Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.187
Filtrar
1.
Proc Biol Sci ; 291(2026): 20241137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981525

RESUMO

Torpor is widespread among bats presumably because most species are small, and torpor greatly reduces their high mass-specific resting energy expenditure, especially in the cold. Torpor has not been recorded in any bat species larger than 50 g, yet in theory could be beneficial even in the world's largest bats (flying-foxes; Pteropus spp.) that are exposed to adverse environmental conditions causing energy bottlenecks. We used temperature telemetry to measure body temperature in wild-living adult male grey-headed flying-foxes (P. poliocephalus; 799 g) during winter in southern Australia. We found that all individuals used torpor while day-roosting, with minimum body temperature reaching 27°C. Torpor was recorded following a period of cool, wet and windy weather, and on a day with the coldest maximum air temperature, suggesting it is an adaptation to reduce energy expenditure during periods of increased thermoregulatory costs and depleted body energy stores. A capacity for torpor among flying-foxes has implications for understanding their distribution, behavioural ecology and life history. Furthermore, our discovery increases the body mass of bats known to use torpor by more than tenfold and extends the documented use of this energy-saving strategy under wild conditions to all bat superfamilies, with implications for the evolutionary maintenance of torpor among bats and other mammals.


Assuntos
Quirópteros , Torpor , Animais , Quirópteros/fisiologia , Torpor/fisiologia , Masculino , Metabolismo Energético , Telemetria , Temperatura Corporal , Estações do Ano , Austrália do Sul
2.
Proc Biol Sci ; 291(2026): 20240820, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981526

RESUMO

Unravelling the functional steps that underlie major transitions in the fossil record is a significant challenge for biologists owing to the difficulties of interpreting functional capabilities of extinct organisms. New computational modelling approaches provide exciting avenues for testing function in the fossil record. Here, we conduct digital bending experiments to reconstruct vertebral function in non-mammalian synapsids, the extinct forerunners of mammals, to provide insights into the functional underpinnings of the synapsid-mammal transition. We estimate range of motion and stiffness of intervertebral joints in eight non-mammalian synapsid species alongside a comparative sample of extant tetrapods, including salamanders, reptiles and mammals. We show that several key aspects of mammalian vertebral function evolved outside crown Mammalia. Compared to early diverging non-mammalian synapsids, cynodonts stabilized the posterior trunk against lateroflexion, while evolving axial rotation in the anterior trunk. This was later accompanied by posterior sagittal bending in crown mammals, and perhaps even therians specifically. Our data also support the prior hypothesis that functional diversification of the mammalian trunk occurred via co-option of existing morphological regions in response to changing selective demands. Thus, multiple functional and evolutionary steps underlie the origin of remarkable complexity in the mammalian backbone.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Coluna Vertebral , Animais , Mamíferos/fisiologia , Fósseis/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/fisiologia , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Répteis/fisiologia , Répteis/anatomia & histologia
3.
Oecologia ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981874

RESUMO

Demography of herbivorous mammal populations may be affected by changes in predation, population density, harvesting, and climate. Whereas numerous studies have focused on the effect of single environmental variables on individual demographic processes, attempts to integrate the consequences of several environmental variables on numerous functional traits and demographic rates are rare. Over a 32-year period, we examined how forage availability (vegetation assessed through NDVI) and population density affected the functional traits and demographic rates of a population of Columbian ground squirrels (Urocitellus columbianus), a herbivorous hibernating rodent. We focused on mean population phenology, body mass, breeding success, and survival. We found a negative effect of population density on demographic rates, including on breeding success and pup and adult survival to the next year. We found diverging effects of vegetation phenology on demographic rates: positive effects of a later start of the growing season on adult and yearling female survival, and juvenile survival, but no clear effect on male survival. Interestingly, neither population density nor vegetation affected population phenology or body condition in the following year. Vegetative growth rate had a positive influence on female mass gain (somatic investment) over a season, but both vegetative growth rate and biomass, surprisingly, had negative effects on the survival of young through their first hibernation. Thus, ground squirrels appeared to benefit more from later timing of vegetation than increases in vegetative biomass per se. Our study provides evidence for complex ecological effects of vegetation and population density on functional traits and demographic rates of small mammal populations.

4.
Biodivers Data J ; 12: e122597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974674

RESUMO

This study conducted biostatistical multivariate analyses on 23 craniodental morphological measurements from 209 specimens to study interspecific variations amongst 15 bat species of the genus Myotis in Vietnam. Univariate and multivariate analyses demonstrated that the studied species can be divided into four groups as follows: extra-large-sized species (M.chinensis), large-sized species (M.pilosus, M.indochinensis and M.annectans), medium-sized species (M.altarium, M.hasseltii, M.montivagus, M.horsfieldii, M.ater, M.laniger and M.muricola) and small-sized species (M.annamiticus, M.aff.siligorensis, M.rosseti and M.alticraniatus). Our data revealed that the main craniodental features contributing to the variations in distinguishing Myotis species are the width of the anterior palatal, least height of the coronoid process, length of the upper and lower canine-premolar, zygomatic width and width across the upper canines and lower premolar-molar length. Based on patterns of morphological differences, we conducted comparisons between morphometrically closely resembling species pairs and further discussed additional characteristics that are expected to support the taxonomy and systematics of Vietnamese Myotis bats.

5.
Adv Exp Med Biol ; 1454: 391-440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008272

RESUMO

The trematodes are a species-rich group of parasites, with some estimates suggesting that there are more than 24,000 species. However, the complexities associated with their taxonomic status and nomenclature can hinder explorations of the biology of wildlife trematodes, including fundamental aspects such as host use, life cycle variation, pathology, and disease. In this chapter, we review work on selected trematodes of amphibians, birds, mammals, and their snail intermediate hosts, with the goal of providing a tool kit on how to study trematodes of wildlife. We provide a brief introduction to each group of wildlife trematodes, followed by some examples of the challenges each group of trematodes has relative to the goal of their identification and understanding of the biology and interactions these organisms have with their wildlife hosts.


Assuntos
Animais Selvagens , Aves , Interações Hospedeiro-Parasita , Trematódeos , Infecções por Trematódeos , Animais , Trematódeos/fisiologia , Trematódeos/classificação , Animais Selvagens/parasitologia , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Aves/parasitologia , Anfíbios/parasitologia , Caramujos/parasitologia , Mamíferos/parasitologia , Estágios do Ciclo de Vida
6.
Biol Proced Online ; 26(1): 23, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987687

RESUMO

Mammalian oocytes accumulate more than ten thousand mRNAs, of which three to four thousand mRNAs are translationally repressed. The timings and sites of translational activation of these dormant mRNAs are crucial for promoting oocyte maturation and embryonic development. How these mRNAs are accumulated and distributed in oocytes is therefore a fundamental issue to be explored. A method that enables visualization of mRNA molecules with high resolution in a simple manner would be valuable for understanding how oocytes accumulate and regulate the dormant mRNAs. We have developed a highly sensitive whole-mount in situ hybridization method using in vitro-synthesized RNA probes and the tyramide signal amplification (TSA) system optimized for mouse oocytes and embryos. By using this method, Pou5f1/Oct4, Emi2, and cyclin B1 mRNAs were detected in immature oocytes and 2-cell stage embryos. Confocal microscopy showed that these mRNAs formed granular structures in the oocyte cytoplasm. The structures of Pou5f1/Oct4 and cyclin B1 mRNAs persisted in 2-cell stage embryos. Pou5f1/Oct4 RNA granules exhibited a solid-like property in immature oocytes and became liquid-like droplets in 2-cell stage embryos. Double-staining of cyclin B1 mRNA with Emi2 or Pou5f1/Oct4 mRNA revealed that these mRNAs were distributed as different RNA granules without overlapping each other and that the size of cyclin B1 RNA granules tended to be larger than that of Emi2 RNA granules. The structures and distribution patterns of these mRNAs were further analyzed by N-SIM super-resolution microscopy. This analysis revealed that the large-sized RNA granules consist of many small-sized granules, suggesting the accumulation and regulation of dormant mRNAs as basal-sized RNA granules. The method established in this study can easily visualize the structure and distribution of mRNAs accumulated in mammalian oocytes and embryos with high sensitivity and super-resolution. This method is useful for investigating the cellular and molecular mechanisms of translational control of mRNAs by which maturation and early developmental processes are promoted.

7.
Infect Dis Poverty ; 13(1): 54, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982550

RESUMO

BACKGROUND: Rickettsia and related diseases have been identified as significant global public health threats. This study involved comprehensive field and systematic investigations of various rickettsial organisms in Yunnan Province. METHODS: Between May 18, 2011 and November 23, 2020, field investigations were conducted across 42 counties in Yunnan Province, China, encompassing small mammals, livestock, and ticks. Preliminary screenings for Rickettsiales involved amplifying the 16S rRNA genes, along with additional genus- or species-specific genes, which were subsequently confirmed through sequencing results. Sequence comparisons were carried out using the Basic Local Alignment Search Tool (BLAST). Phylogenetic relationships were analyzed using the default parameters in the Molecular Evolutionary Genetics Analysis (MEGA) program. The chi-squared test was used to assess the diversities and component ratios of rickettsial agents across various parameters. RESULTS: A total of 7964 samples were collected from small mammals, livestock, and ticks through Yunnan Province and submitted for screening for rickettsial organisms. Sixteen rickettsial species from the genera Rickettsia, Anaplasma, Ehrlichia, Neoehrlichia, and Wolbachia were detected, with an overall prevalence of 14.72%. Among these, 11 species were identified as pathogens or potential pathogens to humans and livestock. Specifically, 10 rickettsial organisms were widely found in 42.11% (24 out of 57) of small mammal species. High prevalence was observed in Dremomys samples at 5.60%, in samples from regions with latitudes above 4000 m or alpine meadows, and in those obtained from Yuanmou County. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis were broadly infecting multiple genera of animal hosts. In contrast, the small mammal genera Neodon, Dremomys, Ochotona, Anourosorex, and Mus were carrying individually specific rickettsial agents, indicating host tropism. There were 13 rickettsial species detected in 57.14% (8 out of 14) of tick species, with the highest prevalence (37.07%) observed in the genus Rhipicephalus. Eight rickettsial species were identified in 2375 livestock samples. Notably, six new Rickettsiales variants/strains were discovered, and Candidatus Rickettsia longicornii was unambiguously identified. CONCLUSIONS: This large-scale survey provided further insight into the high genetic diversity and overall prevalence of emerging Rickettsiales within endemic hotspots in Yunnan Province. The potential threats posed by these emerging tick-borne Rickettsiales to public health warrant attention, underscoring the need for effective strategies to guide the prevention and control of emerging zoonotic diseases in China.


Assuntos
Variação Genética , Filogenia , Rickettsiales , Carrapatos , China/epidemiologia , Animais , Prevalência , Rickettsiales/genética , Rickettsiales/isolamento & purificação , Rickettsiales/classificação , Carrapatos/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Gado/microbiologia , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/veterinária , Rickettsia/isolamento & purificação , Rickettsia/genética , Rickettsia/classificação , Mamíferos/microbiologia , Humanos
8.
BMC Vet Res ; 20(1): 285, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956597

RESUMO

Clade 2.3.4.4b highly pathogenic avian influenza (HPAI) H5N1 virus was detected in the South American sea lions found dead in Santa Catarina, Brazil, in October 2023. Whole genome sequencing and comparative phylogenetic analysis were conducted to investigate the origin, genetic diversity, and zoonotic potentials of the H5N1 viruses. The H5N1 viruses belonged to the genotype B3.2 of clade 2.3.4.4b H5N1 virus, which was identified in North America and disseminated to South America. They have acquired new amino acid substitutions related to mammalian host affinity. Our study provides insights into the genetic landscape of HPAI H5N1 viruses in Brazil, highlighting the continuous evolutionary processes contributing to their possible adaptation to mammalian hosts.


Assuntos
Virus da Influenza A Subtipo H5N1 , Filogenia , Leões-Marinhos , Sequenciamento Completo do Genoma , Animais , Leões-Marinhos/virologia , Brasil , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/classificação , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Genoma Viral , Genótipo , Variação Genética
9.
BMC Res Notes ; 17(1): 184, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956715

RESUMO

OBJECTIVE: Bartonella are emerging bacterial zoonotic pathogens. Utilization of clotted blood samples for surveillance of these bacteria in wildlife has begun to supersede the use of tissues; however, the efficacy of these samples has not been fully investigated. Our objective was to compare the efficacy of spleen and blood samples for DNA extraction and direct detection of Bartonella spp. via qPCR. In addition, we present a protocol for improved DNA extraction from clotted, pelleted (i.e., centrifuged) blood samples obtained from wild small mammals. RESULTS: DNA concentrations from kit-extracted blood clot samples were low and A260/A280 absorbance ratios indicated high impurity. Kit-based DNA extraction of spleen samples was efficient and produced ample DNA concentrations of good quality. We developed an in-house extraction method for the blood clots which resulted in apposite DNA quality when compared to spleen samples extracted via MagMAX DNA Ultra 2.0 kit. We detected Bartonella in 9/30 (30.0%) kit-extracted spleen DNA samples and 11/30 (36.7%) in-house-extracted blood clot samples using PCR. Our results suggest that kit-based methods may be less suitable for DNA extraction from blood clots, and that blood clot samples may be superior to tissues for Bartonella detection.


Assuntos
Animais Selvagens , Infecções por Bartonella , Bartonella , DNA Bacteriano , Baço , Animais , Bartonella/isolamento & purificação , Bartonella/genética , DNA Bacteriano/sangue , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Baço/microbiologia , Infecções por Bartonella/diagnóstico , Infecções por Bartonella/sangue , Infecções por Bartonella/microbiologia , Animais Selvagens/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos
10.
Proc Biol Sci ; 291(2026): 20240778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955231

RESUMO

Mammals influence nearly all aspects of energy flow and habitat structure in modern terrestrial ecosystems. However, anthropogenic effects have probably altered mammalian community structure, raising the question of how past perturbations have done so. We used functional diversity (FD) to describe how the structure of North American mammal palaeocommunities changed over the past 66 Ma, an interval spanning the radiation following the K/Pg and several subsequent environmental disruptions including the Palaeocene-Eocene Thermal Maximum (PETM), the expansion of grassland, and the onset of Pleistocene glaciation. For 264 fossil communities, we examined three aspects of ecological function: functional evenness, functional richness and functional divergence. We found that shifts in FD were associated with major ecological and environmental transitions. All three measures of FD increased immediately following the extinction of the non-avian dinosaurs, suggesting that high degrees of ecological disturbance can lead to synchronous responses both locally and continentally. Otherwise, the components of FD were decoupled and responded differently to environmental changes over the last ~56 Myr.


Assuntos
Biodiversidade , Fósseis , Mamíferos , Animais , Mamíferos/fisiologia , América do Norte , Ecossistema , Evolução Biológica
11.
Ecol Evol ; 14(7): e11674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957697

RESUMO

Globally, hundreds of mammal species face the threat of extinction in the coming decades, and in many cases, their ecology remains poorly understood. Fundamental ecological knowledge is crucial for effective conservation management of these species, but it is particularly lacking for small, cryptic mammals. The Julia Creek dunnart (Sminthopsis douglasi), a threatened, cryptic carnivorous marsupial that occurs in scattered populations in the central west of Queensland, Australia, was once so poorly studied that it was believed extinct. Sporadic research since its rediscovery in the early 1990s has revealed that S. douglasi is distributed across land at risk from many threats. Fundamental knowledge of S. douglasi population density is urgently required to inform conservation management at key sites, yet the species has historically proven hard to detect. Indeed, the status of the largest known population of S. douglasi, in Bladensburg National Park, is unknown. Here, we conducted a population study on S. douglasi at two sites within Bladensburg National Park via live mark-recapture surveys during 2022 and 2023. From likelihood-based spatially explicit capture-recapture (SECR) modelling we provide the first estimates of density and population size for S. douglasi. Live trapping resulted in captures of 49 individual S. douglasi (with 83 captures total, including recaptures). We estimated S. douglasi to occur at a density of 0.38 individuals ha-1 (0.25-0.58) at one site and 0.16 individuals ha-1 (0.09-0.27) at another site, with an estimated mean population size in suitable habitat at Bladensburg National Park of 1211 individuals (776-1646). Our S. douglasi density estimates were similar to that reported for other threatened small mammals in Australia. We also found evidence of extreme S. douglasi population fluctuations over time at Bladensburg National Park, which is of concern for its future conservation. Our study has provided the first estimate of density for S. douglasi, a threatened dasyurid species from the Mitchell Grass Downs of central western Queensland, Australia. Our research provides crucial population data to assist the management of this poorly studied species. We demonstrate a method that can be applied to species with low detection probability to ultimately help address the mammal extinction crisis faced by Australia and the rest of the world.

12.
Sci Rep ; 14(1): 13984, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886526

RESUMO

Indian coastal waters are critical for dugong populations in the western Indian Ocean. Systematic spatial planning of dugong habitats can help to achieve biodiversity conservation and area-based protection targets in the region. In this study, we employed environmental niche modelling to predict suitable dugong habitats and identify influencing factors along its entire distribution range in Indian waters. We examined data on fishing pressures collected through systematic interview surveys, citizen-science data, and field surveys to demarcate dugong habitats with varying risks. Seagrass presence was the primary factor in determining dugong habitat suitability across the study sites. Other variables such as depth, bathymetric slope, and Euclidean distance from the shore were significant factors, particularly in predicting seasonal suitability. Predicted suitable habitats showed a remarkable shift from pre-monsoon in Palk Bay to post-monsoon in the Gulf of Mannar, indicating the potential of seasonal dugong movement. The entire coastline along the Palk Bay-Gulf of Mannar region was observed to be at high to moderate risk, including the Gulf of Mannar Marine National Park, a high-risk area. The Andaman Islands exhibited high suitability during pre- and post-monsoon season, whereas the Nicobar Islands were highly suitable for monsoon season. Risk assessment of modelled suitable areas revealed that < 15% of high-risk areas across Andaman and Nicobar Islands and Palk Bay and Gulf of Mannar, Tamil Nadu, fall within the existing protected areas. A few offshore reef islands are identified under high-risk zones in the Gulf of Kutch, Gujarat. We highlight the utility of citizen science and secondary data in performing large-scale spatial ecological analysis. Overall, identifying synoptic scale 'Critical Dugong Habitats' has positive implications for the country's progress towards achieving the global 30 × 30 target through systematic conservation planning.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Dugong , Ecossistema , Índia , Conservação dos Recursos Naturais/métodos , Animais , Oceano Índico , Estações do Ano
13.
BMC Vet Res ; 20(1): 266, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902706

RESUMO

BACKGROUND: Pathogenic Leptospira species are globally important zoonotic pathogens capable of infecting a wide range of host species. In marine mammals, reports of Leptospira have predominantly been in pinnipeds, with isolated reports of infections in cetaceans. CASE PRESENTATION: On 28 June 2021, a 150.5 cm long female, short-beaked common dolphin (Delphinus delphis delphis) stranded alive on the coast of southern California and subsequently died. Gross necropsy revealed multifocal cortical pallor within the reniculi of the kidney, and lymphoplasmacytic tubulointerstitial nephritis was observed histologically. Immunohistochemistry confirmed Leptospira infection, and PCR followed by lfb1 gene amplicon sequencing suggested that the infecting organism was L.kirschneri. Leptospira DNA capture and enrichment allowed for whole-genome sequencing to be conducted. Phylogenetic analyses confirmed the causative agent was a previously undescribed, divergent lineage of L.kirschneri. CONCLUSIONS: We report the first detection of pathogenic Leptospira in a short-beaked common dolphin, and the first detection in any cetacean in the northeastern Pacific Ocean. Renal lesions were consistent with leptospirosis in other host species, including marine mammals, and were the most significant lesions detected overall, suggesting leptospirosis as the likely cause of death. We identified the cause of the infection as L.kirschneri, a species detected only once before in a marine mammal - a northern elephant seal (Mirounga angustirostris) of the northeastern Pacific. These findings raise questions about the mechanism of transmission, given the obligate marine lifestyle of cetaceans (in contrast to pinnipeds, which spend time on land) and the commonly accepted view that Leptospira are quickly killed by salt water. They also raise important questions regarding the source of infection, and whether it arose from transmission among marine mammals or from terrestrial-to-marine spillover. Moving forward, surveillance and sampling must be expanded to better understand the extent to which Leptospira infections occur in the marine ecosystem and possible epidemiological linkages between and among marine and terrestrial host species. Generating Leptospira genomes from different host species will yield crucial information about possible transmission links, and our study highlights the power of new techniques such as DNA enrichment to illuminate the complex ecology of this important zoonotic pathogen.


Assuntos
Leptospira , Leptospirose , Animais , Leptospira/isolamento & purificação , Leptospira/genética , Leptospira/classificação , Leptospirose/veterinária , Leptospirose/microbiologia , Leptospirose/epidemiologia , California/epidemiologia , Feminino , Filogenia , Golfinhos Comuns/microbiologia
14.
Elife ; 132024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38896445

RESUMO

The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61's lateral gate, widening Sec61's central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.


Assuntos
Microscopia Crioeletrônica , Ribossomos , Canais de Translocação SEC , Ribossomos/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/química , Retículo Endoplasmático/metabolismo , Conformação Proteica , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/química , Humanos , Modelos Moleculares , Transporte Proteico , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química
15.
J Virol ; : e0067924, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842335

RESUMO

In a previous study to understand how the chikungunya virus (CHIKV) E1 glycoprotein ß-strand c functions, we identified several attenuating variants at E1 residue V80 and the emergence of second-site mutations in the fusion loop (E1-M88L) and hinge region (E1-N20Y) with the V80 variants in vivo. The emergence of these mutations led us to question how changes in E1 may contribute to CHIKV infection at the molecular level. Here, we use molecular dynamics to understand how changes in the E1 glycoprotein may influence the CHIKV glycoprotein E1-E2 complex. We found that E1 domain II variants lead to E2 conformational changes, allowing us to hypothesize that emerging variants E1-M88L and E1-N20Y could also change E2 conformation and function. We characterized CHIKV E1-M88L and E1-N20Y in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. We found that CHIKV E1-N20Y enhanced infectivity in mosquito cells, while the CHIKV E1-M88L variant enhanced infectivity in both BHK-21 and C6/36 cells and led to changes in viral cholesterol-dependence. Moreover, we found that E1-M88L and E1-N20Y changed E2 conformation, heparin binding, and interactions with the receptor Mxra8. Interestingly, the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, yet was attenuated in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type-dependent entry. Taken together, these studies show that key residues in the CHIKV E1 domain II and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.IMPORTANCEArboviruses are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo to address these gaps in our knowledge. Here, we show that changes in the CHIKV E1 domain II and hinge alter E2 conformations leading to changes in virus-receptor and -glycosaminoglycan interactions and cell-specific infection. These results highlight that adaptive changes in E1 can have a major effect on virus attachment and entry, furthering our knowledge of how alphaviruses infect mammals and insects.

16.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1123-1130, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884247

RESUMO

China has complex natural conditions and is rich in biodiversity. Based on the geographical distribution and species composition of terrestrial mammals, we explored the characteristics and geographic partitioning of mammal populations in different regions of China. We used a clustering algorithm, combined with the spatial distribution data and taxonomic characteristics of mammals, to geographically partition the terrestrial mammals in China. We found 10 zoogeographic regions of terrestrial mammals in China: Northeast region, North China region, Eastern grassland region, Western region, Northwest region, Qiangtang plateau region, Eastern Qinghai-Tibet Plateau region, Himalayan region, South China region, and Taiwan-Hainan region. We found a new geographical zoning pattern for terrestrial mammals in China, examined the variability and characteristics of species composition among different regions, and quantified the association between species distribution and environmental factors. We proposed a method of incorporating taxonomic information into cluster analysis, which provided a new idea for zoogeographic region studies, a new perspective for understanding species diversity, and a scientific basis for animal conservation and habitat planning.


Assuntos
Biodiversidade , Ecossistema , Mamíferos , China , Animais , Mamíferos/classificação , Geografia , Análise por Conglomerados , Conservação dos Recursos Naturais
17.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930510

RESUMO

Cetaceans, which are crucial in marine ecosystems, act as sentinels for ecosystem and human-environmental health. However, emerging fungal infections, particularly by Candida spp., pose a growing concern in these marine mammals. This review consolidates current knowledge on the prevalence, clinical manifestations, species distribution, and antifungal resistance of Candida infections in cetaceans. We detail the diverse pathogenic impacts of Candida, including respiratory, dermal, and systemic afflictions, underscoring diagnostic and treatment challenges amid rising antifungal resistance. Our analysis extends beyond health concerns in captive cetaceans, where confinement stress heightens vulnerability, to encompass substantial ecological risks in wild populations. The review emphasizes the One Health perspective, linking cetacean health with broader environmental and human public health issues. We particularly focus on the potential zoonotic transmission of emerging fungal pathogens such as Candida auris and the role of environmental changes in fostering antifungal resistance. The study underscores the need for concerted, interdisciplinary efforts in veterinary, medical, and environmental sciences to enhance understanding and management of Candida infections in cetaceans. We advocate for comprehensive monitoring and collaborative research initiatives to mitigate the rising challenge of these infections. Addressing Candida spp. in cetaceans is not just a conservation priority but a critical step in safeguarding overall marine health and, by extension, human health in the context of evolving infectious diseases.

18.
Glob Chang Biol ; 30(6): e17352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822670

RESUMO

The Arctic is the fastest-warming region on the planet, and the lengthening ice-free season is opening Arctic waters to sub-Arctic species such as the killer whale (Orcinus orca). As apex predators, killer whales can cause significant ecosystem-scale changes. Setting conservation priorities for killer whales and their Arctic prey species requires knowledge of their evolutionary history and demographic trajectory. Using whole-genome resequencing of 24 killer whales sampled in the northwest Atlantic, we first explored the population structure and demographic history of Arctic killer whales. To better understand the broader geographic relationship of these Arctic killer whales to other populations, we compared them to a globally sampled dataset. Finally, we assessed threats to Arctic killer whales due to anthropogenic harvest by reviewing the peer-reviewed and gray literature. We found that there are two highly genetically distinct, non-interbreeding populations of killer whales using the eastern Canadian Arctic. These populations appear to be as genetically different from each other as are ecotypes described elsewhere in the killer whale range; however, our data cannot speak to ecological differences between these populations. One population is newly identified as globally genetically distinct, and the second is genetically similar to individuals sampled from Greenland. The effective sizes of both populations recently declined, and both appear vulnerable to inbreeding and reduced adaptive potential. Our survey of human-caused mortalities suggests that harvest poses an ongoing threat to both populations. The dynamic Arctic environment complicates conservation and management efforts, with killer whales adding top-down pressure on Arctic food webs crucial to northern communities' social and economic well-being. While killer whales represent a conservation priority, they also complicate decisions surrounding wildlife conservation and resource management in the Arctic amid the effects of climate change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Orca , Animais , Orca/fisiologia , Regiões Árticas , Espécies em Perigo de Extinção , Canadá
19.
Toxics ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38787106

RESUMO

Bottlenose dolphins (Tursiops spp.) inhabit bays, sounds, and estuaries (BSEs) throughout the southeast region of the U.S.A. and are sentinel species for human and ecosystem-level health. Dolphins are vulnerable to the bioaccumulation of contaminants through the coastal food chain because they are high-level predators. Currently, there is limited information on the spatial dynamics of mercury accumulation in these dolphins. Total mercury (THg) was measured in dolphin skin from multiple populations across the U.S. Southeast Atlantic and Gulf of Mexico coasts, and the influence of geographic origin, sex, and age class was investigated. Mercury varied significantly among sampling sites and was greatest in dolphins in St. Joseph Bay, Florida Everglades, and Choctawhatchee Bay (14,193 ng/g ± 2196 ng/g, 10,916 ng/g ± 1532 ng/g, and 7333 ng/g ± 1405 ng/g wet mass (wm), respectively) and lowest in dolphins in Charleston and Skidaway River Estuary (509 ng/g ± 32.1 ng/g and 530 ng/g ± 58.4 ng/g wm, respectively). Spatial mercury patterns were consistent regardless of sex or age class. Bottlenose dolphin mercury exposure can effectively represent regional trends and reflect large-scale atmospheric mercury input and local biogeochemical processes. As a sentinel species, the bottlenose dolphin data presented here can direct future studies to evaluate mercury exposure to human residents in St. Joseph Bay, Choctawhatchee Bay, and Florida Coastal Everglades, as well as additional sites with similar geographical, oceanographic, or anthropogenic parameters. These data may also inform state and federal authorities that establish fish consumption advisories to determine if residents in these locales are at heightened risk for mercury toxicity.

20.
Ecol Evol ; 14(5): e11450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783847

RESUMO

Fire shapes animal communities by altering resource availability and species interactions, including between predators and prey. In Australia, there is particular concern that two highly damaging invasive predators, the feral cat (Felis catus) and European red fox (Vulpes vulpes), increase their activity in recently burnt areas and exert greater predation pressure on the native prey due to their increased exposure. We tested how prescribed fire occurrence and extent, along with fire history, vegetation, topography, and distance to anthropogenic features (towns and farms), affected the activity (detection frequency) of cats, foxes, and the native mammal community in south-eastern Australia. We used camera traps to quantify mammal activity before and after a prescribed burn and statistically tested how the fire interacted with these habitat variables to affect mammal activity. We found little evidence that the prescribed fire influenced the activity of cats and foxes and no evidence of an effect on kangaroo or small mammal (<800 g) activity. Medium-sized mammals (800-2000 g) were negatively associated with prescribed fire extent, suggesting that prescribed fire has a negative impact on these species in the short term. The lack of a clear activity increase from cats and foxes is likely a positive outcome from a fire management perspective. However, we highlight that their response is likely dependent upon factors like fire size, severity, and prey availability. Future experiments should incorporate GPS-trackers to record fine-scale movements of cats and foxes in temperate ecosystems immediately before and after prescribed fire to best inform management within protected areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...