Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 691
Filtrar
1.
BioTechnologia (Pozn) ; 105(2): 149-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988363

RESUMO

In recent years, with the increased production of oilseed rape, there has been a simultaneous enhancement in reports on pathogens causing diseases. Magnetic technology has been recognized as a new agricultural method aimed at improving health and crop production. In this work, the effect of magnetic fields was studied on the mycelial growth and conidia formation of Leptosphaeria maculans Gol125 and Leptosphaeria biglobosa KH36, the causal agents of Phoma stem cancer (blackleg) disease in rapeseed. In addition, seeds exposed to eight direct frequencies of magnetic fields were impregnated with pathogen suspension and grown under greenhouse conditions. The growth speed of both pathogen isolates decreased by 1-28% in GOL125 and 6-46% in KH36 over time in cultures exposed to magnetic fields. However, the number of conidia increased significantly under magnetic field exposure, reaching 5.4 × 107 and 7.7 × 107 SFU/ml in KH36 and GOL125 isolates, respectively. Furthermore, in greenhouse conditions, an increase in photosynthetic pigment levels was observed in almost all of the magnetic field-treated plants. In addition, disease incidence decreased by around 6% in the magnetic field-treated plants. This study represents the first evaluation of magnetic technology in controlling plant diseases. The use of magnetic fields may present a viable strategy for a sustainable production system; however, it requires further advanced studies to improve plant health and productivity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38966754

RESUMO

Galaxies are observed to host magnetic fields with a typical total strength of around 15  µ G. A coherent large-scale field constitutes up to a few microgauss of the total, while the rest is built from strong magnetic fluctuations over a wide range of spatial scales. This represents sufficient magnetic energy for it to be dynamically significant. Several questions immediately arise: What is the physical mechanism that gives rise to such magnetic fields? How do these magnetic fields affect the formation and evolution of galaxies? In which physical processes do magnetic fields play a role, and how can that role be characterized? Numerical modelling of magnetized flows in galaxies is playing an ever-increasing role in finding those answers. We review major techniques used for these models. Current results strongly support the conclusion that field growth occurs during the formation of the first galaxies on timescales shorter than their accretion timescales due to small-scale turbulent dynamos. The saturated small-scale dynamo maintains field strengths at only a few percent of equipartition with turbulence. This is in contradiction with the observed magnitude of turbulent fields, but may be reconciled by the further contribution to the turbulent field of the large-scale dynamo. The subsequent action of large-scale dynamos in differentially rotating discs produces field strengths observed in low redshift galaxies, where it reaches equipartition with the turbulence and has substantial power at large scales. The field structure resulting appears consistent with observations including Faraday rotation and polarisation from synchrotron and dust thermal emission. Major remaining challenges include scaling numerical models toward realistic scale separations and Prandtl and Reynolds numbers.

3.
Phys Med Biol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959904

RESUMO

Functional nanomaterials have emerged as versatile nanotransducers for wireless neural modulation because of their minimal invasion and high spatiotemporal resolution. The nanotransducers can convert external excitation sources (e.g., NIR light, X-rays, and magnetic fields) to visible light (or local heat) to activate optogenetic opsins and thermosensitive ion channels for neuromodulation. The present review provides insights into the fundamentals of the mostly used functional nanomaterials in wireless neuromodulation including upconversion nanoparticles, nanoscintillators, and magnetic nanoparticles. We further discussed the recent developments in design strategies of functional nanomaterials with enhanced energy conversion performance that have greatly expanded the field of neuromodulation. We summarized the applications of functional nanomaterials-mediated wireless neuromodulation techniques, including exciting/silencing neurons, modulating brain activity, controlling motor behaviors, and regulating peripheral organ function in mice. Finally, we discussed some key considerations in functional nanotransducer-mediated wireless neuromodulation along with the current challenges and future directions.

4.
Nanomedicine ; 60: 102766, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901809

RESUMO

Remote magneto-mechanical actuation (MMA) of magnetic nanoparticles (MNP) is emerging as a promising therapy method in oncology. However, translation to the clinic faces the challenge of whole-body action and the reluctance about indiscriminate mechanical action of the nanoparticles on tumor and healthy cells. Here, we show how the MMA method based on magnetically-rotated gold-coated MNP boosts only the activity of an unbound antitumor drug, without physical damage of cells via MNP. Therefore, in clinical practice, the effect of antitumor drug can be safely increased systemically while maintaining drug concentrations at current doses.

5.
Regen Biomater ; 11: rbae048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939044

RESUMO

Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.

6.
Eur Radiol Exp ; 8(1): 68, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844683

RESUMO

BACKGROUND: Three-dimensional time-of-flight magnetic resonance angiography (TOF-MRA) is a largely adopted non-invasive technique for assessing cerebrovascular diseases. We aimed to optimize the 7-T TOF-MRA acquisition protocol, confirm that it outperforms conventional 3-T TOF-MRA, and compare 7-T TOF-MRA with digital subtraction angiography (DSA) in patients with different vascular pathologies. METHODS: Seven-tesla TOF-MRA sequences with different spatial resolutions acquired in four healthy subjects were compared with 3-T TOF-MRA for signal-to-noise and contrast-to-noise ratios as well as using a qualitative scale for vessel visibility and the quantitative Canny algorithm. Four patients with cerebrovascular disease (primary arteritis of the central nervous system, saccular aneurism, arteriovenous malformation, and dural arteriovenous fistula) underwent optimized 7-T TOF-MRA and DSA as reference. Images were compared visually and using the complex-wavelet structural similarity index. RESULTS: Contrast-to-noise ratio was higher at 7 T (4.5 ± 0.8 (mean ± standard deviation)) than at 3 T (2.7 ± 0.9). The mean quality score for all intracranial vessels was higher at 7 T (2.89) than at 3 T (2.28). Angiogram quality demonstrated a better vessel border detection at 7 T than at 3 T (44,166 versus 28,720 pixels). Of 32 parameters used for diagnosing cerebrovascular diseases on DSA, 27 (84%) were detected on 7-T TOF-MRA; the similarity index ranged from 0.52 (dural arteriovenous fistula) to 0.90 (saccular aneurysm). CONCLUSIONS: Seven-tesla TOF-MRA outperformed conventional 3-T TOF-MRA in evaluating intracranial vessels and exhibited an excellent image quality when compared to DSA. Seven-tesla TOF-MRA might improve the non-invasive diagnostic approach to several cerebrovascular diseases. RELEVANCE STATEMENT: An optimized TOF-MRA sequence at 7 T outperforms 3-T TOF-MRA, opening perspectives to its clinical use for noninvasive diagnosis of paradigmatic pathologies of intracranial vessels. KEY POINTS: • An optimized 7-T TOF-MRA protocol was selected for comparison with clinical 3-T TOF-MRA for assessing intracranial vessels. • Seven-tesla TOF-MRA outperformed 3-T TOF-MRA in both quantitative and qualitative evaluation. • Seven-tesla TOF-MRA is comparable to DSA for the diagnosis and characterization of intracranial vascular pathologies.


Assuntos
Angiografia Digital , Transtornos Cerebrovasculares , Angiografia por Ressonância Magnética , Humanos , Angiografia por Ressonância Magnética/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Transtornos Cerebrovasculares/diagnóstico por imagem , Adulto , Angiografia Digital/métodos , Idoso , Razão Sinal-Ruído , Imageamento Tridimensional/métodos
7.
Med Phys ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922910

RESUMO

BACKGROUND: The advantages of proton therapy can be further enhanced with online magnetic resonance imaging (MRI) guidance. One of the challenges in the realization of MRI-guided proton therapy (MRPT) is accurately calculating the radiation dose in the presence of magnetic fields. PURPOSE: This study aims to develop an efficient and accurate proton dose calculation algorithm adapted to the presence of magnetic fields. METHODS: An analytical-numerical radiation dose calculation algorithm, Proton and Ion Dose Engine (PRIDE), was developed. The algorithm combines the pencil beam algorithm (PBA) with a novel iterative voxel-based ray-tracing algorithm. The new ray-tracing method uses fewer assumptions and ensures broader applicability for proton beam trajectory prediction in magnetic fields, and has been compared to Wolf's method and Schellhammer's method. The accuracy of PRIDE algorithm was validated on three phantoms and two practical plans (one single-field water plan and one prostate tumor plan) in different magnetic field strengths up to 3.0 T. The validation was performed by comparing the results against the Monte Carlo (MC) simulations, using the global gamma index criteria of 2%/2 mm and 3%/3 mm with a 10% threshold. RESULTS: PRIDE showed good agreement with MC in homogeneous and slab heterogeneous phantom, achieving gamma passing rates (%GPs) above 99% for 2%/2 mm criteria when magnetic field strength is not greater than 1.5 T. Although the agreement decreased for scenarios involving high proton energy (240 MeV) and strong magnetic field (3.0 T), the 2%/2 mm %GPs still remained above 98%. In lateral heterogeneous phantom, the accuracy of PRIDE decreased due to the PBA's limitation. For the two practical plans in different magnetic fields, %GPs exceeded 98% and 99% for 2%/2 mm and 3%/3 mm criteria, respectively. CONCLUSIONS: PRIDE can perform efficient and accurate proton dose calculation in magnetic fields up to 3.0 T, and is expected to work as a useful tool for proton dose calculation in MRPT.

8.
Brain Stimul ; 17(3): 668-675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38740182

RESUMO

BACKGROUND: Virtually everyone is exposed to power-frequency MF (50/60 Hz), inducing in our body electric fields and currents, potentially modulating brain function. MF-induced electric fields within the central nervous system can generate flickering visual perceptions (magnetophosphenes), which form the basis of international MF exposure guidelines and recommendations protecting workers and the general public. However, magnetophosphene perception thresholds were estimated 40 years ago in a small, unreplicated study with significant uncertainties and leaving open the question of the involved interaction site. METHODS: We used a stimulation modality termed transcranial alternating magnetic stimulation (tAMS), delivering in situ sinusoidal electric fields comparable to transcranial alternating current stimulation (tACS). Magnetophosphene perception was quantified in 81 volunteers exposed to MF (eye or occipital exposure) between 0 and 50 mT at frequencies of 20, 50, 60 and 100 Hz. RESULTS: Reliable magnetophosphene perception was induced with tAMS without any scalp sensation, a major advantage as compared to tACS. Frequency-dependent thresholds were quantified using binary logistic regressions hence allowing to establish condition dependent probabilities of perception. Results support an interaction between induced current density and retinal rod cells. CONCLUSION: Beyond fundamental and immediate implications for international safety guidelines, and for identifying the interaction site underlying phosphene perception (ubiquitous in tACS experiments), our results support exploring the potential of tAMS for the differential diagnosis of retinal disorders and neuromodulation therapy.


Assuntos
Fosfenos , Estimulação Magnética Transcraniana , Percepção Visual , Humanos , Masculino , Adulto , Feminino , Fosfenos/fisiologia , Estimulação Magnética Transcraniana/métodos , Percepção Visual/fisiologia , Adulto Jovem , Limiar Sensorial/fisiologia , Campos Magnéticos , Pessoa de Meia-Idade
9.
Chemistry ; : e202400977, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693865

RESUMO

We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.

10.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791113

RESUMO

Since the establishment of regulations for exposure to extremely low-frequency (0-300) Hz electromagnetic fields, scientific opinion has prioritised the hypothesis that the most important parameter determining cellular behaviour has been intensity, ignoring the other exposure parameters (frequency, time, mode, waveform). This has been reflected in the methodologies of the in vitro articles published and the reviews in which they are included. A scope review was carried out, grouping a total of 79 articles that met the proposed inclusion criteria and studying the effects of the different experiments on viability, proliferation, apoptosis, oxidative stress and the cell cycle. These results have been divided and classified by frequency, intensity, exposure time and exposure mode (continuous/intermittent). The results obtained for each of the processes according to the exposure parameter used are shown graphically to highlight the importance of a good methodology in experimental development and the search for mechanisms of action that explain the experimental results, considering not only the criterion of intensity. The consequence of this is a more than necessary revision of current exposure protection regulations for the general population based on the reductionist criterion of intensity.


Assuntos
Apoptose , Campos Eletromagnéticos , Estresse Oxidativo , Humanos , Campos Eletromagnéticos/efeitos adversos , Estresse Oxidativo/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação
11.
Micromachines (Basel) ; 15(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793140

RESUMO

Patterned micro-scale thin-film magnetic structures, in conjunction with weak (~few tens of Oe) applied magnetic fields, can create energy landscapes capable of trapping and transporting fluid-borne magnetic microparticles. These energy landscapes arise from magnetic field magnitude variations that arise in the vicinity of the magnetic structures. In this study, we examine means of calculating magnetic fields in the local vicinity of permalloy (Ni0.8Fe0.2) microdisks in weak (~tens of Oe) external magnetic fields. To do this, we employ micromagnetic simulations and the resulting calculations of fields. Because field calculation from micromagnetic simulations is computationally time-intensive, we discuss a method for fitting simulated results to improve calculation speed. Resulting stray fields vary dramatically based on variations in micromagnetic simulations-vortex vs. non-vortex micromagnetic results-which can each appear despite identical simulation final conditions, resulting in field strengths that differ by about a factor of two.

12.
Zool Res ; 45(3): 478-491, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682430

RESUMO

Acetaminophen (APAP), the most frequently used mild analgesic and antipyretic drug worldwide, is implicated in causing 46% of all acute liver failures in the USA and between 40% and 70% in Europe. The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine (NAC); however, its efficacy is limited in cases of advanced liver injury or when administered at a late stage. In the current study, we discovered that treatment with a moderate intensity static magnetic field (SMF) notably reduced the mortality rate in mice subjected to high-dose APAP from 40% to 0%, proving effective at both the initial liver injury stage and the subsequent recovery stage. During the early phase of liver injury, SMF markedly reduced APAP-induced oxidative stress, free radicals, and liver damage, resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione (GSH). During the later stage of liver recovery, application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation. Moreover, the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery, even 24 h post overdose, when the effectiveness of NAC alone substantially declines. Overall, this study provides a non-invasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose. Of note, this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP, and potentially other toxic overdoses.


Assuntos
Acetaminofen , Analgésicos não Narcóticos , Doença Hepática Induzida por Substâncias e Drogas , Overdose de Drogas , Acetaminofen/toxicidade , Animais , Camundongos , Analgésicos não Narcóticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Masculino , Campos Magnéticos , Acetilcisteína/uso terapêutico , Acetilcisteína/farmacologia
13.
Food Chem X ; 22: 101341, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38586222

RESUMO

In this study, the improvement mechanism of low-frequency alternating magnetic field (LF-AMF, 5 mT, 3 h) combined with calcium chloride (CaCl2, 0-100 mM) on the gel characteristics of low-salt myofibrillar protein (MP) was investigated. LF-AMF combined with 80 mM CaCl2 treatment increased solubility (32.71%), surface hydrophobicity (40.86 µg), active sulfhydryl content (22.57%), water-holding capacity (7.15%). Besides, the combined treatment decreased turbidity, particle size and intrinsic fluorescence strength of MP. Fourier transform infrared spectroscopy (FT-IR) results indicated that the combined treatment altered the secondary structure of MP by increasing ß-sheet and ß-turn, and reducing α-helix and random coil. The combined treatment also induced a high G' value and shortened T2 relaxation time for forming a homogeneous and compact gel structure. These results revealed that LF-AMF combined CaCl2 treatment could as a potential approach for modifying the gel characteristics of low-salt MP.

14.
J Adv Res ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38565404

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumour of the central nervous system. Despite recent advances in multimodal GBM therapy incorporating surgery, radiotherapy, systemic therapy (chemotherapy, targeted therapy), and supportive care, the overall survival (OS) remains poor, and long-term survival is rare. Currently, the primary obstacles hindering the effectiveness of GBM treatment are still the blood-brain barrier and tumor heterogeneity. In light of its substantial advantages over conventional therapies, such as strong penetrative ability and minimal side effects, low-frequency magnetic fields (LF-MFs) therapy has gradually caught the attention of scientists. AIM OF REVIEW: In this review, we shed the light on the current status of applying LF-MFs in the treatment of GBM. We specifically emphasize our current understanding of the mechanisms by which LF-MFs mediate anticancer effects and the challenges faced by LF-MFs in treating GBM cells. Furthermore, we discuss the prospective applications of magnetic field therapy in the future treatment of GBM. Key scientific concepts of review: The review explores the current progress on the use of LF-MFs in the treatment of GBM with a special focus on the potential underlying mechanisms of LF-MFs in anticancer effects. Additionally, we also discussed the complex magnetic field features and biological characteristics related to magnetic bioeffects. Finally, we proposed a promising magnetic field treatment strategy for future applications in GBM therapy.

15.
Bioelectron Med ; 10(1): 10, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594769

RESUMO

BACKGROUND: Glioblastoma (GBM) presents as an aggressive brain cancer, notorious for its recurrence and resistance to conventional treatments. This study aimed to assess the efficacy of the EMulate Therapeutics Voyager®, a non-invasive, non-thermal, non-ionizing, battery-operated, portable experimental medical device, in treating GBM. Using ultra-low radiofrequency energy (ulRFE) to modulate intracellular activity, previous preliminary results in patients have been encouraging. Now, with a focus on murine models, our investigation seeks to elucidate the device's mechanistic impacts, further optimizing its therapeutic potential and understanding its limitations. METHODS: The device employs a silicone over molded coil to deliver oscillating magnetic fields, which are believed to interact with and disrupt cellular targets. These fields are derived from the magnetic fluctuations of solvated molecules. Xenograft and syngeneic murine models were chosen for the study. Mice were injected with U-87 MG or GL261 glioma cells in their flanks and were subsequently treated with one of two ulRFE cognates: A1A, inspired by paclitaxel, or A2, based on murine siRNA targeting CTLA4 + PD1. A separate group of untreated mice was maintained as controls. RESULTS: Mice that underwent treatments with either A1A or A2 exhibited significantly reduced tumor sizes when compared to the untreated cohort. CONCLUSION: The EMulate Therapeutics Voyager® demonstrates promising potential in inhibiting glioma cells in vivo through its unique ulRFE technology and should be further studied in terms of biological effects in vitro and in vivo.

16.
Philos Trans A Math Phys Eng Sci ; 382(2272): 20230217, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38679058

RESUMO

In this paper, we study the role of radiative cooling (RC) in a two-fluid model consisting of coupled neutrals and charged particles. We first analyse the linearized two-fluid equations where we include radiative losses in the energy equation for the charged particles. In a one-dimensional geometry for parallel propagation and in the limiting cases of weak and strong coupling, it can be shown analytically that the instability conditions for the thermal mode and the sound waves, the isobaric and isentropic criteria, respectively, remain unchanged with respect to one-fluid radiative plasmas. For the parameters considered in this paper, representative for the solar corona, the RC produces growth of the thermal mode and damping of the sound waves. In the weak coupling limit, the growth of the thermal instability and the damping of the sound waves is as derived in Field (Field 1965 Astrophys. J. 142, 531 (doi:10.1086/148317)) using the charged fluid properties. When neutrals are included and are sufficiently coupled to the charges, the thermal mode growth rate and the wave damping both reduce by the same factor, which depends on the ionization fraction only. For a heating function that is constant in time, we find that the growth of the thermal mode and the damping of the sound waves are slightly larger. The numerical calculation of the eigenvalues of the general system of equations in a three-dimensional geometry confirm the analytic results. We then run two-dimensional fully nonlinear simulations that give consistent results: a higher ionization fraction or lower coupling will increase the growth rate. The magnetic field contribution is negligible in the linear phase. Ionization-recombination effects might play an important role because the RC produces a large range of temperatures in the system. In the numerical simulation, after the first condensation phase, when the minimum temperature is reached, the fraction of neutrals increases four orders of magnitude because of the recombination. This article is part of the theme issue 'Partially ionized plasma of the solar atmosphere: recent advances and future pathways'.

17.
Int J Biol Macromol ; 267(Pt 1): 131418, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582465

RESUMO

In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in ß-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.


Assuntos
Congelamento , Campos Magnéticos , Proteínas Musculares , Reologia , Proteínas Musculares/química , Miofibrilas/química , Solubilidade , Animais , Fenômenos Químicos , Conformação Proteica , Interações Hidrofóbicas e Hidrofílicas
18.
Front Plant Sci ; 15: 1340304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495372

RESUMO

Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.

19.
Clin Neurophysiol ; 161: 180-187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520798

RESUMO

OBJECTIVE: To measure neuromagnetic fields of ulnar neuropathy patients at the elbow after electrical stimulation and evaluate ulnar nerve function at the elbow with high spatial resolution. METHODS: A superconducting quantum interference device magnetometer system recorded neuromagnetic fields of the ulnar nerve at the elbow after electrical stimulation at the wrist in 16 limbs of 16 healthy volunteers and 21 limbs of 20 patients with ulnar neuropathy at the elbow. After artifact removal, neuromagnetic field signals were processed into current distributions, which were superimposed onto X-ray images for visualization. RESULTS: Based on the results in healthy volunteers, conduction velocity of 30 m/s or 50% attenuation in current amplitude was set as the reference value for conduction disturbance. Of the 21 patient limbs, 15 were measurable and lesion sites were detected, whereas 6 limbs were unmeasurable due to weak neuromagnetic field signals. Seven limbs were deemed normal by nerve conduction study, but 5 showed conduction disturbances on magnetoneurography. CONCLUSIONS: Measuring the magnetic field after nerve stimulation enabled visualization of neurophysiological activity in patients with ulnar neuropathy at the elbow and evaluation of conduction disturbances. SIGNIFICANCE: Magnetoneurography may be useful for assessing lesion sites in patients with ulnar neuropathy at the elbow.


Assuntos
Cotovelo , Condução Nervosa , Nervo Ulnar , Neuropatias Ulnares , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Neuropatias Ulnares/fisiopatologia , Neuropatias Ulnares/diagnóstico , Neuropatias Ulnares/diagnóstico por imagem , Condução Nervosa/fisiologia , Cotovelo/fisiopatologia , Cotovelo/inervação , Cotovelo/diagnóstico por imagem , Idoso , Nervo Ulnar/fisiopatologia , Nervo Ulnar/diagnóstico por imagem , Estimulação Elétrica/métodos , Campos Magnéticos
20.
Ultramicroscopy ; 261: 113960, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547811

RESUMO

The high resolution of a scanning tunneling microscope (STM) relies on the stability of its scan unit. In this study, we present an isolated scan unit featuring non-magnetic design and ultra-high stability, as well as bidirectional movement capability. Different types of piezoelectric motors can be incorporated into the scan unit to create a highly stable STM. The standalone structure of scan unit ensures a stable atomic imaging process by decreasing noise generated by motor. The non-magnetic design makes the scan unit work stable in high magnetic field conditions. Moreover, we have successfully constructed a novel STM based on the isolated scan unit, in which two inertial piezoelectric motors act as the coarse approach actuators. The exceptional performance of homebuilt STM is proved by the high-resolution atomic images and dI/dV spectrums on NbSe2 surface at varying temperatures, as well as the raw-data images of graphite obtained at ultra-high magnetic fields of 23 T. According to the literature research, no STM has previously reported the atomic image at extreme conditions of 2 K low temperature and 23 T ultra-high magnetic field. Additionally, we present the ultra-low drift rates between the tip and sample at varying temperatures, as well as when raising the magnetic fields from 0 T to 23 T, indicating the ultra-high stability of the STM in high magnetic field conditions. The outstanding performance of our stable STM hold great potential for investigating the materials in ultra-high magnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...