine, histidine, pantothenate, and nicotinamide adenine dinucleotide (NAD)) were significantly higher in patients with MS compared to control. SPMS serum exhibited increased pantothenate and tryptophan than in PPMS. In addition, lysine, myo-inositol, and glutamate exhibited the highest discriminatory power (0.93, 95% CI 0.869-0.981; 0.92, 95% CI 0.859-0.969; 0.91, 95% CI 0.843-0.968 respectively) between healthy control and MS. Using NMR- based metabolomics, we identified a set of metabolites capable of classifying MS patients and controls. These findings confirmed untargeted metabolomics as a useful approach for the discovery of possible novel biomarkers that could aid in the diagnosis of the disease.


Assuntos
Biomarcadores , Progressão da Doença , Espectroscopia de Ressonância Magnética , Metabolômica , Esclerose Múltipla , Humanos , Biomarcadores/sangue , Masculino , Feminino , Metabolômica/métodos , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/diagnóstico , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Estudos de Casos e Controles
8.
Metabolites ; 14(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921465

RESUMO

Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes. The novel metabolite structure was identified as 2'-hydroxycannabicitran using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in silico molecular modeling experiments were conducted and predicted 2'-hydroxycannabicitran to fit in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors. Further work necessitates the determination of potential activity of CBC and the here-identified phase I metabolite in other non-cannabinoid receptors.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38870260

RESUMO

CONTEXT: Patients with nonfunctioning adenomas (NFA), adenomas with mild autonomous cortisol secretion (MACS) and Cushing syndrome (CS) demonstrate an increased cardiovascular risk. OBJECTIVE: To determine the extent of lipoprotein abnormalities in NFA, MACS, and CS. METHODS: We conducted a single-center cross-sectional study of patients with NFA (n = 167), MACS (n = 213), CS (n = 142) and referent subjects (n = 202) between January 2015 and July 2022. Triglyceride-rich lipoprotein particles (TRLP), low density lipoprotein particles (LDLP), high density lipoprotein particles (HDLP), their subclasses and sizes were measured using nuclear magnetic resonance spectroscopy. Multivariable logistic analyses were adjusted for age, sex, BMI, smoking, hypertension, diabetes and lipid lowering drug therapy. RESULTS: In age- and sex-adjusted analysis, all patients categories demonstrated increased very large TRLP, large TRLP and greater TRL size (odds ratio (OR) ranging from 1.22 to 2.08) and total LDLP (OR ranging from 1.22 to 1.75) and decreased LDL and HDL size compared to referent subjects. In fully adjusted analysis, LDLP concentrations remained elevated in all patient categories (odds ratios ranging from 1.31 to 1.84). Total cholesterol, LDL cholesterol, triglycerides and apolipoprotein B were also higher in all patient categories in age- and sex-adjusted analysis with apoB remaining elevated in all patient categories in fully adjusted analysis. Similar LDLP and apoB elevations were observed in all patient categories after excluding subjects on lipid lowering therapy. CONCLUSION: Patients with overt, mild, and even absent cortisol excess demonstrate lipoprotein profile abnormalities, in particular, high LDLP and apoB concentrations, which conceivably contribute to high cardiometabolic risk.

10.
Eur Radiol Exp ; 8(1): 65, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825658

RESUMO

BACKGROUND: Deuterium metabolic imaging (DMI) has emerged as a promising non-invasive technique for studying metabolism in vivo. This review aims to summarize the current developments and discuss the futures in DMI technique in vivo. METHODS: A systematic literature review was conducted based on the PRISMA 2020 statement by two authors. Specific technical details and potential applications of DMI in vivo were summarized, including strategies of deuterated metabolites detection, deuterium-labeled tracers and corresponding metabolic pathways in vivo, potential clinical applications, routes of tracer administration, quantitative evaluations of metabolisms, and spatial resolution. RESULTS: Of the 2,248 articles initially retrieved, 34 were finally included, highlighting 2 strategies for detecting deuterated metabolites: direct and indirect DMI. Various deuterated tracers (e.g., [6,6'-2H2]glucose, [2,2,2'-2H3]acetate) were utilized in DMI to detect and quantify different metabolic pathways such as glycolysis, tricarboxylic acid cycle, and fatty acid oxidation. The quantifications (e.g., lactate level, lactate/glutamine and glutamate ratio) hold promise for diagnosing malignancies and assessing early anti-tumor treatment responses. Tracers can be administered orally, intravenously, or intraperitoneally, either through bolus administration or continuous infusion. For metabolic quantification, both serial time point methods (including kinetic analysis and calculation of area under the curves) and single time point quantifications are viable. However, insufficient spatial resolution remains a major challenge in DMI (e.g., 3.3-mL spatial resolution with 10-min acquisition at 3 T). CONCLUSIONS: Enhancing spatial resolution can facilitate the clinical translation of DMI. Furthermore, optimizing tracer synthesis, administration protocols, and quantification methodologies will further enhance their clinical applicability. RELEVANCE STATEMENT: Deuterium metabolic imaging, a promising non-invasive technique, is systematically discussed in this review for its current progression, limitations, and future directions in studying in vivo energetic metabolism, displaying a relevant clinical potential. KEY POINTS: • Deuterium metabolic imaging (DMI) shows promise for studying in vivo energetic metabolism. • This review explores DMI's current state, limits, and future research directions comprehensively. • The clinical translation of DMI is mainly impeded by limitations in spatial resolution.


Assuntos
Deutério , Humanos , Animais
12.
Neuroradiology ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880823

RESUMO

INTRODUCTION: Canavan disease (CD) is a rare autosomal recessive neurodegenerative disorder caused by a deficiency of aspartoacylase A, an enzyme that degrades N-acetylaspartate (NAA). The disease is characterized by progressive white matter degeneration, leading to intellectual disability, seizures, and death. This retrospective study aims to describe the full spectrum of magnetic resonance imaging (MRI) findings in a large case series of CD patients. MATERIALS AND METHODS: MRI findings in 18 patients with confirmed CD were investigated, and the full spectrum of brain abnormalities was compared with the existing literature to provide new insights regarding the brain MRI findings in these patients. All the cases were proven based on genetic study or NAA evaluation in urine or brain. RESULTS: Imaging analysis showed involvement of the deep and subcortical white matter as well as the globus pallidus in all cases, with sparing of the putamen, caudate, and claustrum. The study provides updates on the imaging characteristics of CD and validates some underreported findings such as the involvement of the lateral thalamus with sparing of the pulvinar, involvement of the internal capsules and corpus callosum, and cystic formation during disease progression. CONCLUSION: To our knowledge, this is one of the largest case series of patients with CD which includes a detailed description of the brain MRI findings. The study confirmed many of the previously reported MRI findings but also identified abnormalities that were previously rarely or not described. We speculate that areas of ongoing myelination are particularly vulnerable to changes in CD.

13.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884724

RESUMO

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Assuntos
Cardiopatias Congênitas , Animais , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Modelos Animais de Doenças , Camundongos , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Cultura de Células/métodos
14.
Diagnostics (Basel) ; 14(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893696

RESUMO

Although magnetic resonance spectroscopy (MRS) has provided in vivo measurements of brain chemical profiles in bipolar disorder (BD), there are no data on clinically and therapeutically important onset polarity (OP) and predominant polarity (PP). We conducted a proton MRS study in BD polarity subphenotypes, focusing on emotion regulation brain regions. Forty-one euthymic BD patients stratified according to OP and PP and sixteen healthy controls (HC) were compared. 1H-MRS spectra of the anterior and posterior cingulate cortex (ACC, PCC), left and right hippocampus (LHIPPO, RHIPPO) were acquired at 3.0T to determine metabolite concentrations. We found significant main effects of OP in ACC mI, mI/tNAA, mI/tCr, mI/tCho, PCC tCho, and RHIPPO tNAA/tCho and tCho/tCr. Although PP had no significant main effects, several medium and large effect sizes emerged. Compared to HC, manic subphenotypes (i.e., manic-OP, manic-PP) showed greater differences in RHIPPO and PCC, whereas depressive suphenotypes (i.e., depressive-OP, depressive-PP) in ACC. Effect sizes were consistent between OP and PP as high intraclass correlation coefficients (ICC) were confirmed. Our findings support the utility of MRS in the study of the neurobiological underpinnings of OP and PP, highlighting that the regional specificity of metabolite changes within the emotion regulation network consistently marks both polarity subphenotypes.

15.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894105

RESUMO

Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético , Imagens de Fantasmas , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído , Ácido Láctico/química , Ácido Láctico/metabolismo
16.
Front Oncol ; 14: 1362990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826787

RESUMO

Purpose: To investigate the predictive value of multi-parameters derived from advanced MR imaging for Ki-67 labeling index (LI) in glioma patients. Materials and Methods: One hundred and nine patients with histologically confirmed gliomas were evaluated retrospectively. These patients underwent advanced MR imaging, including dynamic susceptibility-weighted contrast enhanced MR imaging (DSC), MR spectroscopy imaging (MRS), diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI), before treatment. Twenty-one parameters were extracted, including the maximum, minimum and mean values of relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), relative mean transit time (rMTT), relative apparent diffusion coefficient (rADC), relative fractional anisotropy (rFA) and relative mean diffusivity (rMD) respectively, and ration of choline (Cho)/creatine (Cr), Cho/N-acetylaspartate (NAA) and NAA/Cr. Stepwise multivariate regression was performed to build multivariate models to predict Ki-67 LI. Pearson correlation analysis was used to investigate the correlation between imaging parameters and the grade of glioma. One-way analysis of variance (ANOVA) was used to explore the differences of the imaging parameters among the gliomas of grade II, III, and IV. Results: The multivariate regression showed that the model of five parameters, including rCBVmax (RC=0.282), rCBFmax (RC=0.151), rADCmin (RC= -0.14), rFAmax (RC=0.325) and Cho/Cr ratio (RC=0.157) predicted the Ki-67 LI with a root mean square (RMS) error of 0. 0679 (R2 = 0.8025).The regression check of this model showed that there were no multicollinearity problem (variance inflation factor: rCBVmax, 3.22; rCBFmax, 3.14; rADCmin, 1.96; rFAmax, 2.51; Cho/Cr ratio, 1.64), and the functional form of this model was appropriate (F test: p=0.682). The results of Pearson correlation analysis showed that the rCBVmax, rCBFmax, rFAmax, the ratio of Cho/Cr and Cho/NAA were positively correlated with Ki-67 LI and the grade of glioma, while the rADCmin and rMDmin were negatively correlated with Ki-67 LI and the grade of glioma. Conclusion: Combining multiple parameters derived from DSC, DTI, DWI and MRS can precisely predict the Ki-67 LI in glioma patients.

17.
World J Otorhinolaryngol Head Neck Surg ; 10(2): 105-112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38855283

RESUMO

Objectives: 2019 novel coronavirus disease (COVID-19) infection is commonly associated with olfactory dysfunctions, but the basic pathogenesis of these complications remains controversial. This study seeks to evaluate the value of magnetic resonance spectroscopy (MRS) in determining the molecular neurometabolite alterations within the main brain olfactory areas in patients with COVID-19-related anosmia. Methods: In a cross-sectional study, seven patients with persistent COVID-19-related anosmia (mean age: 29.57 years) and seven healthy volunteers (mean age: 27.28 years) underwent MRS in which N-acetyl-aspartate (NAA), choline (Cho), creatine (Cr), and their ratios were measured in the anterior cingulate cortex, dorsolateral prefrontal cortex, orbitofrontal cortex (OFC), insular cortex, and ventromedial prefrontal cortex. Data were analyzed using TARQUIN software (version 4.3.10), and the results were compared with an independent sample t-test and nonparametric Mann-Whitney test based on the normality of the MRS data distribution. Results: The mean duration of anosmia before imaging was 8.5 months in COVID-19-related anosmia group. MRS analysis elucidated a significant association between MRS findings within OFC and COVID-19-related anosmia (P disease < 0.01), and NAA was among the most important neurometabolites (P interaction = 0.006). Reduced levels of NAA (P < 0.001), Cr (P < 0.001) and NAA/Cho ratio (P = 0.007) within OFC characterize COVID-19-related anosmia. Conclusions: This study emphasizes that MRS can be illuminating in COVID-19-related anosmia and indicates a possible association between central nervous system impairment and persistent COVID-19-related anosmia.

18.
Insights Imaging ; 15(1): 159, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902550

RESUMO

OBJECTIVES: To evaluate the agreement between quantitative ultrasound system fat fraction (USFF) and proton magnetic resonance spectroscopy (1H-MRS) and the diagnostic value of USFF in assessing metabolic-associated fatty liver disease (MAFLD). METHODS: The participants with or suspected of MAFLD were prospectively recruited and underwent 1H-MRS, USFF, and controlled attenuation parameter (CAP) measurements. The correlation between USFF and 1H-MRS was assessed using Pearson correlation coefficients. The USFF diagnostic performance for different grades of steatosis was evaluated using receiver operating characteristic curve analysis (ROC) and was compared with CAP, visual hepatic steatosis grade (VHSG). RESULTS: A total of 113 participants (mean age 44.79 years ± 13.56 (SD); 71 males) were enrolled, of whom 98 (86.73%) had hepatic steatosis (1H-MRS ≥ 5.56%). USFF showed a good correlation (Pearson r = 0.76) with 1H-MRS and showed a linear relationship, which was superior to the correlation between CAP and 1H-MRS (Pearson r = 0.61). The USFF provided high diagnostic performance for different grades of hepatic steatosis, with ROC from 0.84 to 0.98, and the diagnostic performance was better than that of the CAP and the VHSG. The cut-off values of the USFF were different for various grades of steatosis, and the cut-off values for S1, S2, and S3 were 12.01%, 19.98%, and 22.22%, respectively. CONCLUSIONS: There was a good correlation between USFF and 1H-MRS. Meanwhile, USFF had good diagnostic performance for hepatic steatosis and was superior to CAP and VHSG. USFF represents a superior method for noninvasive quantitative assessment of MAFLD. CRITICAL RELEVANCE STATEMENT: Quantitative ultrasound system fat fraction (USFF) accurately assesses liver fat content and has a good correlation with magnetic resonance spectroscopy (1H-MRS) for the assessment of metabolic-associated fatty liver disease (MAFLD), as well as for providing an accurate quantitative assessment of hepatic steatosis. KEY POINTS: Current diagnostic and monitoring modalities for metabolic-associated fatty liver disease have limitations. USFF correlated well with 1H-MRS and was superior to the CAP. USFF has good diagnostic performance for steatosis, superior to CAP and VHSG.

19.
Metabolomics ; 20(4): 68, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941046

RESUMO

INTRODUCTION: Exploring metabolic changes within host E. coli through an untargeted metabolomic study of T7L variants overexpression to optimize engineered endolysins for clinical/therapeutic use. AIM AND OBJECTIVE: This study aims to assess the impact of overexpressing T7L variants on the metabolic profiles of E. coli. The two variants considered include T7L-H37A, which has enhanced lytic activity compared to its wild-type protein, and T7L-H48K, a dead mutant with no significant activity. METHODS: 1H NMR-based metabolomics was employed to compare the metabolic profiles of E. coli cells overexpressing T7L wild-type protein and its variants. RESULTS: Overexpression of the T7L wild-type (T7L-WT) protein and its variants (T7L-H48K and T7L-H37A) was compared to RNAP overexpression in E. coli cells using 1H NMR-based metabolomics, analyzing a total of 75 annotated metabolites, including organic acids, amino acids, sugars, and nucleic acids. The results showed distinct clustering patterns for the two T7L variant groups compared with the WT, in which the dead mutant (H48K) group showed clustering close to that of RNAP. Pathway impact analysis revealed different effects of T7L variants on E. coli metabolic profiles, with T7L-H48K showing minimal alterations in energy and amino acid pathways linked to osmotic stress compared to noticeable alterations in these pathways for both T7L-H37A and T7L-WT. CONCLUSIONS: This study uncovered distinct metabolic fingerprints when comparing the overexpression of active and inactive mutants of T7L lytic enzymes in E. coli cells. These findings could contribute to the optimization and enhancement of suitable endolysins as potential alternatives to antibiotics.


Assuntos
Escherichia coli , Metaboloma , Metabolômica , Escherichia coli/metabolismo , Escherichia coli/genética , Metabolômica/métodos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Mutação , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética
20.
Addict Biol ; 29(6): e13424, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38899357

RESUMO

BACKGROUND: The association of impaired dopaminergic neurotransmission with the development and maintenance of alcohol use disorder is well known. More specifically, reduced dopamine D2/3 receptors in the striatum of subjects with alcohol dependence (AD) compared to healthy controls have been found in previous studies. Furthermore, alterations of gamma-aminobutyric acid (GABA) and glutamate (Glu) levels in the anterior cingulate cortex (ACC) of AD subjects have been documented in several studies. However, the interaction between cortical Glu levels and striatal dopamine D2/3 receptors has not been investigated in AD thus far. METHODS: This study investigated dopamine D2/3 receptor availability via 18F-fallypride positron emission tomography (PET) and GABA as well as Glu levels via magnetic resonance spectroscopy (MRS) in 19 detoxified AD subjects, 18 healthy controls (low risk, LR) controls and 19 individuals at high risk (HR) for developing AD, carefully matched for sex, age and smoking status. RESULTS: We found a significant negative correlation between GABA levels in the ACC and dopamine D2/3 receptor availability in the associative striatum of LR but not in AD or HR individuals. Contrary to our expectations, we did not observe a correlation between Glu concentrations in the ACC and striatal D2/3 receptor availability. CONCLUSIONS: The results may reflect potential regulatory cortical mechanisms on mesolimbic dopamine receptors and their disruption in AD and individuals at high risk, mirroring complex neurotransmitter interactions associated with the pathogenesis of addiction. This is the first study combining 18F-fallypride PET and MRS in AD subjects and individuals at high risk.


Assuntos
Alcoolismo , Giro do Cíngulo , Espectroscopia de Ressonância Magnética , Tomografia por Emissão de Pósitrons , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Ácido gama-Aminobutírico , Humanos , Giro do Cíngulo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Masculino , Alcoolismo/metabolismo , Alcoolismo/diagnóstico por imagem , Receptores de Dopamina D2/metabolismo , Adulto , Feminino , Receptores de Dopamina D3/metabolismo , Ácido gama-Aminobutírico/metabolismo , Pessoa de Meia-Idade , Corpo Estriado/metabolismo , Corpo Estriado/diagnóstico por imagem , Estudos de Casos e Controles , Ácido Glutâmico/metabolismo , Benzamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...