RESUMO
Mangrove ecosystems are hotspots of biodiversity, but have been threatened by anthropogenic activities. Vancomycin-resistant enterococci (VRE) are nosocomial bacteria classified as high priority by the World Health Organization (WHO). Herein, we describe the identification and genomic characteristics of a vancomycin-resistant Enterococcus faecalis strain isolated from a highly impacted mangrove ecosystem of the northeastern Brazilian, in 2021. Genomic analysis confirmed the existence of the transposon Tn1546-vanA and clinically relevant antimicrobial resistance genes, such as streptogramins, tetracycline, phenicols, and fluoroquinolones. Virulome analysis identified several genes associated to adherence, immune modulation, biofilm, and exoenzymes production. The UFSEfl strain was assigned to sequence type (ST9), whereas phylogenomic analysis with publicly available genomes from a worldwide confirmed clonal relatedness with a hospital-associated Brazilian clone. Our findings highlight the successful expansion of hospital-associated VRE in a mangrove area and shed light on the need for strengthening genomic surveillance of WHO priority pathogens in these vital ecosystems.
Assuntos
Ecossistema , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brasil/epidemiologia , Células Clonais , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana , Vancomicina , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/genética , Infecção Hospitalar/microbiologiaRESUMO
Mangroves in estuaries are highly vulnerable to the impacts of plastic litter pollution, because their location at river mouths and the high capacity of mangrove trees to trap plastic items. Here, we present new results on the abundance and characteristics of plastic litter during high and low rainfall seasons in mangrove waters and sediments of the Saija and Timbiqui River estuaries in the Colombian Pacific. In both estuaries, microplastics were the most common size (50-100 %), followed by mesoplastics (13-42 %) and macroplastics (0-8 %). Total abundances of plastic litter were higher during the high rainfall season (0.17-0.53 items/m-3 in surface waters and 764-832 items/m-2 in sediments), with a moderately positive relationship between plastic abundances recorded in both environmental matrices. The most common microplastics were foams and fragments. Continuous research and monitoring are required for a better understanding and management of these ecosystems and their threats.
Assuntos
Microplásticos , Poluentes Químicos da Água , Estações do Ano , Estuários , Plásticos , Ecossistema , Colômbia , Monitoramento Ambiental , Poluentes Químicos da Água/análiseRESUMO
Petrogenic hydrocarbon spills (PHS) are harmful to mangrove ecosystems along tropical coastlines in the short and long term. The aim of this study was to assess the environmental risk of recurrent PHS on mangrove ecosystems in Tumaco municipality, Colombian Pacific. Mangrove characteristics and management aspects led to subdividing the study area into 11 units-of-analysis (UAs) for which threats, vulnerability, potential impacts, and risks were assessed based on environmental factors and the formulation and use of indicators in a rating scale with five categories, which are very low, low, moderate, high, and very high. The results showed that all UAs are highly (64%; 15,525 ha) or moderately (36%; 4,464 ha) threatened by PHS, highly (45%; 13,478 ha) or moderately (55%; 6,511 ha) vulnerable to this kind of pollution, and susceptible to high (73%; 17,075 ha) or moderate (27%; 2,914 ha) potential impacts. The environmental risk was high in 73% (17,075 ha) of the UAs, indicating likely irreversible damage to mangrove ecosystems by PHS, thus pointing to the need of urgent intervention by responsible authorities to ease their recovery and conservation. The methodology and results of this study become technical inputs that serve for environmental control and monitoring, which can be incorporated into contingency and risk management plans.
Assuntos
Ecossistema , Monitoramento Ambiental , Colômbia , Hidrocarbonetos , Medição de RiscoRESUMO
Marine litter in mangroves comes mainly from poor waste management practices and its abundance is increased by natural catastrophes occurrence that affects coastal settlements, as occurred in November-2020, when two hurricanes (ETA and IOTA) destroyed homes and deposited litters in mangroves of the Providencia and Santa Catalina islands, in the Colombian Caribbean. This study aims to assess the litter pollution in mangrove forests of these islands after Hurricane IOTA. Litter pollution was high in mangroves near urban areas and low in mangroves with little urban influence. In three mangrove sectors with high pollution, litter densities of 0.4-1.4 items m-2 and masses of 0.1-1.2 kg m-2 were determined; the majority were megalitter (sizes >1 m). Plastics were the most abundant (>60%). Local community is aware of the litter pollution problem and their participation in scientific research and mangroves recovery is key to understanding the impacts of natural and anthropogenic events and for ecosystem conservation.
Assuntos
Tempestades Ciclônicas , Ecossistema , Região do Caribe , Colômbia , Monitoramento Ambiental , Ilhas , Plásticos , Providencia , Resíduos/análise , Áreas AlagadasRESUMO
Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle were experimentally exposed to increasing levels of iron (0, 10, 20 and 100 mg L(-1) added Fe(II) in Hoagland's nutritive medium). The uptake and translocation of iron from roots to stems and leaves, Fe-secretion through salt glands (Avicennia schaueriana and Laguncularia racemosa) as well as anatomical and histochemical changes in plant tissues were evaluated. The main goal of this work was to assess the diverse capacity of these plants to detect mangroves at risk in an area affected by iron pollution (Vitoria, Espírito Santo, Brazil). Results show that plants have differential patterns with respect to bioaccumulation, translocation and secretion of iron through salt glands. L. racemosa showed the best environmental sensing capacity since the bioaccumulation of iron in both Fe-plaque and roots was higher and increased as the amount of added-iron rose. Fewer changes in translocation factors throughout increasing added-iron were observed in this species. Furthermore, the amount of iron secreted through salt glands of L. racemosa was strongly inhibited when exposed to added-iron. Among three studied species, A. schaueriana showed the highest levels of iron in stems and leaves. On the other hand, Rhizophora mangle presented low values of iron in these compartments. Even so, there was a significant drop in the translocation factor between aerial parts with respect to roots, since the bioaccumulation in plaque and roots of R. mangle increased as iron concentration rose. Moreover, rhizophores of R. mangle did not show changes in bioaccumulation throughout the studied concentrations. So far, we propose L. racemosa as the best species for monitoring iron pollution in affected mangroves areas. To our knowledge, this is the first detailed report on the response of these plants to increasing iron concentration under controlled conditions, complementing existing data on the behavior of the same plants under field exposure.