Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.335
Filtrar
1.
Anal Bioanal Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38981912

RESUMO

Biomarkers screening is a benefit approach for early diagnosis of major diseases. In this study, magnetic nanoparticles (MNPs) have been utilized as labels to establish a multi-line immunochromatography (MNP-MLIC) for simultaneous detection of carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA 19-9), and alpha-fetoprotein (AFP) in a single serum sample. Under the optimal parameters, the three biomarkers can be rapidly and simultaneously qualitative screening within 15 min by naked eye. As for quantitative detection, the MNP-MLIC test strips were precisely positioned and captured by a smartphone, and signals on the test and control lines were extracted by ImageJ software. The signal ratio of test and control lines has been calculated and used to plot quantitative standard curves with the logarithmic concentration, of which the correlation coefficients are more than 0.99, and the limit of detection for CEA, CA 19-9, and AFP were 0.60 ng/mL, 1.21 U/mL, and 0.93 ng/mL, respectively. The recoveries of blank serum were 75.0 ~ 112.5% with the relative standard deviation ranging from 2.5 to 15.3%, and the specificity investigation demonstrated that the MNP-MLIC is highly specific to the three biomarkers. In conclusion, the developed MNP-MLIC offers a rapid, simple, accurate, and highly specific method for simultaneously detecting multiple biomarkers in serum samples, which provides an efficient and accurate approach for the early diagnosis of diseases.

2.
Mikrochim Acta ; 191(8): 448, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967796

RESUMO

Surface functionalization strategy is becoming a crucial bridge from magnetic nanoparticles (MNPs) to their broad bio-application. To realize the multiple functions of MNPs such as magnetic manipulation, target capture, and signal amplification in their use of electrochemical biosensing, co-crosslinking strategy was proposed here to construct dual-functionalized MNPs by combining ultra-sensitive redox moieties and specific biological probes. In this work, MNPs with a TEM size of 10 nm were synthesized by co-precipitation for amination and PEGylation to maintain colloid stability once dispersed in high-ionic-strength buffer (such as phosphate-buffered saline). Then, MNPs@IgG were prepared via the bis(sulfosuccinimidyl) suberate (BS3) cross-linker to conjugate these IgG onto the MNP surface, with a binding efficiency of 73%. To construct dual-functionalized MNPs, these redox probes of ferrocene-NHS (Fc) were co-crosslinked onto the MNP surface, together with IgG, by using BS3. The developed MNPs@Redox@IgG were characterized by SDS‒PAGE to identify IgG binding and by square wave voltammetry (SWV) to validate the redox signal. Additionally, the anti-CD63 antibodies were selected for the development of MNPs@anti-CD63 for use in the bio-testing of exosome sample capture. Therefore, co-crosslinking strategy paved a way to develop dual-functionalized MNPs that can be an aid of their potential utilization in diagnostic assay or electrochemical methods.


Assuntos
Reagentes de Ligações Cruzadas , Imunoglobulina G , Nanopartículas de Magnetita , Oxirredução , Nanopartículas de Magnetita/química , Imunoglobulina G/química , Humanos , Reagentes de Ligações Cruzadas/química , Compostos Ferrosos/química , Metalocenos/química , Técnicas Biossensoriais/métodos , Tetraspanina 30/imunologia , Técnicas Eletroquímicas/métodos
3.
Talanta ; 278: 126492, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955099

RESUMO

Dysregulation of peptidyl arginine deiminase 4 (PAD4) is involved in a variety of diseases including rheumatoid arthritis (RA) and Alzheimer's disease (AD), and it has emerged as potential and promising therapeutic target. However, no PAD4 inhibitor is ready for clinical use. Immobilized enzyme screening technology has gained increasing attention due to its low cost, reusability, easy separation from the reaction mixture, and resistance to changes in environmental conditions. In this study, PAD4 was immobilized on the magnetic nanoparticles (MNP) to prolong its activity stability, and a simple and rapid screening strategy of traditional Chinese medicine inhibitors based on immobilized PAD4 was established. The PAD4 enzyme was immobilized on magnetic nanoparticles (MNP) via Schiff base reaction using glutaraldehyde (GA) as crosslinking agent. Compared with free PAD4, the resulting MNP@GA@PAD4 exhibited an enhanced tolerance to temperature and storage stability, and its reusability was greatly improved with 66 % of initial enzyme activity after being recycled 10 times. The inhibitory activity of the immobilized PAD4 was assessed using two known PAD4 inhibitors GSK484 and BB-Cl-amidine. The semi-maximum inhibitory concentrations (IC50) of GSK484 and BB-Cl-amidine for MNP@GA@PAD4 were 1.00 and 0.97 µM, respectively, for free PAD4 were 0.64 and 0.85 µM, respectively. Finally, the MNP@GA@PAD4 was employed to rapid screen of natural PAD4 inhibitors from forty traditional Chinese medicines (TCMs). Under the same conditions, the controlled experiment was conducted with free PAD4. The screening results of TCMs inhibitors on MNP@GA@PAD4 and free PAD4 were similar, the alcohol extracts of Cinnamomi Cortex and Caryophylli Flos had significant inhibitory effects on PAD4 enzyme activity. The IC50 values of Cinnamomi Cortex extract for MNP@GA@PAD4 and free PAD4 were determined as 27 and 48 µg/mL, respectively. The IC50 values of Caryophylli Flos extracts for MNP@GA@PAD4 and free PAD4 were determined as 48 and 32 µg/mL, respectively. For the first time, this study proposed a method to immobilize PAD4 on magnetic materials, and developed a rapid, reusable and feasible strategy to screening natural PAD4 inhibitors from TCMs.

4.
Nanotheranostics ; 8(4): 442-457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961886

RESUMO

The global incidence of cancer continues to rise, posing a significant public health concern. Although numerous cancer therapies exist, each has limitations and complications. The present study explores alternative cancer treatment approaches, combining hyperthermia and photodynamic therapy (PDT). Magnetic nanoparticles (MNPs) and amine-functionalized carbon quantum dots (A-CQDs) were synthesized separately and then covalently conjugated to form a single nanosystem for combinational therapy (M-CQDs). The successful conjugation was confirmed using zeta potential, Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy. Morphological examination in transmission electron microscopy (TEM) further verified the conjugation of CQDs with MNPs. Energy dispersive X-ray spectroscopy (EDX) revealed that M-CQDs contain approximately 12 weight percentages of carbon. Hyperthermia studies showed that both MNP and M-CQDs maintain a constant therapeutic temperature at lower frequencies (260.84 kHz) with high specific absorption rates (SAR) of 118.11 and 95.04 W/g, respectively. In vitro studies demonstrated that MNPs, A-CQDs, and M-CQDs are non-toxic, and combinational therapy (PDT + hyperthermia) resulted in significantly lower cell viability (~4%) compared to individual therapies. Similar results were obtained with Hoechst and propidium iodide (PI) staining assays. Hence, the combination therapy of PDT and hyperthermia shows promise as a potential alternative to conventional therapies, and it could be further explored in combination with existing conventional treatments.


Assuntos
Carbono , Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Fotoquimioterapia , Pontos Quânticos , Pontos Quânticos/química , Fotoquimioterapia/métodos , Humanos , Carbono/química , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
5.
Bioact Mater ; 40: 148-167, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38962659

RESUMO

Implant-associated Staphylococcus aureus (S. aureus) osteomyelitis is a severe challenge in orthopedics. While antibiotic-loaded bone cement is a standardized therapeutic approach for S. aureus osteomyelitis, it falls short in eradicating Staphylococcus abscess communities (SACs) and bacteria within osteocyte-lacuna canalicular network (OLCN) and repairing bone defects. To address limitations, we developed a borosilicate bioactive glass (BSG) combined with ferroferric oxide (Fe3O4) magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities. We conducted comprehensive assessments of the osteoinductive, immunomodulatory, antibacterial properties, and thermal response of this scaffold, with or without an alternating magnetic field (AMF). Utilizing a well-established implant-related S. aureus tibial infection rabbit model, we evaluated its antibacterial performance in vivo. RNA transcriptome sequencing demonstrated that BSG + 5%Fe3O4 enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs. Notably, BSG + 5%Fe3O4 upregulated gene expression of NOD-like receptor and TNF pathway in MSCs, alongside increased the expression of osteogenic factors (RUNX2, ALP and OCN) in vitro. Flow cytometry on macrophage exhibited a polarization effect towards M2, accompanied by upregulation of anti-inflammatory genes (TGF-ß1 and IL-1Ra) and downregulation of pro-inflammatory genes (IL-6 and IL-1ß) among macrophages. In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG + 5%Fe3O4 + AMF at 42 days. Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42, along with new bone formation, signifying effective control of S. aureus osteomyelitis. Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.

6.
Expert Opin Drug Deliv ; : 1-16, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962823

RESUMO

INTRODUCTION: This review discusses novel hybrid assemblies that are based on liposomal formulations. The focus is on the hybrid constructs that are formed through the integration of liposomes/vesicles with other nano-objects such as nucleic acid nanostructures and metallic nanoparticles. The aim is to introduce some of the recent, specific examples that bridge different technologies and thus may form a new platform for advanced drug delivery applications. AREAS COVERED: We present selected examples of liposomal formulations combined with complex nanostructures either based on biomolecules like DNA origami or on metallic materials - metal/metal oxide/magnetic particles and metallic nanostructures, such as metal organic frameworks - together with their applications in drug delivery and beyond. EXPERT OPINION: Merging the above-mentioned techniques could lead to development of drug delivery vehicles with the most desirable properties; multifunctionality, biocompatibility, high drug loading efficiency/accuracy/capacity, and stimuli-responsiveness. In the near future, we believe that especially the strategies combining dynamic, triggerable and programmable DNA nanostructures and liposomes could be used to create artificial liposome clusters for multiple applications such as examining protein-mediated interactions between lipid bilayers and channeling materials between liposomes for enhanced pharmacokinetic properties in drug delivery.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38981447

RESUMO

Magnetic nanoparticle (MNP)-mediated precision magnet therapy plays a crucial role in treating various diseases. This therapeutic strategy compensates for the limitations of low spatial resolution and low focusing of magnetic stimulation, and realizes the goal of wireless teletherapy with precise targeting of focal areas. This paper summarizes the preparation methods of magnetic nanomaterials, the properties of magnetic nanoparticles, the biological effects, and the measurement methods for detecting magnetism; discusses the research progress of precision magnetotherapy in the treatment of psychiatric disorders, neurological injuries, metabolic disorders, and bone-related disorders, and looks forward to the future development trend of precision magnet therapy. .

8.
Biomater Adv ; 163: 213948, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38959651

RESUMO

The use of nanoparticles has increased significantly over the past few years in a number of fields, including diagnostics, biomedicine, environmental remediation, and water treatment, generating public interest. Among various types of nanoparticles, magnetic nanoparticles (MNPs) have emerged as an essential tool for biomedical applications due to their distinct physicochemical properties compared to other nanoparticles. This review article focuses on the recent growth of MNPs and comprehensively reviews the advantages, multifunctional approaches, biomedical applications, and latest research on MNPs employed in various biomedical techniques. Biomedical applications of MNPs hold on to their ability to rapidly switch magnetic states under an external field at room temperature. Ideally, these MNPs should be highly susceptible to magnetization when the field is applied and then lose that magnetization just as quickly once the field is removed. This unique property allows MNPs to generate heat when exposed to high-frequency magnetic fields, making them valuable tools in developing treatments for hyperthermia and other heat-related illnesses. This review underscores the role of MNPs as tools that hold immense promise in transforming various aspects of healthcare, from diagnostics and imaging to therapeutic treatments, with discussion on a wide range of peer-reviewed articles published on the subject. At the conclusion of this work, challenges and potential future advances of MNPs in the biomedical field are highlighted.

9.
ACS Appl Bio Mater ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875521

RESUMO

Glioma is the most common primary malignant tumor in the brain. The diagnostic accuracy and treatment efficiency of glioma are facing great challenges due to the presence of the blood-brain barrier (BBB) and the high infiltration of glioma. There is an urgent need to explore the combination of diagnostic and therapeutic approaches to achieve a more accurate diagnosis, as well as guidance before and after surgery. In this work, we induced human induction of pluripotent stem cell into neural progenitor cells (NPCs) and synthesized nanoprobes labeled with enhanced green fluorescent protein (EGFP, abbreviated as MFe3O4-labeled EGFP-NPCs) for photothermal therapy. Nanoprobes carried by NPCs can effectively penetrate the BBB and target glioma for the purpose of magnetic resonance imaging and guiding surgery. More importantly, MFe3O4-labeled EGFP-NPCs can effectively induce local photothermal therapy, conduct preoperative tumor therapy, and inhibit the recurrence of postoperative glioma. This work shows that MFe3O4-labeled EGFP-NPCs is a promising nanoplatform for glioma diagnosis, accurate imaging-guided surgery, and effective photothermal therapy.

10.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38891527

RESUMO

Using a modified co-precipitation method, 11(2) nm γ-Fe2O3 nanoparticles functionalized with PSSNa [Poly(sodium 4-styrenesulfonate)] saloplastic polymer were successfully synthesized, and their structural, vibrational, electronic, thermal, colloidal, hyperfine, and magnetic properties were systematically studied using various analytic techniques. The results showed that the functionalized γ-Fe2O3/PSSNa nanohybrid has physicochemical properties that allow it to be applied in the magnetic remediation process of water. Before being applied as a nanoadsorbent in real water treatment, a short-term acute assay was developed and standardized using a Daphnia magna biomarker. The ecotoxicological tests indicated that the different concentrations of the functionalized nanohybrid may affect the mortality of the Daphnia magna population during the first 24 h of exposure. A lethal concentration of 533(5) mg L-1 was found. At high concentrations, morphological changes were also seen in the body, heart, and antenna. Therefore, these results suggested the presence of alterations in normal growth and swimming skills. The main changes observed in the D. magna features were basically caused by the PSSNa polymer due to its highly stable colloidal properties (zeta potential > -30 mV) that permit a direct and constant interaction with the Daphnia magna neonates.

11.
Molecules ; 29(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893376

RESUMO

Ellagic acid (EA) is a natural polyphenol and possesses excellent in vivo bioactivity and antioxidant behaviors, which play an important role in the treatment of oxidative stress-related diseases, such as cancer. Additionally, EA is also known as a skin-whitening ingredient. The content of EA would determine its efficacy. Therefore, the accurate analysis of EA content can provide more information for the scientific consumption of EA-rich foods and cosmetics. Nevertheless, the analysis of EA in these samples is challenging due to the low concentration level and the presence of interfering components with high abundance. Molecularly imprinted polymers are highly efficient pretreatment materials in achieving specific recognition of target molecules. However, the traditional template molecule (EA) could not be absolutely removed. Hence, template leakage continues to occur during the sample preparation process, leading to a lack of accuracy in the quantification of EA in actual samples, particularly for trace analytes. In addition, another drawback of EA as an imprinting template is that EA possesses poor solubility and a high price. Gallic acid (GA), called dummy templates, was employed for the synthesis of MIPs as a solution to these challenges. The approach used in this study was boronate affinity-based oriented surface imprinting. The prepared dummy-imprinted nanoparticles exhibited several significant advantages, such as good specificity, high binding affinity ((4.89 ± 0.46) × 10-5 M), high binding capacity (6.56 ± 0.35 mg/g), fast kinetics (6 min), and low binding pH (pH 5.0) toward EA. The reproducibility of the dummy-imprinted nanoparticles was satisfactory. The dummy-imprinted nanoparticles could still be reused even after six adsorption-desorption cycles. In addition, the recoveries of the proposed method for EA at three spiked levels of analysis in strawberry and pineapple were 91.0-106.8% and 93.8-104.0%, respectively, which indicated the successful application to real samples.


Assuntos
Ácido Elágico , Impressão Molecular , Extração em Fase Sólida , Ácido Elágico/química , Extração em Fase Sólida/métodos , Impressão Molecular/métodos , Ácidos Borônicos/química , Polímeros Molecularmente Impressos/química , Análise de Alimentos/métodos , Nanoestruturas/química
12.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893510

RESUMO

Cancer cells have higher heat sensitivity compared to normal cells; therefore, hyperthermia is a promising approach for cancer therapy because of its ability to selectively kill cancer cells by heating them. However, the specific and rapid heating of tumor tissues remains challenging. This study investigated the potential of magnetic nanoparticles (MNPs) modified with tumor-homing peptides (THPs), specifically PL1 and PL3, for tumor-specific magnetic hyperthermia therapy. The synthesis of THP-modified MNPs involved the attachment of PL1 and PL3 peptides to the surface of the MNPs, which facilitated enhanced tumor cell binding and internalization. Cell specificity studies revealed an increased uptake of PL1- and PL3-MNPs by tumor cells compared to unmodified MNPs, indicating their potential for targeted delivery. In vitro hyperthermia experiments demonstrated the efficacy of PL3-MNPs in inducing tumor cell death when exposed to an alternating magnetic field (AMF). Even without exposure to an AMF, an additional ferroptotic pathway was suggested to be mediated by the nanoparticles. Thus, this study suggests that THP-modified MNPs, particularly PL3-MNPs, hold promise as a targeted approach for tumor-specific magnetic hyperthermia therapy.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Peptídeos , Hipertermia Induzida/métodos , Humanos , Nanopartículas de Magnetita/química , Peptídeos/química , Peptídeos/farmacologia , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/patologia , Campos Magnéticos
13.
Sci Rep ; 14(1): 12877, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834648

RESUMO

This study reports the antibacterial and antibiofilm activities of Magnesium ferrite nanoparticles (MgFe2O4) against gram-positive and gram-negative bacteria. The photocatalytic degradation of Carbol Fuchsin (CF) dye (a class of dyestuffs that are resistant to biodegradation) under the influence of UV-light irradiation is also studied. The crystalline magnesium ferrite (MgFe2O4) nanoparticles were synthesized using the co-precipitation method. The morphology of the resulting nanocomposite was examined using scanning electron microscopy (SEM), while transmission electron microscopy (TEM) was employed for further characterization of particle morphology and size. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized to analyze the crystalline structure, chemical composition, and surface area, respectively. Optical properties were evaluated using UV-Vis spectroscopy. The UV-assisted photocatalytic performance of MgFe2O4 nanoparticles was assessed by studying the decolorization of Carbol fuchsin (CF) azo dye. The crystallite size of the MgFe2O4 nanoparticles at the (311) plane, the most prominent peak, was determined to be 28.5 nm. The photocatalytic degradation of 10 ppm CF using 15 mg of MgFe2O4 nanoparticles resulted in a significant 96% reduction after 135 min at ambient temperature (25 °C) and a pH value of 9. Additionally, MgFe2O4 nanoparticles exhibited potent antibacterial activity against E. coli and S. aureus in a dose dependent manner with maximum utilized concentration of 30 µg/ml. Specifically, MgFe2O4 nanoparticles demonstrated substantial antibacterial activity via disk diffusion and microbroth dilution tests with zones of inhibition and minimum inhibitory concentrations (MIC) for E. coli (26.0 mm, 1.25 µg/ml) and S. aureus (23.0 mm, 2.5 µg/ml), respectively. Moreover, 10.0 µg/ml of MgFe2O4 nanoparticles elicited marked percent reduction in biofilm formation by E. coli (89%) followed by S. aureus (78.5%) after treatment. In conclusion, MgFe2O4 nanoparticles demonstrated efficient dye removal capabilities along with significant antimicrobial and antibiofilm activity against gram-positive and gram-negative bacterial strains suggesting their potential as promising antimicrobial and detoxifying agents.


Assuntos
Antibacterianos , Biofilmes , Compostos Férricos , Nanopartículas de Magnetita , Biofilmes/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Catálise , Nanopartículas de Magnetita/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Raios Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Magnésio/química , Magnésio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
14.
ACS Appl Bio Mater ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934736

RESUMO

Protein cages are promising tools for the controlled delivery of therapeutics and imaging agents when endowed with programmable disassembly strategies. Here, we produced hybrid nanocomposites made of tobacco mosaic virus (TMV) and magnetic iron oxide nanoparticles (IONPs), designed to disrupt the viral protein cages using magnetically induced release of heat. We studied the effects of this magnetic hyperthermia on the programmable viral protein capsid disassembly using (1) elongated nanocomposites of TMV coated heterogeneously with magnetic iron oxide nanoparticles (TMV@IONPs) and (2) spherical nanocomposites of polystyrene (PS) on which we deposited presynthesized IONPs and TMV via layer-by-layer self-assembly (PS@IONPs/TMV). Notably, we found that the extent of the disassembly of the protein cages is contingent upon the specific absorption rate (SAR) of the magnetic nanoparticles, that is, the heating efficiency, and the relative position of the protein cage within the nanocomposite concerning the heating sources. This implies that the spatial arrangement of components within the hybrid nanostructure has a significant impact on the disassembly process. Understanding and optimizing this relationship will contribute to the critical spatiotemporal control for targeted drug and gene delivery using protein cages.

15.
Nanomaterials (Basel) ; 14(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38921868

RESUMO

Using magnetic nanoparticles (MNPs) for extracorporeal heating applications results in higher field strength and, therefore, particles of higher coercivity can be used, compared to intracorporeal applications. In this study, we report the synthesis and characterization of barium hexa-ferrite (BaFe12O19) nanoparticles as potential particles for magnetic heating. Using a precipitation method followed by high-temperature calcination, we first studied the influence of varied synthesis parameters on the particles' properties. Second, the iron-to-barium ratio (Fe/Ba = r) was varied between 2 and 12. Vibrating sample magnetometry, scanning electron microscopy and X-ray diffraction were used for characterization. A considerable influence of the calcination temperature (Tcal) was found on the resulting magnetic properties, with a decrease in coercivity (HC) from values above 370 kA/m for Tcal = 800-1000 °C to HC = 45-70 kA/m for Tcal = 1200 °C. We attribute this drop in HC mainly to the formation of entirely multi-domain particles at high Tcal. For the varying Fe/Ba ratios, increasing amounts of BaFe2O4 as an additional phase were detected by XRD in the small r (barium surplus) samples, lowering the particles' magnetization. A decrease in HC was found in the increased r samples. Crystal size ranged from 47 nm to 240 nm and large agglomerates were seen in SEM images. The reported particles, due to their controllable coercivity, can be a candidate for extracorporeal heating applications in the biomedical or biotechnological field.

16.
Nanomaterials (Basel) ; 14(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921922

RESUMO

Extensive use of pesticides in agricultural production has been causing serious health threats to humans and animals. Among them, phorate is a highly toxic organophosphorus insecticide that has been widely used in planting. Due to its harmful effects on human and animal health, it has been restricted for use in many countries. Analytical methods for the rapid and sensitive detection of phorate residues in agricultural products are urgently needed. In this study, a new method was developed by combining surface-enhanced Raman spectroscopy (SERS) and immunochromatography assay (ICA). Hybrid magnetic Fe3O4@Au@DTNB-Ab nanoprobes were prepared by modifying and growing Au nanoseeds on an Fe3O4 core. SERS activity of the nanoprobe was optimized by adjusting the concentration of the Au precursor. A rapid and sensitive assay was established by replacing the traditional colloidal gold-based ICA with hybrid SERS nanoprobes for SERS-ICA. After optimizing parameters including coating antibody concentrations and the composition and pH of the buffer solution, the limit of detection (LOD) for phorate could reach 1 ng/mL, with a linear range of 5~100 ng/mL. This LOD is remarkably lower than the maximum residue limit in vegetables and fruits set by the Chinese government. The feasibility of this method was further examined by conducting a spiking test with celery as the real sample. The result demonstrated that this method could serve as a promising platform for rapid and sensitive detection of phorate in agricultural products.

17.
Nanomaterials (Basel) ; 14(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921935

RESUMO

Magnetic particle hyperthermia (MPH) enables the direct heating of solid tumors with alternating magnetic fields (AMFs). One challenge with MPH is the unknown particle distribution in tissue after injection. Magnetic particle imaging (MPI) can measure the nanoparticle content and distribution in tissue after delivery. The objective of this study was to develop a clinically translatable protocol that incorporates MPI data into finite element calculations for simulating tissue temperatures during MPH. To verify the protocol, we conducted MPH experiments in tumor-bearing mouse cadavers. Five 8-10-week-old female BALB/c mice bearing subcutaneous 4T1 tumors were anesthetized and received intratumor injections of Synomag®-S90 nanoparticles. Immediately following injection, the mice were euthanized and imaged, and the tumors were heated with an AMF. We used the Mimics Innovation Suite to create a 3D mesh of the tumor from micro-computerized tomography data and spatial index MPI to generate a scaled heating function for the heat transfer calculations. The processed imaging data were incorporated into a finite element solver, COMSOL Multiphysics®. The upper and lower bounds of the simulated tumor temperatures for all five cadavers demonstrated agreement with the experimental temperature measurements, thus verifying the protocol. These results demonstrate the utility of MPI to guide predictive thermal calculations for MPH treatment planning.

18.
Environ Sci Pollut Res Int ; 31(27): 39602-39624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822962

RESUMO

Simultaneous application of modified Fe3O4 with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of Fe3O4 as adsorbents for heavy metals (HMs) by applying protective coatings. We synthesized core-shell magnetite nanoparticles coated with modified nanocellulose, nanohydrochar, and nanobiochar, and investigated their effectiveness in conjunction with bacteria (Pseudomonas putida and Bacillus megaterium) for remediating a multi-metal contamination soil. The results showed that the coatings significantly enhanced the immobilization of heavy metals in the soil, even at low doses (0.5%). The coating of nanocellulose had the highest efficiency in stabilizing metals due to the greater variety of surface functional groups and higher specific surface area (63.86 m2 g-1) than the other two coatings. Interestingly, uncoated Fe3O4 had lower performance (113.6 m2 g-1) due to their susceptibility to deformation and oxidation. The use of bacteria as a biological treatment led to an increase in the stabilization of metals in soil. In fact, Pseudomonas putida and Bacillus megaterium increased immobilization of HMs in soil successfully because of extracellular polymeric substances and intensive negative charges. Analysis of metal concentrations in plants revealed that Ni and Zn accumulated in the roots, while Pb and Cd were transferred from the roots to the shoots. Treatment Fe3O4 coated with modified nanocellulose at rates of 0.5 and 1% along with Pseudomonas putida showed the highest effect in stabilizing metals. Application of coated Fe3O4 for in-situ immobilization of HMs in contamination soils is recommendable due to their high metal stabilization efficiency and suitability to apply in large quantities.


Assuntos
Nanopartículas de Magnetita , Metais Pesados , Poluentes do Solo , Poluentes do Solo/química , Nanopartículas de Magnetita/química , Solo/química , Pseudomonas putida , Bacillus megaterium , Recuperação e Remediação Ambiental/métodos , Adsorção
19.
Sci Rep ; 14(1): 14318, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906910

RESUMO

Hemozoin is a natural biomarker formed during the hemoglobin metabolism of Plasmodium parasites, the causative agents of malaria. The rotating-crystal magneto-optical detection (RMOD) has been developed for its rapid and sensitive detection both in cell cultures and patient samples. In the current article we demonstrate that, besides quantifying the overall concentration of hemozoin produced by the parasites, RMOD can also track the size distribution of the hemozoin crystals. We establish the relations between the magneto-optical signal, the mean parasite age and the median crystal size throughout one erythrocytic cycle of Plasmodium falciparum parasites, where the latter two are determined by optical and scanning electron microscopy, respectively. The significant correlation between the magneto-optical signal and the stage distribution of the parasites indicates that the RMOD method can be utilized for species-specific malaria diagnosis and for the quick assessment of drug efficacy.


Assuntos
Hemeproteínas , Plasmodium falciparum , Hemeproteínas/metabolismo , Hemeproteínas/química , Plasmodium falciparum/crescimento & desenvolvimento , Humanos , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Malária Falciparum/diagnóstico , Microscopia Eletrônica de Varredura/métodos
20.
J Hazard Mater ; 474: 134860, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861901

RESUMO

3-(2-Aminoethylamino)propyltriethoxysilane and carboxyethylsilanetriol sodium salt were grafted on silica-coated Fe3O4 nanoparticles via sol-gel process to prepare novel amine- and carboxyl-bifunctionalized magnetic nanocomposites (SMNPs-(NH2 + COOH)). After well characterized, this doubly functionalized material was used as magnetic solid-phase extraction (MSPE) adsorbent to separate and enrich inorganic chromium species followed by inductively coupled plasma-mass spectrometry detection. The optimization of MSPE operation parameters including pH was conducted. It is reasonably elucidated that the adsorption mechanisms of zwitterionic SMNPs-(NH2 + COOH) towards chromium species are electrostatic and/or coordination interactions. Cr(VI) and Cr(III) can be adsorbed around pH 3.0 and around 10.0 respectively with strong anti-interference ability not only from other co-existing ions but also from the two labile species each other, and eluted by dilute nitric acid solution. With a 15-fold enrichment factor, the limits of detection of Cr(VI) and Cr(III) were 0.008 and 0.009 µg L-1, respectively, profiting from the maximum adsorption capacities of 7.52 and 6.11 mg g-1. The just one magnetic extraction matrix based speciation scheme possesses excellent convenience and friendliness to Cr(VI) and Cr(III) without any oxidation or reduction prior to capture of these two species. This protocol has been successfully applied to the speciation analysis of inorganic chromium in real-world environmental water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...