Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275704

RESUMO

In vivo phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) imaging (MRSI) is an important non-invasive imaging tool for studying cerebral energy metabolism, intracellular nicotinamide adenine dinucleotide (NAD) and redox ratio, and mitochondrial function. However, it is challenging to achieve high signal-to-noise ratio (SNR) 31P MRS/MRSI results owing to low phosphorus metabolites concentration and low phosphorous gyromagnetic ratio (γ). Many works have demonstrated that ultrahigh field (UHF) could significantly improve the 31P-MRS SNR. However, there is a lack of studies of the 31P MRSI SNR in the 10.5 Tesla (T) human scanner. In this study, we designed and constructed a novel 31P-1H dual-frequency loop-dipole probe that can operate at both 7T and 10.5T for a quantitative comparison of 31P MRSI SNR between the two magnetic fields, taking into account the RF coil B1 fields (RF coil receive and transmit fields) and relaxation times. We found that the SNR of the 31P MRS signal is 1.5 times higher at 10.5T as compared to 7T, and the power dependence of SNR on magnetic field strength (B0) is 1.9.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Fósforo , Razão Sinal-Ruído , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Fósforo/química , Ondas de Rádio , Isótopos de Fósforo , Imagens de Fantasmas
2.
Mov Disord Clin Pract ; 11(5): 550-555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38404049

RESUMO

BACKGROUND: X-linked dystonia-parkinsonism (XDP) is a rare movement disorder characterized by profound neurodegeneration in the basal ganglia. The molecular consequences and the bioenergetic state of affected individuals remain largely unexplored. OBJECTIVES: To investigate the bioenergetic state in male patients with XDP and female carriers using 31phosphorus magnetic resonance spectroscopy imaging and to correlate these findings with clinical manifestations. METHODS: We examined the levels of high-energy phosphorus-containing metabolites (HEP) in the basal ganglia and cerebellum of five male patients with XDP, 10 asymptomatic female heterozygous carriers, and 10 SVA-insertion-free controls. RESULTS: HEP levels were reduced in the basal ganglia of patients with XDP (PwXDP) compared to controls, but increased in the cerebellum of both male patients and female carriers. CONCLUSIONS: Our findings suggest a potential compensatory mechanism in the cerebellum of female carriers regardless of sex. Our study highlights alterations in HEP levels in PwXDP patients and female carriers.


Assuntos
Gânglios da Base , Cerebelo , Distúrbios Distônicos , Doenças Genéticas Ligadas ao Cromossomo X , Heterozigoto , Humanos , Feminino , Masculino , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Adulto , Pessoa de Meia-Idade , Gânglios da Base/metabolismo , Gânglios da Base/diagnóstico por imagem , Cerebelo/metabolismo , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Espectroscopia de Ressonância Magnética , Adulto Jovem , Metabolismo Energético
3.
Antioxidants (Basel) ; 12(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37507950

RESUMO

There is a pressing need for disease-modifying therapies in patients suffering from neurodegenerative diseases, including Parkinson's disease (PD). However, these disorders face unique challenges in clinical trial designs to assess the neuroprotective properties of potential drug candidates. One of these challenges relates to the often unknown individual disease mechanisms that would, however, be relevant for targeted treatment strategies. Neuroinflammation and mitochondrial dysfunction are two proposed pathophysiological hallmarks and are considered to be highly interconnected in PD. Innovative neuroimaging methods can potentially help to gain deeper insights into one's predominant disease mechanisms, can facilitate patient stratification in clinical trials, and could potentially map treatment responses. This review aims to highlight the role of neuroinflammation and mitochondrial dysfunction in patients with PD (PwPD). We will specifically introduce different neuroimaging modalities, their respective technical hurdles and challenges, and their implementation into clinical practice. We will gather preliminary evidence for their potential use in PD research and discuss opportunities for future clinical trials.

4.
Schizophr Bull ; 49(6): 1542-1553, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36921060

RESUMO

BACKGROUND AND HYPOTHESIS: Microvascular and inflammatory mechanisms have been hypothesized to be involved in the pathophysiology of psychotic spectrum disorders (PSDs). However, data evaluating these hypotheses remain limited. STUDY DESIGN: We applied a three-compartment intravoxel incoherent motion free water imaging (IVIM-FWI) technique that estimates the perfusion fraction (PF), free water fraction (FW), and anisotropic diffusion of tissue (FAt) to examine microvascular and microstructural changes in gray and white matter in 55 young adults with a PSD compared to 37 healthy controls (HCs). STUDY RESULTS: We found significantly increased PF, FW, and FAt in gray matter regions, and significantly increased PF, FW, and decreased FAt in white matter regions in the PSD group versus HC. Furthermore, in patients, but not in the HC group, increased PF, FW, and FAt in gray matter and increased PF in white matter were significantly associated with poor performance on several cognitive tests assessing memory and processing speed. We additionally report significant associations between IVIM-FWI metrics and myo-inositol, choline, and N-acetylaspartic acid magnetic resonance spectroscopy imaging metabolites in the posterior cingulate cortex, which further supports the validity of PF, FW, and FAt as microvascular and microstructural biomarkers of PSD. Finally, we found significant relationships between IVIM-FWI metrics and the duration of psychosis in gray and white matter regions. CONCLUSIONS: The three-compartment IVIM-FWI model provides metrics that are associated with cognitive deficits and may reflect disease progression.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Adulto Jovem , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Córtex Cerebral
5.
Neuroimage ; 270: 119940, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787828

RESUMO

Glutamate is the major excitatory transmitter in the brain and malfunction of the related metabolism is associated with various neurological diseases and disorders. The observation of labeling changes in the spectra after the administration of a 13C labelled tracer is a common tool to gain better insights into the function of the metabolic system. But so far, only a very few studies presenting the labeling effects in more than two voxels to show the spatial dependence of metabolism. In the present work, the labeling effects were measured in a transversal plane in the human brain using ultra-short TE and TR 1H FID-MRSI. The measurement set-up was most simple: The [1-13C]Glc was administered orally instead of intravenous and the spectra were measured with a pure 1H technique without the need of a 13C channel (as Boumezbeur et al. demonstrated in 2004). Thus, metabolic maps and enrichment curves could be obtained for more metabolites and in more voxels than ever before in human brain. Labeling changes could be observed in [4-13C]glutamate, [3-13C]glutamate+glutamine, [2-13C]glutamate+glutamine, [4-13C]glutamine, and [3-13C]aspartate with a high temporal (3.6 min) and spatial resolution (32 × 32 grid with nominal voxel size of 0.33 µL) in five volunteers.


Assuntos
Ácido Glutâmico , Glutamina , Humanos , Glutamina/metabolismo , Isótopos de Carbono/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido Glutâmico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Administração Oral , Glucose/metabolismo
6.
J Magn Reson Imaging ; 58(3): 838-847, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36625533

RESUMO

BACKGROUND: Neurometabolite concentrations provide a direct index of infarction progression in stroke. However, their relationship with stroke onset time remains unclear. PURPOSE: To assess the temporal dynamics of N-acetylaspartate (NAA), creatine, choline, and lactate and estimate their value in predicting early (<6 hours) vs. late (6-24 hours) hyperacute stroke groups. STUDY TYPE: Cross-sectional cohort. POPULATION: A total of 73 ischemic stroke patients scanned at 1.8-302.5 hours after symptom onset, including 25 patients with follow-up scans. FIELD STRENGTH/SEQUENCE: A 3 T/magnetization-prepared rapid acquisition gradient echo sequence for anatomical imaging, diffusion-weighted imaging and fluid-attenuated inversion recovery imaging for lesion delineation, and 3D MR spectroscopic imaging (MRSI) for neurometabolic mapping. ASSESSMENT: Patients were divided into hyperacute (0-24 hours), acute (24 hours to 1 week), and subacute (1-2 weeks) groups, and into early (<6 hours) and late (6-24 hours) hyperacute groups. Bayesian logistic regression was used to compare classification performance between early and late hyperacute groups by using different combinations of neurometabolites as inputs. STATISTICAL TESTS: Linear mixed effects modeling was applied for group-wise comparisons between NAA, creatine, choline, and lactate. Pearson's correlation analysis was used for neurometabolites vs. time. P < 0.05 was considered statistically significant. RESULTS: Lesional NAA and creatine were significantly lower in subacute than in acute stroke. The main effects of time were shown on NAA (F = 14.321) and creatine (F = 12.261). NAA was significantly lower in late than early hyperacute patients, and was inversely related to time from symptom onset across both groups (r = -0.440). The decrease of NAA and increase of lactate were correlated with lesion volume (NAA: r = -0.472; lactate: r = 0.366) in hyperacute stroke. Discrimination was improved by combining NAA, creatine, and choline signals (area under the curve [AUC] = 0.90). DATA CONCLUSION: High-resolution 3D MRSI effectively assessed the neurometabolite changes and discriminated early and late hyperacute stroke lesions. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 2.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , Creatina , Teorema de Bayes , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Ácido Láctico , Colina , Ácido Aspártico
7.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430157

RESUMO

The underlying causes of Parkinson's disease are complex, and besides recent advances in elucidating relevant disease mechanisms, no disease-modifying treatments are currently available. One proposed pathophysiological hallmark is mitochondrial dysfunction, and a plethora of evidence points toward the interconnected nature of mitochondria in neuronal homeostasis. This also extends to iron and neuromelanin metabolism, two biochemical processes highly relevant to individual disease manifestation and progression. Modern neuroimaging methods help to gain in vivo insights into these intertwined pathways and may pave the road to individualized medicine in this debilitating disorder. In this narrative review, we will highlight the biological rationale for studying these pathways, how distinct neuroimaging methods can be applied in patients, their respective limitations, and which challenges need to be overcome for successful implementation in clinical studies.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Ferro/metabolismo , Neuroimagem , Mitocôndrias/metabolismo
8.
Magn Reson Imaging ; 85: 251-261, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666162

RESUMO

In this study, the objective was to characterize the MR signatures of the various benign prostate tissues and to differentiate them from cancer. Data was from seventy prostate cancer patients who underwent multiparametric MRI (mpMRI) and subsequent prostatectomy. The scans included T2-weighted imaging (T2W), diffusion weighted imaging, dynamic contrast-enhanced MRI (DCE MRI), and MR spectroscopic imaging. Histopathology tissue information was translated to MRI images. The mpMRI parameters were characterized separately per zone and by tissue type. The tissues were ordered according to trends in tissue parameter means. The peripheral zone tissue order was cystic atrophy, high grade prostatic intraepithelial neoplasia (HGPIN), normal, atrophy, inflammation, and cancer. Decreasing values for tissue order were exhibited by ADC (1.8 10-3 mm2/s to 1.2 10-3 mm2/s) and T2W intensity (3447 to 2576). Increasing values occurred for DCE MRI peak (143% to 157%), DCE MRI slope (101%/min to 169%/min), fractional anisotropy (FA) (0.16 to 0.19), choline (7.2 to 12.2), and choline / citrate (0.3 to 0.9). The transition zone tissue order was cystic atrophy, mixed benign prostatic hyperplasia (BPH), normal, atrophy, inflammation, stroma, anterior fibromuscular stroma, and cancer. Decreasing values occurred for ADC (1.6 10-3 mm2/s to 1.1 10-3 mm2/s) and T2W intensity (2863 to 2001). Increasing values occurred for DCE MRI peak (143% to 150%), DCE MRI slope (101%/min to 137%/min), FA (0.18 to 0.25), choline (7.9 to 11.7), and choline / citrate (0.3 to 0.7). Logistic regression was used to create parameter model fits to differentiate cancer from benign prostate tissues. The fits achieved AUCs ≥0.91. This study quantified the mpMRI characteristics of benign prostate tissues and demonstrated the capability of mpMRI to discriminate among benign as well as cancer tissues, potentially aiding future discrimination of cancer from benign confounders.


Assuntos
Próstata , Neoplasias da Próstata , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Próstata/diagnóstico por imagem , Próstata/patologia , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Estudos Retrospectivos
9.
Semin Fetal Neonatal Med ; 26(5): 101304, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34736808

RESUMO

Neuroimaging is widely used to aid in the diagnosis and clinical management of neonates with neonatal encephalopathy (NE). Yet, despite widespread use clinically, there are few published guidelines on neuroimaging for neonates with NE. This review outlines the primary patterns of brain injury associated with hypoxic-ischemic injury in neonates with NE and their frequency, associated neuropathological features, and risk factors. In addition, it provides an overview of neuroimaging methods, including the most widely used scoring systems used to characterize brain injury in these neonates and their utility as predictive biomarkers. Last, recommendations for neuroimaging in neonates with NE are presented.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Doenças do Recém-Nascido , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem
10.
Front Oncol ; 11: 589570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937017

RESUMO

INTRODUCTION: The pentose phosphate pathway (PPP) is essential for NADPH generation and redox homeostasis in cancer, including glioblastomas. However, the precise contribution to redox and tumor proliferation of the second PPP enzyme 6-phosphogluconolactonase (PGLS), which converts 6-phospho-δ-gluconolactone to 6-phosphogluconate (6PG), remains unclear. Furthermore, non-invasive methods of assessing PGLS activity are lacking. The goal of this study was to examine the role of PGLS in glioblastomas and assess the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive imaging. METHODS: To interrogate the function of PGLS in redox, PGLS expression was silenced in U87, U251 and GS2 glioblastoma cells by RNA interference and levels of NADPH and reduced glutathione (GSH) measured. Clonogenicity assays were used to assess the effect of PGLS silencing on glioblastoma proliferation. Hyperpolarized δ-[1-13C]gluconolactone metabolism to 6PG was assessed in live cells treated with the chemotherapeutic agent temozolomide (TMZ) or with vehicle control. 13C 2D echo-planar spectroscopic imaging (EPSI) studies of hyperpolarized δ-[1-13C]gluconolactone metabolism were performed on rats bearing orthotopic glioblastoma tumors or tumor-free controls on a 3T spectrometer. Longitudinal 2D EPSI studies of hyperpolarized δ-[1-13C]gluconolactone metabolism and T2-weighted magnetic resonance imaging (MRI) were performed in rats bearing orthotopic U251 tumors following treatment with TMZ to examine the ability of hyperpolarized δ-[1-13C]gluconolactone to report on treatment response. RESULTS: PGLS knockdown downregulated NADPH and GSH, elevated oxidative stress and inhibited clonogenicity in all models. Conversely, PGLS expression and activity and steady-state NADPH and GSH were higher in tumor tissues from rats bearing orthotopic glioblastoma xenografts relative to contralateral brain and tumor-free brain. Importantly, [1-13C]6PG production from hyperpolarized δ-[1-13C]gluconolactone was observed in live glioblastoma cells and was significantly reduced by treatment with TMZ. Furthermore, hyperpolarized δ-[1-13C]gluconolactone metabolism to [1-13C]6PG could differentiate tumor from contralateral normal brain in vivo. Notably, TMZ significantly reduced 6PG production from hyperpolarized δ-[1-13C]gluconolactone at an early timepoint prior to volumetric alterations as assessed by anatomical imaging. CONCLUSIONS: Collectively, we have, for the first time, identified a role for PGLS activity in glioblastoma proliferation and validated the utility of probing PGLS activity using hyperpolarized δ-[1-13C]gluconolactone for non-invasive in vivo imaging of glioblastomas and their response to therapy.

11.
Anal Bioanal Chem ; 413(5): 1251-1257, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33404743

RESUMO

Besides structural information, magnetic resonance imaging (MRI) is crucial to reveal the presence and gradients of metabolites in organs constituted of several tissues. In plant science, such knowledge is key to better understand fruit development and metabolism. Routine methods based on fixation for cytological studies or dissection for metabolite measurements induce biases and plant sample destruction. Magnetic resonance spectroscopy imaging (MSRI) leads to one NMR spectrum per pixel while chemical exchange saturation transfer (CEST) MRI allows mapping metabolites having exchangeable protons. As both methods present different advantages and drawbacks, we compared them to map metabolites in ripe tomato fruits. We demonstrated that MRSI was difficult to interpret due to large spatial chemical shift variations while CEST MRI produced promising image mapping of the main carbohydrates and amino acids. It showed that glucose/fructose was mostly located in the locular tissue, whereas glutamate/glutamine/GABA was found inside the columella.Graphical abstract.


Assuntos
Frutas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Solanum lycopersicum/metabolismo , Aumento da Imagem/métodos , Metabolômica/métodos
12.
J Neurotrauma ; 38(1): 44-52, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32640874

RESUMO

The Center for Disease Control and Prevention (CDC)'s 2018 Guideline for current practices in pediatric mild traumatic brain injury (mTBI; also referred to as concussion herein) systematically identified the best up-to-date practices based on current evidence and, specifically, identified recommended practices regarding computed tomography (CT), magnetic resonance imaging (MRI), and skull radiograph imaging. In this article, we discuss types of neuroimaging not discussed in the guideline in terms of their safety for pediatric populations, their potential application, and the research investigating the future use of certain modalities to aid in the diagnosis and treatment of mTBI in children. The role of neuroimaging in pediatric mTBI cases should be considered for the potential contribution to children's neural and social development, in addition to the immediate clinical value (as in the case of acute structural findings). Selective use of specific neuroimaging modalities in research has already been shown to detect aspects of diffuse brain injury, disrupted cerebral blood flow, and correlate physiological factors with persistent symptoms, such as fatigue, cognitive decline, headache, and mood changes, following mTBI. However, these advanced neuroimaging modalities are currently limited to the research arena, and any future clinical application of advanced imaging modalities in pediatric mTBI will require robust evidence for each modality's ability to provide measurement of the subtle conditions of brain development, disease, damage, or degeneration, while accounting for variables at both non-injury and time-post-injury epochs. Continued collaboration and communication between researchers and healthcare providers is essential to investigate, develop, and validate the potential of advanced imaging modalities in pediatric mTBI diagnostics and management.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Biomarcadores , Criança , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Estados Unidos
13.
Eur J Nucl Med Mol Imaging ; 48(2): 395-405, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32621132

RESUMO

PURPOSE: Cancer has a multitude of phenotypic expressions and identifying these are important for correct diagnosis and treatment selection. Clinical molecular imaging such as positron emission tomography can access several of these hallmarks of cancer non-invasively. Recently, hyperpolarized magnetic resonance spectroscopy with [1-13C] pyruvate has shown great potential to probe metabolic pathways. Here, we investigate simultaneous dual modality clinical molecular imaging of angiogenesis and deregulated energy metabolism in canine cancer patients. METHODS: Canine cancer patients (n = 11) underwent simultaneous [68Ga]Ga-NODAGA-E[(cRGDyK)]2 (RGD) PET and hyperpolarized [1-13C]pyruvate-MRSI (hyperPET). Standardized uptake values and [1-13C]lactate to total 13C ratio were quantified and compared generally and voxel-wise. RESULTS: Ten out of 11 patients showed clear tumor uptake of [68Ga]Ga-NODAGA-RGD at both 20 and 60 min after injection, with an average SUVmean of 1.36 ± 0.23 g/mL and 1.13 ± 0.21 g/mL, respectively. A similar pattern was seen for SUVmax values, which were 2.74 ± 0.41 g/mL and 2.37 ± 0.45 g/mL. The [1-13C]lactate generation followed patterns previously reported. We found no obvious pattern or consistent correlation between the two modalities. Voxel-wise tumor values of RGD uptake and lactate generation analysis revealed a tendency for each canine cancer patient to cluster in separated groups. CONCLUSION: We demonstrated combined imaging of [68Ga]Ga-NODAGA-RGD-PET for angiogenesis and hyperpolarized [1-13C]pyruvate-MRSI for probing energy metabolism. The results suggest that [68Ga]Ga-NODAGA-RGD-PET and [1-13C]pyruvate-MRSI may provide complementary information, indicating that hyperPET imaging of angiogenesis and energy metabolism is able to aid in cancer phenotyping, leading to improved therapy planning.


Assuntos
Neoplasias , Ácido Pirúvico , Acetatos , Animais , Cães , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
14.
Magn Reson Imaging Clin N Am ; 26(4): 543-558, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30316466

RESUMO

This article discusses the features of multiparametric MR imaging as an accurate method to evaluate soft tissue tumors and pseudotumors. The discussion also considers conventional and advanced sequences providing both functional tissue and anatomic information to improve the diagnostic accuracy of this method and assess pretreatment staging, treatment response focused on the extent of necrosis, and recurrence.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias de Tecidos Moles/diagnóstico por imagem , Humanos
15.
ACS Appl Mater Interfaces ; 10(30): 25056-25068, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29965724

RESUMO

Medium-chain length polyhydroxyalkanoates (MCL-PHAs) have demonstrated exceptional properties for cardiac tissue engineering (CTE) applications. Despite prior work on MCL-PHA/polycaprolactone (PCL) blends, optimal scaffold production and use as an alternative delivery route for controlled release of seeded cardiac progenitor cells (CPCs) in CTE applications in vivo has been lacking. We present herein applicability of MCL-PHA/PCL (95/5 wt %) blends fabricated as thin films with an improved performance compared to the neat MCL-PHA. Polymer characterization confirmed the chemical structure and composition of the synthesized scaffolds, while thermal, wettability, and mechanical properties were also investigated and compared in neat and porous counterparts. In vitro cytocompatibility studies were performed using perfluorocrown-ether-nanoparticle-labeled murine CPCs and studied using confocal microscopy and 19F magnetic resonance spectroscopy and magnetic resonance imaging (MRI). Seeded scaffolds were implanted and studied in the postmortem murine heart in situ and in two additional C57BL/6 mice in vivo (using single-layered and double-layered scaffolds) and imaged immediately after and at 7 days postimplantation. Superior MCL-PHA/PCL scaffold performance has been demonstrated compared to MCL-PHA through experimental comparisons of (a) morphological data using scanning electron microscopy and (b) contact angle measurements attesting to improved CPC adhesion, (c) in vitro confocal microscopy showing increased SC proliferative capacity, and (d) mechanical testing that elicited good overall responses. In vitro MRI results justify the increased seeding density, increased in vitro MRI signal, and improved MRI visibility in vivo, in the double-layered compared to the single-layered scaffolds. Histological evaluations [bright-field, cytoplasmic (Atto647) and nuclear (4',6-diamidino-2-phenylindole) stains] performed in conjunction with confocal microscopy imaging attest to CPC binding within the scaffold, subsequent release and migration to the neighboring myocardium, and increased retention in the murine myocardium in the case of the double-layered scaffold. Thus, MCL-PHA/PCL blends possess tremendous potential for controlled delivery of CPCs and for maximizing possible regeneration in myocardial infarction.


Assuntos
Poli-Hidroxialcanoatos/química , Animais , Coração , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Poliésteres , Células-Tronco , Engenharia Tecidual , Alicerces Teciduais
16.
J Neurotrauma ; 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29929438

RESUMO

Mitochondrial dysfunction is thought to be a hallmark of traumatic brain injury (TBI) and plays a pivotal role in the resulting cellular injury. Cyclophilin D-mediated activation of the mitochondrial permeability transition pore has been suggested to contribute to this secondary injury cascade. Cyclosporine possesses neuroprotective properties that have been attributed to the desensitization of mitochondrial permeability transition pore activation. In vivo animal experiments have demonstrated neuroprotective effects of cyclosporine in more than 20 independent experimental studies in a multitude of different experimental models. However, the majority of these studies have been carried out in rodents. The aim of the present study was to evaluate the efficacy of a novel and cremophor/kolliphor EL-free lipid emulsion formulation of cyclosporine in a translational large animal model of TBI. A mild-to-moderate focal contusion injury was induced in piglets using a controlled cortical impact device. After initial step-wise analyses of pharmacokinetics and comparing with exposure of cyclosporine in clinical TBI trials, a 5-day dosing regimen with continuous intravenous cyclosporine infusion (20 mg/kg/day) was evaluated in a randomized and blinded placebo-controlled setting. Cyclosporine reduced the volume of parenchymal injury by 35%, as well as improved markers of neuronal injury, as measured with magnetic resonance spectroscopic imaging. Further, a consistent trend toward positive improvements in brain metabolism and mitochondrial function was observed in the pericontusional tissue. In this study, we have demonstrated efficacy using a novel cyclosporine formulation in clinically relevant and translatable outcome metrics in a large animal model of focal TBI.

17.
J Pain Res ; 11: 889-900, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740217

RESUMO

BACKGROUND: Acupuncture has been proven to be effective as an alternative therapy in treating migraine, but the pathophysiological mechanisms of the treatment remain unclear. This study investigated possible neurochemical responses to acupuncture treatment. PATIENTS AND METHODS: Proton magnetic resonance spectroscopy imaging was used to investigate biochemical levels pre- and post-acupuncture treatment. Participants (N=45) included subjects diagnosed with: 1) migraine without aura; 2) cervicogenic headache; and 3) healthy controls. Participants in the two patient groups received verum acupuncture using acupoints that target migraine without aura but not cervicogenic headache, while the healthy controls received a sham treatment. All participants had magnetic resonance spectroscopy scans before and after the acupuncture therapy. Levels of brain metabolites were examined in relation to clinical headache assessment scores. RESULTS: A significant increase in N-acetylaspartate/creatine was observed in bilateral thalamus in migraine without aura after the acupuncture treatment, which was significantly correlated with the headache intensity score. CONCLUSION: The data demonstrate brain biochemical changes underlying the effect of acupuncture treatment of migraine.

18.
NMR Biomed ; 30(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28961382

RESUMO

The purpose of this study was to characterize prostate cancer (PCa) based on multiparametric MR (mpMR) measures derived from MRI, diffusion, spectroscopy, and dynamic contrast-enhanced (DCE) MRI, and to validate mpMRI in detecting PCa and predicting PCa aggressiveness by correlating mpMRI findings with whole-mount histopathology. Seventy-eight men with untreated PCa received 3 T mpMR scans prior to radical prostatectomy. Cancerous regions were outlined, graded, and cancer amount estimated on whole-mount histology. Regions of interest were manually drawn on T2 -weighted images based on histopathology. Logistic regression was used to identify optimal combinations of parameters for the peripheral zone and transition zone to separate: (i) benign from malignant tissues; (ii) Gleason score (GS) ≤3 + 3 disease from ≥GS3 + 4; and (iii) ≤ GS3 + 4 from ≥GS4 + 3 cancers. The performance of the models was assessed using repeated fourfold cross-validation. Additionally, the performance of the logistic regression models created under the assumption that one or more modality has not been acquired was evaluated. Logistic regression models yielded areas under the curve (AUCs) of 1.0 and 0.99 when separating benign from malignant tissues in the peripheral zone and the transition zone, respectively. Within the peripheral zone, combining choline, maximal enhancement slope, apparent diffusion coefficient (ADC), and citrate measures for separating ≤GS3 + 3 from ≥GS3 + 4 PCa yielded AUC = 0.84. Combining creatine, choline, and washout slope yielded AUC = 0.81 for discriminating ≤GS3 + 4 from ≥GS4 + 3 disease. Within the transition zone, combining washout slope, ADC, and creatine yielded AUC = 0.93 for discriminating ≤GS3 + 3 and ≥GS3 + 4 cancers. When separating ≤GS3 + 4 from ≥GS4 + 3 PCa, combining choline and washout slope yielded AUC = 0.92. MpMRI provides excellent separation between benign tissues and PCa, and across PCa tissues of different aggressiveness. The final models prominently feature spectroscopy and DCE-derived metrics, underlining their value within a comprehensive mpMRI examination.


Assuntos
Imageamento por Ressonância Magnética/métodos , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Próstata/diagnóstico por imagem
19.
Front Neurosci ; 11: 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197066

RESUMO

Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications.

20.
Magn Reson Med ; 77(2): 490-497, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26840906

RESUMO

PURPOSE: Large lipid and water signals in MR spectroscopic imaging (MRSI) complicate brain metabolite quantification. In this study, we combined adiabatic hypergeometric dual-band (HGDB) lipid and water suppression with gradient offset independent adiabatic (GOIA) spin echo to improve three-dimensional (3D) MRSI of the entire brain. METHODS: 3D MRSI was acquired at 3T with a 32-channel coil. HGDB pulses were used before excitation and during echo time. A brain slab was selected with GOIA-W(16,4) pulses, weighted phase encoded stack of spirals, and real-time motion/shim correction. HGDB alone or in combination with OVS and MEGA (MEscher-GArwood) was compared with OVS only and no suppression. RESULTS: The combined HGDB pulses suppressed lipids to 2%-3% of their full unsuppressed signal. The HGDB lipid suppression was on average 5 times better than OVS suppression. HGDB+MEGA provided 30% more suppression compared with a previously described HGDB+OVS scheme. The number of voxels with good metabolic fits was significantly larger in the HGDB data (91%-94%) compared with the OVS data (59%-80%). CONCLUSION: HGDB pulses provided efficient lipid and water suppression for full brain 3D MRSI. The HGDB suppression is superior to traditional OVS, and it can be combined with adiabatic spin echo to provide a sequence that is robust to B1 inhomogeneity. Magn Reson Med 77:490-497, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Imagem Molecular/métodos , Adulto , Algoritmos , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA