Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
J Food Sci ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256318

RESUMO

In this study, a pretreatment method based on a magnetic capture probe for the rapid isolation and enrichment of bacteria from raw pork was developed. The chitosan immobilized Fe3O4@MIL-100(Fe) was prepared as a capture probe for total bacterial counts through the electrostatic interaction of positively charged chitosan and the negatively charged substances on the surface of bacteria. The interference of matrix in pork samples on this method was studied and removed by differential centrifugation. The results showed the capture probe had a great selectivity binding and magnetic separation properties for the tested six common bacteria in pork. Under the optimal conditions, the capture efficiency of the bacteria (105 CFU mL-1) from pork surface samples was all above 90%. The capture efficiency of the bacteria in a homogenate system was greatly decreased due to the interference of sarcoplasmic protein and myofibrillar protein in pork. The matrix effect was mitigated by a differential centrifugation method, and the capture efficiency of all six bacteria was >80%. The developed magnetic separation method took 40 min and showed good isolation and enrichment properties of bacteria. Thus, the proposed method is expected to provide a simple, convenient, and time-saving pretreatment method for the detection of total bacterial counts in pork.

2.
Anal Chim Acta ; 1328: 343187, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39266200

RESUMO

BACKGROUND: Magnetic ionic liquids (MILs) have been explored in dispersive liquid-liquid microextraction (DLLME). Their usage allows to substitute centrifugation and/or filtration steps by a quick magnetic separation. Besides, effervescence-assisted DLLME is one of the most known options to improve the dispersion of the extractant in the sample, while allowing to avoid the consumption of external energy during dispersion. Despite these interesting features, only one study incorporates MILs containing the tetrachloroferrate anion in effervescence tablets. These MILs are highly viscous and liquid at room temperature, thus compromising the stability of the tablets when used as extraction microdevices in effervescence-assisted DLLME, and only allowing their use in the conventional MIL-DLLME mode. RESULTS: A new class of effervescence tablets containing a Ni(II)-based MIL, that is solid at room temperature, is here proposed. This type of tablets permits their use, for first time, in the in situ DLLME mode, occurring through the transformation of a water-soluble MIL into a water-insoluble MIL microdroplet. This way, the tablet formulation included: the MIL, the metathesis reagent lithium bis[(trifluoromethyl)sulfonyl]imide, NaH2PO4 and K2CO3 as effervescence precursors salts, and Na2SO4 as salting-out and desiccating agent. The method is combined with high-performance liquid-chromatography and both fluorescence and ultraviolet detection, for the determination of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and benzophenones (BPs), as biomarkers in urine. The method simply involved the addition of the effervescence tablet to the sample, thus taken place simultaneously the effervescence process and the metathesis reaction, without requiring any external energy consumption. The method presented limits of detection down to 10 ng L-1 for OH-PAHs and to 0.60 µg L-1 for BPs, inter-day relative standard deviations lower than 17 %, and average relative recoveries of 94 % in urine. The determined OH-PAHs contents in urine were between 0.40 and 16 µg L-1, and between 17.8 and 334 µg L-1 for BPs. SIGNIFICANCE: We have developed the first MIL-based effervescence tablets that are completely solid, thus improving the stability and robustness of these microdevices with respect to previously reported tablets involving MILs, while permitting to perform into the in situ DLLME mode (thus gaining in extraction efficiency). This approach including the MIL-based effervescence tablets constitutes an alternative on-site platform for the analysis of urine, as satisfactory precision, accuracy, and sensitivity are achieved despite not involving any external energy input within the analytical sample preparation setup. This method also constitutes the first application of MIL-based effervescence tablets for bioanalysis.


Assuntos
Biomarcadores , Líquidos Iônicos , Microextração em Fase Líquida , Comprimidos , Líquidos Iônicos/química , Microextração em Fase Líquida/métodos , Comprimidos/química , Biomarcadores/urina , Biomarcadores/análise , Humanos , Limite de Detecção , Fenômenos Magnéticos
3.
Water Res ; 266: 122407, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39276473

RESUMO

Phosphorus recovery via vivianite extraction from digested sludge has recently gained considerable interest. The separation of vivianite was demonstrated earlier at the pilot scale, and operational parameters were optimized. In this study, we tested the robustness of this technology by changing the sludge characteristics, such as dry matter, and via that, sludge viscosity, and vivianite particle size. It was proven that the main factor influencing recovery was the concentration of vivianite in the feed. The technology can extract vivianite even when the sludge has higher dry matter (1.8% - 3.3%) and, therefore, higher viscosity. Smaller vivianite sizes (< 10 µm) can still be recovered but at a lower rate. This made magnetic separation applicable to a wide range of wastewater treatment plants.

4.
Molecules ; 29(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39202809

RESUMO

In order to reduce the content of sulfur and ash in coal, improve the desulfurization and deashing rates, a combined experiment method of microwave magnetic separation-flotation was proposed for raw coal. The desulfurization and deashing rates of three experiment methods, namely, single magnetic separation, microwave magnetic separation, and microwave magnetic separation-flotation, were compared. Taking the microwave magnetic separation-flotation experiment method as the main line, the effects of the microwave irradiation time, microwave power, grinding time, magnetic field intensity, plate seam width, foaming agent dosage, collector dosage, and inhibitor dosage on desulfurization and deashing were discussed, and the mechanism of microwave irradiation on magnetic separation and flotation was revealed. The results show that under the conditions of a microwave irradiation time of 60 s, a microwave power of 80% of the rated power (800 W), a grinding time of 8 min, a plate seam width (the plate seam width of a magnetic separator sorting box) of 1 mm, a magnetic field intensity of 2.32 T, a foaming agent dosage of 90 g/t, a collector dosage of 2125 g/t, and an inhibitor dosage of 1500 g/t, the desulfurization and deashing effect is the best. The desulphurization rate is 76.51%, the sulfur removal rate of pyrite is 96.50%, and the deashing rate is 61.91%. Microwaves have the characteristic of selective heating, and the thermal conductivity of organic matter in coal is greater than that of mineral. Microwave irradiation can improve the reactivity of pyrite in coal, pyrolyze pyrite into high-magnetic pyrite, improve the magnetic properties, and improve the magnetic separation effect. Therefore, microwave irradiation plays a role in promoting magnetic separation. Through microwave irradiation, the positive and negative charges in coal molecules constantly vibrate and create friction under the action of an electric field force, and the thermal action generated by this vibration and friction process affects the structural changes in oxygen-containing functional groups in coal. With the increase in the irradiation time and power, the hydrophilic functional groups of -OH and -COOH decrease and the hydrophilicity decreases. Microwave heating evaporates the water in the pores of coal samples and weakens surface hydration. At the same time, microwave irradiation destroys the structure of coal and impurity minerals, produces cracks at the junction, increases the surface area of coal to a certain extent, enhances the hydrophobicity, and then improves the effect of flotation desulfurization and deashing. Therefore, after the microwave irradiation of raw coal, the magnetic separation effect is enhanced, and the flotation desulfurization effect is also enhanced.

5.
Biosens Bioelectron ; 264: 116671, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163781

RESUMO

Detection methods based on CRISPR/Cas12a have been widely developed in the application of pathogenic microorganisms to guarantee food safety and public health. For sensitive detection, the CRISPR-based strategies are often in tandem with amplification methods. However, that may increase the detection time and the process may introduce nucleic acid contamination resulting in non-specific amplification. Herein, we established a sensitive S. aureus detection strategy based on the CRISPR/Cas12a system combined with DNAzyme. The activity of Cas12a is blocked by extending the spacer of crRNA (bcrRNA) and can be reactivated by Mn2+. NH2-modified S. aureus-specific aptamer was loaded on the surface of Fe3O4 MNPs (apt-Fe3O4 MNPs) and MnO2 NPs (apt-MnO2 NPs) by EDC/NHS chemistry. The S. aureus was captured to form apt-Fe3O4 MNPs/S. aureus/apt-MnO2 NPs complex and then MnO2 NPs were etched to release Mn2+ to activate DNAzyme. The active DNAzyme can cleave the hairpin structure in bcrRNA to recover the activity of the CRISPR/Cas system. By initiating the whole detection process by generating Mn2+ through nanoparticle etching, we established a rapid detection assay without nucleic acid extraction and amplification process. The proposed strategy has been applied in the ultrasensitive quantitative detection of S. aureus and has shown good performance with an LOD of 5 CFU/mL in 29 min. Besides, the proposed method can potentially be applied to other targets by simply changing the recognition element and has the prospect of developing a universal detection strategy.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Catalítico , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/genética , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Compostos de Manganês/química , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/diagnóstico , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Aptâmeros de Nucleotídeos/química , Óxidos/química , Endodesoxirribonucleases
6.
Mikrochim Acta ; 191(8): 504, 2024 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096325

RESUMO

A novel colorimetric aptasensor assay based on the excellent magnetic responsiveness and oxidase-like activity of Fe3O4@MIL-100(Fe) was developed. Fe3O4@MIL-100(Fe) absorbed with aptamer and blocked by BSA served as capture probe for selective isolation and enrichment of Listeria monocytogenes one of the most common and dangerous foodborne pathogenic bacteria. The aptamer absorbed on Fe3O4@MIL-100(Fe) was further used as signal probe that specifically binds with target bacteria conjugation of capture probe for colorimetric detection of Listeria monocytogenes, taking advantages of its oxidase-like activity. The linear range of the detection of Listeria monocytogenes was from 102 to 107 CFU mL-1, with the limit of detection as low as 14 CFU mL-1. The approach also showed good feasibility for detection of Listeria monocytogenes in milk and meat samples. The spiked recoveries were in the range 81-114% with relative standard deviations ranging from 1.28 to 5.19%. Thus, this work provides an efficient, convenient, and practical tool for selective isolation and colorimetric detection of Listeria monocytogenes in food.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Colorimetria , Microbiologia de Alimentos , Limite de Detecção , Listeria monocytogenes , Leite , Listeria monocytogenes/isolamento & purificação , Colorimetria/métodos , Aptâmeros de Nucleotídeos/química , Leite/microbiologia , Leite/química , Técnicas Biossensoriais/métodos , Animais , Contaminação de Alimentos/análise , Oxirredutases/química , Carne/microbiologia , Nanopartículas de Magnetita/química
7.
Talanta ; 280: 126743, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39178512

RESUMO

Quantitative detection of pesticide residues in food and environmental samples using an improved lateral flow immunoassay (LFIA) is of considerable importance for real-time analysis. This paper proposes a highly sensitive LFIA platform based on a hierarchical magneto-colorimetric compact. This compact serves as both the target magnetic enrichment substrate and a photosensitive label. Initially, a large porous dendritic silica template is prepared and doped with superparamagnetic ferric oxide nanoparticles (Fe3O4 NPs) and colloidal gold nanoparticles (AuNPs) at high densities within its vertical channels. The sequential assembly of central-radial channels allow for the three-dimensional integration of these two components, enabling independent control of their discrete functions without mutual interference. Following alkyl organosilicon encapsulation and silica sealing, the composite spheres are then applied in LFIA to detect chlorothalonil residues. Fe3O4 NPs enhance the binding efficiency to target analytes, while AuNPs amplify the signal, leveraging their high loading densities and robust optical properties. The developed LFIA platform exhibited a detection limit of 0.34 ng/mL for chlorothalonil and a linear range of 0.0085-824 ng/mL. The recoveries varied between 85.1 % and 103.1 %, and the relative standard deviations were 1.25%-8.84 %. This LFIA approach demonstrates high sensitivity, specificity, reproducibility and flexible detection modes, making it highly suitable for the on-site monitoring of pesticide residues.


Assuntos
Ouro , Nitrilas , Resíduos de Praguicidas , Imunoensaio/métodos , Resíduos de Praguicidas/análise , Ouro/química , Nitrilas/química , Limite de Detecção , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Metálicas/química , Nanopartículas de Magnetita/química
8.
Food Chem ; 460(Pt 2): 140550, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142026

RESUMO

An emerging fluorescent ratiometric aptasensor based on gold nanoclusters (AuNCs) with aggregation-induced emission (AIE) properties was prepared and studied for deoxynivalenol (DON) detection. The ratiometric aptasensor used red fluorescent AuNCs620 labelled with DON aptamer (Apt-AuNCs620) as an indicator and green fluorescent AuNCs519 modified by complementary DNA (cDNA) and magnetic beads (MBs) as internal reference, namely MBs-cDNA-AuNCs519. Under the optimal conditions, the aptasensor exhibited two good linear ranges of 0.1-50 and 50-5000 pg/mL for DON detection with coefficient of determination (R2) of 0.9937 and 0.9928, respectively, and the low detection limit (LOD) of 4.09 pg/mL was achieved. Furthermore, this aptasensor was feasible to detect DON in positive wheat samples, and the results were in line with those from HPLC and ELISA, thus providing a promising route to detect DON with high sensitivity in cereals, even for other mycotoxins by replacing the suitable aptamer and cDNA.


Assuntos
Aptâmeros de Nucleotídeos , Contaminação de Alimentos , Ouro , Limite de Detecção , Tricotecenos , Triticum , Tricotecenos/análise , Tricotecenos/química , Aptâmeros de Nucleotídeos/química , Ouro/química , Triticum/química , Contaminação de Alimentos/análise , Técnicas Biossensoriais , Nanopartículas Metálicas/química , Corantes Fluorescentes/química , Fluorescência , Espectrometria de Fluorescência
9.
Sci Total Environ ; 949: 174775, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39009160

RESUMO

Biochar (BC) granulation, yielding BC-based spheres, serves as an eco-friendly, cost-effective and efficient adsorbent for the removal of potential toxic elements (PTEs) from contaminated agricultural soils. The effect of BC-based spheres on mineral nutrients while effectively removing PTEs from contaminated soils is worth investigating. In this study, we utilized natural clay minerals, magnetic minerals and BC to produce water-hardened magnetic composite biochar sphere (WMBCS) that was capable of removing PTEs from composite contaminated agricultural soils. We explored the effect of WMBCS on minerals (Al, Ca, Fe, Mn, Na, Mg, Si, K, P, NH4+, and NO3-) in the removal of soil PTEs. WMBCS was a mineral nutrient-rich, recyclable, alkaline BC-based sphere that removes Cd (23.07-29.20 %), Pb (27.68-31.10 %), and As (26.17-37.48 %) from soils after three regeneration cycles. The effect of WMBCS on mineral nutrients varies depending on element type, BC and soil type. Compared to water-hardened magnetic composite phosphate modified biochar spheres (WMPBCS), water-hardened magnetic composite unmodified biochar spheres (WMUBCS) had more significant effect on Ca, Mg, Mn, Al and NH4+ in alkaline soils, but a greater effect on Ca, Mg, Mn, Fe and NO3- in acidic soils. Additionally, WMBCS displayed a more pronounced impact on mineral nutrients in alkaline soils than in acidic soils. The application of WMBCS reduced the accumulation of PTEs in wheat (18.40-84.70 %) and rice (27.96-88.66 %), but significantly inhibited seed germination and altered the uptake of mineral nutrients by seedlings due to its effects on soil physicochemical properties and mineral nutrient dynamics. Overall, WMBCS is suitable as a potential amendment for the remediation of soils co-contaminated with Cd, As, and Pb, but its effects on mineral nutrients cannot be overlooked, particularly in agricultural soils.


Assuntos
Agricultura , Carvão Vegetal , Minerais , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/análise , Solo/química , Minerais/química , Agricultura/métodos , Recuperação e Remediação Ambiental/métodos , Adsorção
10.
Int J Biol Macromol ; 276(Pt 2): 134004, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032894

RESUMO

Compounds functionalized with hydroxyl and amino groups were found to have good potential for the adsorption of different ions. In this work, a new system of cellulosic chains was amended with amine substitutions and bonded to a magnetic core of NiFe2O4@SiO2 to form NiFe2O4@SiO2-cellulose-NH2 system. The prepared sample showed suitable magnetic separation and was characterized via XRD, FT-IR, SEM, EDS, and TGA-DTA analyses. The adsorption potential of NiFe2O4@SiO2-cellulose-NH2 system has been investigated on the heavy metals (Cd, Ni, and Pb) removal from a synthetic wastewater environment. The results show that the magnetic property created by the magnetic core increased the recycling potential of the adsorbent and the magnetic core has a positive effect on the absorption potential of the polymer. The adsorption removal of Cd(II), Ni(II), and Pb(II) ions was studied using NiFe2O4@SiO2-cellulose-NH2 systems in different pH, temperatures, metal ion concentrations, and adsorbent dosages. The maximum adsorption capacities of single heavy metal ions were obtained as 406.44 mg/g (for Cd(II) ions), 411.63 mg/g (for Ni(II) ions), and 414.68 mg/g (for Pb(II) ions) under optimized conditions as pH = 6.5, ion concentration: 500 mg/L, adsorbent dosage: 1.2 g/L and room temperature.


Assuntos
Celulose , Metais Pesados , Dióxido de Silício , Poluentes Químicos da Água , Celulose/química , Adsorção , Metais Pesados/química , Metais Pesados/isolamento & purificação , Dióxido de Silício/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Aminação , Temperatura , Águas Residuárias/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
11.
J Hazard Mater ; 477: 135296, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059293

RESUMO

A lateral flow immunoassay strip (LFIAS) is one of the most frequently rapid test technologies for carbofuran (CAR). Nevertheless, the LFIAS has a poor quantitative capability and low sensitivity. And, it also requires often complex sample handling steps, making testing time longer. In this study, Fe3O4 nanoparticles were successively modified with MIL-100(Fe)-based metal-organic framework (MOF) and chloroplatinic acid hexahydrate to obtain a core-shell complex of Fe3O4-MOF-Pt. The complex had a peroxidase-mimicking activity catalytic function that enabled signal amplification and sensitivity enhancement. Upon coupling with carbofuran monoclonal antibody (CAR-mAb), the magnetic separation properties of the probe enabled target-specific enrichment. The LFIAS based on Fe3O4-MOF-Pt nanocomposites could detect CAR in the range of 0.25-50 ng mL-1 with a limit of detection (LOD) of 0.15 ng mL-1, enabling colorimetric and catalytic analysis. In addition, the method showed high specificity and stability for detecting CAR in various vegetables, and recovery rates of the spiked samples were 91.40%-102.40%. In conclusion, this study provided one-stop detection of "target enrichment-visual inspection". While lowering the LOD, it reduced the detection time and improved the detection efficiency. The multifunctional Fe3O4-MOF-Pt nanocomposite provides an idea for the construction of novel multifunctional probes to improve the detection performance of conventional LFIAS.


Assuntos
Carbofurano , Limite de Detecção , Verduras , Carbofurano/análise , Verduras/química , Imunoensaio/métodos , Contaminação de Alimentos/análise , Estruturas Metalorgânicas/química , Platina/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Inseticidas/análise , Nanocompostos/química , Nanopartículas de Magnetita/química
12.
J Environ Manage ; 367: 121971, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074433

RESUMO

In recent years, there has been a growing interest in utilizing spinel ferrite and their nanocomposites as Fenton-like catalysts. The use of these materials offers numerous advantages, including ability to efficiently degrade pollutants and potential for long-term and repeated use facilitated by their magnetic properties that make them easily recoverable. The remarkable catalytic properties, stability, and reusability of these materials make them highly attractive for researchers. This paper encompasses a comprehensive review of various aspects related to the Fenton process and the utilization of spinel ferrite and their composites in catalytic applications. Firstly, it provides an overview of the background, principles, mechanisms, and key parameters governing the Fenton reaction, along with the role of physical field assistance in enhancing the process. Secondly, it delves into the advantages and mechanisms of H2O2 activation induced by different spinel ferrite and their composites for the removal of organic pollutants, shedding light on their efficacy in environmental remediation. Thirdly, the paper explores the application of these materials in various Fenton-like processes, including Fenon-like, photo-Fenton-like, sono-Fenton-like, and electro-Fenton-like, for the effective removal of different types of contaminants. Furthermore, it addresses important considerations such as the toxicity, recovery, and reuse of these materials. Finally, the paper presents the challenges associated with H2O2 activation by these materials, along with proposed directions for future improvements.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Ferro , Catálise , Peróxido de Hidrogênio/química , Compostos Férricos/química , Ferro/química , Nanocompostos/química , Óxido de Alumínio , Óxido de Magnésio
13.
Food Chem ; 460(Pt 1): 140480, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39032300

RESUMO

A novel dual-mode aptasensor was constructed for aminoglycoside antibiotics (AAs) detection by using a broad-spectrum aptamer as a biorecognition element, and Au-Pd@Fc functionalized by signal DNA as nanoprobes. In electrochemical mode, the target-induced cyclic amplification reaction run under the action of exonuclease-III, which increased the number of nanoprobes on the electrode surface. AAs could be quantitatively detected with LOD of 0.0355 ± 0.00613 nM. In colorimetric mode, the Au-Pd@Fc nanozyme catalyzed the color reaction of 3,3',5,5'-tetramethylbenzidine. The blue-shifted absorbance will be observed with the change of AAs concentration, and the LOD was 0.0458 ± 0.00572 nM. Furthermore, a magnetic molecular-imprinted material capable of specific adsorption of AAs was prepared on milk sample pretreatment. The aptasensor was used to detect 10 kinds of AAs in milk and the recoveries were 97.19 ± 4.41% âˆ¼ 98.70 ± 4.45% and 96.38 ± 3.53%-97.54 ± 4.13% in electrochemical and colorimetric methods. This work provided a theoretical basis for the application of aptamers in simultaneous detection of antibiotics.


Assuntos
Aminoglicosídeos , Antibacterianos , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Exodesoxirribonucleases , Contaminação de Alimentos , Ouro , Leite , Paládio , Aptâmeros de Nucleotídeos/química , Antibacterianos/análise , Antibacterianos/química , Ouro/química , Leite/química , Técnicas Biossensoriais/instrumentação , Paládio/química , Animais , Contaminação de Alimentos/análise , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/análise , Aminoglicosídeos/isolamento & purificação , Colorimetria , Técnicas Eletroquímicas/instrumentação , Limite de Detecção
14.
Sci Rep ; 14(1): 13293, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858424

RESUMO

We introduce magnetophoresis-based microfluidics for sorting biological targets using positive Magnetophoresis (pM) for magnetically labeled particles and negative Magnetophoresis (nM) for label-free particles. A single, externally magnetized ferromagnetic wire induces repulsive forces and is positioned across the focused sample flow near the main channel's closed end. We analyze magnetic attributes and separation performance under two transverse dual-mode magnetic configurations, examining magnetic fields, hydrodynamics, and forces on microparticles of varying sizes and properties. In pM, the dual-magnet arrangement (DMA) for sorting three distinct particles shows higher magnetic gradient generation and throughput than the single-magnet arrangement (SMA). In nM, the numerical results for SMA sorting of red blood cells (RBCs), white blood cells (WBCs), and prostate cancer cells (PC3-9) demonstrate superior magnetic properties and throughput compared to DMA. Magnetized wire linear movement is a key design parameter, allowing device customization. An automated device for handling more targets can be created by manipulating magnetophoretic repulsion forces. The transverse wire and magnet arrangement accommodate increased channel depth without sacrificing efficiency, yielding higher throughput than other devices. Experimental validation using soft lithography and 3D printing confirms successful sorting and separation, aligning well with numerical results. This demonstrates the successful sorting and separating of injected particles within a hydrodynamically focused sample in all systems. Both numerical and experimental findings indicate a separation accuracy of 100% across various Reynolds numbers. The primary channel dimensions measure 100 µm in height and 200 µm in width. N52 permanent magnets were employed in both numerical simulations and experiments. For numerical simulations, a remanent flux density of 1.48 T was utilized. In the experimental setup, magnets measuring 0.5 × 0.5 × 0.125 inches and 0.5 × 0.5 × 1 inch were employed. The experimental data confirm the device's capability to achieve 100% separation accuracy at a Reynolds number of 3. However, this study did not explore the potential impact of increased flow rates on separation accuracy.


Assuntos
Técnicas Analíticas Microfluídicas , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Separação Celular/métodos , Separação Celular/instrumentação , Eritrócitos , Microfluídica/métodos , Microfluídica/instrumentação , Leucócitos , Hidrodinâmica , Linhagem Celular Tumoral
15.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38869551

RESUMO

Magnetic separation of photocatalysts holds great promise for water treatment. A magnetic separation method has a positive effect on the recovery of catalysts after degradation. In this paper, an efficient and reusable catalytic system is developed based on coating magnetic Fe3O4 by depositing Fe2+ on the surface of ZnO. The Fe3O4/ZnO nanocomposite exhibits enhanced performance for organic pollutant degradation. The Fe3O4/ZnO system demonstrates a high photocatalytic activity of 100% degradation efficiency in Rhodamine B (RhB) degradation under UV light irradiation for 50 min. The excellent photocatalytic activity is primarily due to the separation of photogenerated electron-hole pairs being facilitated by the strong interaction between Fe3O4 and ZnO. The induction of the magnetic Fe3O4 endows the Fe3O4/ZnO composite with superior magnetic separation capability from water. Experiments with different radical scavengers revealed that the hydroxyl radical (·OH) is the key reactive radical for the effective degradation of RhB. This work innovatively affords a common interfacial dopant deposition strategy for catalytic application in the degradation of organic dye pollutants and catalyst separation from wastewater efficiently.

16.
Adv Mater ; 36(35): e2407013, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936410

RESUMO

Due to the presence of unpaired electron orbitals in most lanthanide ions, lanthanide-doped nanoparticles (LnNPs) exhibit paramagnetism. However, as to biosensing applications, the magnetism of LnNPs is so weak that can hardly be employed in target separation. Herein, it is discovered that the magnetism of the LnNPs is highly associated with their concentration in a confined space, enabling aggregation-augmented magnetism to make them susceptive to a conventional magnet. Accordingly, a magnetic levitation (Maglev) sensing system is designed, in which the target exosomes can specifically introduce paramagnetic LnNPs to the microbeads' surface, allowing aggregation-augmented magnetism and further leverage the microbeads' levitation height in the Maglev device to indicate the target exosomes' content. It is demonstrated that this Maglev system can precisely distinguish healthy people's blood samples from those of breast cancer patients. This is the first work to report that LnNPs hold great promise in magnetic separation-based biological sample sorting, and the LnNP-permitted Maglev sensing system is proven to be promising for establishing a new generation of biosensing devices.


Assuntos
Técnicas Biossensoriais , Exossomos , Elementos da Série dos Lantanídeos , Exossomos/química , Elementos da Série dos Lantanídeos/química , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química
17.
Environ Res ; 258: 119416, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885827

RESUMO

To address the urgent need for efficient removal of lead-containing wastewater and reduce the risk of toxicity associated with heavy-metal wastewater contamination, materials with high removal rates and easy separation must be developed. Herein, a novel organic-inorganic hybrid material based on phosphorylated magnetic chitosan (MSCP) was synthesized and applied for the selective removal of lead (II) from wastewater. From the characterization and the experimental results can be obtained that the magnetic saturation strength of MSCP reaches 14.65 emu/g, which can be separated quickly and regenerated readily, and maintains high adsorption performance even after 5 cycles, indicating that the adsorbent possesses good magnetic separation performance and durability. Also, MSCP showed high selective adsorption performance for lead in the multiple metal ions coexistence solutions at pH 6.0 and room temperature, with an adsorption coefficient SPb-MSCP of 78.85%, which was much higher than that of MSC (the SPb-MSC was 11.59%). Additionally, in the single lead system, the sorption characteristics of Pb(II) on MSCP and MCP had obvious pH-responsiveness, and their adsorption capacity increased with the increase of solution pH, reaching the maximal values of 80.19 and 72.68 mg/g, respectively. It is noteworthy that the acid resistance of MSCP with an inert layer coated on the core is significantly improved, with almost no iron leaching from MSCP over the entire acidity range, while MCP has 7.63 mg/g of iron leaching at pH 1.0. Significantly, MSCP exhibited a maximum adsorption capacity of 102.04 mg/g, which matches the Langmuir model at pH 6.0 and 298.15 K, and points to the pseudo-second-order kinetics of the chemisorption process of Pb(II) on MSCP. These findings highlight the great potential of MSCP for Pb(II) removal from aqueous solution, making it a promising solution for Pb(II) contamination in wastewater.


Assuntos
Quitosana , Chumbo , Fosfatos , Águas Residuárias , Poluentes Químicos da Água , Chumbo/química , Chumbo/isolamento & purificação , Quitosana/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Fosfatos/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
18.
Materials (Basel) ; 17(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793291

RESUMO

The Waelz slag generated during electric arc furnace dust processing is an iron-rich product with significant amounts of iron, zinc and copper. About 600-800 kg of the Waelz slag is generated per ton of the dust processed. The Waelz slag samples from two different plants were thoroughly characterized using inductively coupled plasma optical emission spectroscopy (ICP-AES), X-ray diffraction analysis (XRD), chemical phase analysis, Mössbauer spectroscopy and other supporting methods. The phase distribution of iron, zinc and copper was determined in the Waelz slag samples. Low-intensity wet magnetic separation was tested for the iron recovery from the Waelz slag samples. It was found that the Waelz slag samples have complex chemical and mineralogical compositions, which can impede the selective recovery of valuable elements. The obtained results indicate that the chemical and mineralogical composition of the Waelz slag samples has a considerable effect on the magnetic separation indexes. The experiments showed that the iron concentrates with Fe contents of 73% and 46.8% with the metallization degrees of 87.2% and 57.5% and the iron recovery degree of 54.8% and 52.9% were obtained at optimal conditions for two different samples, respectively, without selective segregation of Cu and Zn in the magnetic or non-magnetic fraction.

19.
Environ Sci Pollut Res Int ; 31(26): 38099-38116, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795296

RESUMO

Microplastics (MPs) are a potential threat to both humans and aquatic environment as they serve as carriers of various contaminants necessitating the development of reliable, efficient, and ecofriendly techniques to remove MPs from water. In this study, reduced graphene oxide (rGO) magnetized using nickel nanoparticles was utilized as a potent adsorbent for the effective removal of microplastics from water. The synthesized nickel/reduced graphene oxide (Ni/rGO) nanocomposite was characterized by X-ray diffraction (XRD), Raman spectra, vibrating sample magnetometer (VSM), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX), thermogravimetric analysis, and Brunauer-Emmett Teller (BET) analysis. Magnetic Ni/rGO nanocomposite exhibited significant adsorption capability for polystyrene (PS) microspheres allowing the formation of PS-Ni/rGO complex which can be easily separated out using a magnet. The SEM images of PS-Ni/rGO complex confirmed the adsorption of PS microspheres onto the nano adsorbent due to hydrophobic interaction. The adsorbent demonstrated a maximum adsorption capacity of 1250 mg/g. The analysis of isotherm and kinetic models demonstrated that the adsorption mechanism conformed to the Langmuir isotherm and followed pseudo second order kinetics. This study paves a new pathway for the application of magnetically modified reduced graphene oxide for the expedient removal of microplastics from water with the ease of separation using a magnet. The adsorbent was recycled and reused for three times.


Assuntos
Grafite , Microplásticos , Nanocompostos , Níquel , Poliestirenos , Poluentes Químicos da Água , Grafite/química , Poliestirenos/química , Adsorção , Nanocompostos/química , Microplásticos/química , Níquel/química , Poluentes Químicos da Água/química , Cinética
20.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731444

RESUMO

With the increase of hexavalent Cr(VI) wastewater discharged from industrial production, it seriously pollutes water bodies and poses a risk to human health. Adsorption is used as an effective means to treat Cr(VI), but its effectiveness is affected by pH, and the adsorption performance decreases when acidity is strong. Furthermore, research on the mechanism of Cr(VI) adsorption using DFT calculations needs to be developed. This study focuses on the development of magnetically responsive core-shell nano-ion imprinted materials (Fe3O4@GO@IIP) through magnetic separation and surface imprinting techniques. Characterization techniques including FT-IR, XRD, and EDS confirmed the core-shell nanostructure of Fe3O4@GO@IIP. Batch adsorption experiments and model simulations demonstrated the exceptional adsorption capacity of Fe3O4@GO@IIP for Cr(VI) in strongly acidic solutions (pH = 1), reaching a maximum of 89.18 mg/g. The adsorption mechanism was elucidated through XPS and DFT calculations, revealing that Fe3O4@GO@IIP operates through electrostatic interactions and chemical adsorption, with charge transfer dynamics quantified during the process. This research provides new insights for addressing Cr(VI) treatment in highly acidic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA