Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(4): 526-537, 2023 Apr 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37385615

RESUMO

OBJECTIVES: Nerve growth factor (NGF) induces neuron transdifferentiation of adrenal medulla chromaffin cells (AMCCs) and consequently downregulates the secretion of epinephrine (EPI), which may be involved in the pathogenesis of bronchial asthma. Mammalian achaete scute-homologous 1 (MASH1), a key regulator of neurogenesis in the nervous system, has been proved to be elevated in AMCCs with neuron transdifferentiation in vivo. This study aims to explore the role of MASH1 in the process of neuron transdifferentiation of AMCCs and the mechanisms. METHODS: Rat AMCCs were isolated and cultured. AMCCs were transfected with siMASH1 or MASH1 overexpression plasmid, then were stimulated with NGF and/or dexamethasone, PD98059 (a MAPK kinase-1 inhibitor) for 48 hours. Morphological changes were observed using light and electron microscope. Phenylethanolamine-N-methyltransferase (PNMT, the key enzyme for epinephrine synthesis) and tyrosine hydroxylase were detected by immunofluorescence. Western blotting was used to test the protein levels of PNMT, MASH1, peripherin (neuronal markers), extracellular regulated protein kinases (ERK), phosphorylated extracellular regulated protein kinases (pERK), and JMJD3. Real-time RT-PCR was applied to analyze the mRNA levels of MASH1 and JMJD3. EPI levels in the cellular supernatant were measured using ELISA. RESULTS: Cells with both tyrosine hydroxylase and PNMT positive by immunofluorescence were proved to be AMCCs. Exposure to NGF, AMCCs exhibited neurite-like processes concomitant with increases in pERK/ERK, peripherin, and MASH1 levels (all P<0.05). Additionally, impairment of endocrine phenotype was proved by a signifcant decrease in the PNMT level and the secretion of EPI from AMCCs (all P<0.01). MASH1 interference reversed the effect of NGF, causing increases in the levels of PNMT and EPI, conversely reduced the peripherin level and cell processes (all P<0.01). MASH1 overexpression significantly increased the number of cell processes and peripherin level, while decreased the levels of PNMT and EPI (all P<0.01). Compared with the NGF group, the levels of MASH1, JMJD3 protein and mRNA in AMCCs in the NGF+PD98059 group were decreased (all P<0.05). After treatment with PD98059 and dexamethasone, the effect of NGF on promoting the transdifferentiation of AMCCs was inhibited, and the number of cell processes and EPI levels were decreased (both P<0.05). In addition, the activity of the pERK/MASH1 pathway activated by NGF was also inhibited. CONCLUSIONS: MASH1 is the key factor in neuron transdifferentiation of AMCCs. NGF-induced neuron transdifferentiation is probably mediated via pERK/MASH1 signaling.


Assuntos
Medula Suprarrenal , Células Cromafins , Animais , Ratos , Transdiferenciação Celular , Dexametasona , Epinefrina/farmacologia , Mamíferos , Fator de Crescimento Neural , Neurônios , Periferinas , Proteínas Quinases , Tirosina 3-Mono-Oxigenase
2.
Curr Oncol Rep ; 25(1): 1-10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36422794

RESUMO

PURPOSE OF REVIEW: Identification of neuroendocrine (NE) differentiation is critical to the classification of head and neck (HN) and lung tumors. In combination with tumor morphology, immunohistochemical (IHC) documentation of NE differentiation is necessary for the diagnosis of NE tumors. The purpose of this study is to determine the sensitivity and concordance of two novel NE markers (mASH1, INSM1) across a group of high-grade NE tumors of the sinonasal tract and lung, and to compare their expression with the current widespread use of conventional NE markers, synaptophysin (SYN) and chromogranin A (CGA). In addition, expression of PARP1 is examined as a potential novel therapeutic target. RECENT FINDINGS: Thirty-nine high-grade NE tumors, 23 of the HN and 16 of the lung, were reevaluated by two subspecialized HN and thoracic pathologists, and subsequently stained with mASH1, INSM1, and PARP1. Sensitivity and degree of concordance of all possible combinations of markers were assessed. Sensitivities (standard error) were as follows: mASH1 41% (0.08), INSM1 44% (0.08), SYN 56% (0.08), and CGA 42% (0.09); combination of all four NE markers: 73% (0.08). Sensitivity and standard error for PARP1 was 90% and 0.05, respectively. Highest sensitivity to detect NE differentiation in high-grade NE tumors of the HN and thoracic region was achieved with a combination of four NE markers. Moderate concordance was found with combinations of mASH1 and INSM1 and traditional NE markers, respectively. Consistent overexpression of PARP1 in high-grade tumors with NE differentiation in the HN and lung opens eligibility for PARP1 inhibitor trials.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Seios Paranasais , Humanos , Tumores Neuroendócrinos/patologia , Biomarcadores Tumorais/metabolismo , Proteínas Repressoras/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Seios Paranasais/metabolismo , Seios Paranasais/patologia , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/patologia
3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982319

RESUMO

OBJECTIVES@#Nerve growth factor (NGF) induces neuron transdifferentiation of adrenal medulla chromaffin cells (AMCCs) and consequently downregulates the secretion of epinephrine (EPI), which may be involved in the pathogenesis of bronchial asthma. Mammalian achaete scute-homologous 1 (MASH1), a key regulator of neurogenesis in the nervous system, has been proved to be elevated in AMCCs with neuron transdifferentiation in vivo. This study aims to explore the role of MASH1 in the process of neuron transdifferentiation of AMCCs and the mechanisms.@*METHODS@#Rat AMCCs were isolated and cultured. AMCCs were transfected with siMASH1 or MASH1 overexpression plasmid, then were stimulated with NGF and/or dexamethasone, PD98059 (a MAPK kinase-1 inhibitor) for 48 hours. Morphological changes were observed using light and electron microscope. Phenylethanolamine-N-methyltransferase (PNMT, the key enzyme for epinephrine synthesis) and tyrosine hydroxylase were detected by immunofluorescence. Western blotting was used to test the protein levels of PNMT, MASH1, peripherin (neuronal markers), extracellular regulated protein kinases (ERK), phosphorylated extracellular regulated protein kinases (pERK), and JMJD3. Real-time RT-PCR was applied to analyze the mRNA levels of MASH1 and JMJD3. EPI levels in the cellular supernatant were measured using ELISA.@*RESULTS@#Cells with both tyrosine hydroxylase and PNMT positive by immunofluorescence were proved to be AMCCs. Exposure to NGF, AMCCs exhibited neurite-like processes concomitant with increases in pERK/ERK, peripherin, and MASH1 levels (all P<0.05). Additionally, impairment of endocrine phenotype was proved by a signifcant decrease in the PNMT level and the secretion of EPI from AMCCs (all P<0.01). MASH1 interference reversed the effect of NGF, causing increases in the levels of PNMT and EPI, conversely reduced the peripherin level and cell processes (all P<0.01). MASH1 overexpression significantly increased the number of cell processes and peripherin level, while decreased the levels of PNMT and EPI (all P<0.01). Compared with the NGF group, the levels of MASH1, JMJD3 protein and mRNA in AMCCs in the NGF+PD98059 group were decreased (all P<0.05). After treatment with PD98059 and dexamethasone, the effect of NGF on promoting the transdifferentiation of AMCCs was inhibited, and the number of cell processes and EPI levels were decreased (both P<0.05). In addition, the activity of the pERK/MASH1 pathway activated by NGF was also inhibited.@*CONCLUSIONS@#MASH1 is the key factor in neuron transdifferentiation of AMCCs. NGF-induced neuron transdifferentiation is probably mediated via pERK/MASH1 signaling.


Assuntos
Animais , Ratos , Medula Suprarrenal , Transdiferenciação Celular , Células Cromafins , Dexametasona , Epinefrina/farmacologia , Mamíferos , Fator de Crescimento Neural , Neurônios , Periferinas , Proteínas Quinases , Tirosina 3-Mono-Oxigenase
4.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36265904

RESUMO

Serotonin (5-HT) participates in the pathogenesis of amyotrophic lateral sclerosis (ALS), but its effects have not been completely clarified. Therefore, we observed the distribution features and potential effects of 5-HT in the cerebrum of G93A SOD1 transgenic (TG) and wild-type (WT) mice by fluorescence immunohistochemistry, Western blotting, ELISA, as well as motor function measurements. Both 5-HT and tryptophan hydroxylase-2 (TPH2) were mainly present in the limbic systems of the cerebrum, such as the glomerular layer of the olfactory bulb, nucleus accumbens, cingulate, fimbria of the hippocampus, mediodorsal thalamic nucleus, habenular nucleus, ventromedial hypothalamus nucleus, lateral hypothalamus area, dorsal raphe nucleus, and piriform cortex. TPH2 and 5-HT were expressed in cell bodies in the dorsal raphe nucleus and piriform cortex, while in other regions they were distributed as filaments and clump shapes in axons. The TPH2 distribution in the cerebrum of TG was significantly lower than that in WT in preset, onset, and progression stages. TPH2 expression in the fimbria of the hippocampus, mediodorsal thalamic nucleus, habenular nucleus, ventromedial hypothalamus nucleus and lateral hypothalamus area was increased in the onset stage and decreased in the progression stage, gradually decreased in the cingulate with disease progression and significantly decreased in the glomerular layer of the olfactory bulb and nucleus accumbens in the onset stage in TG. The number of mammalian achaete-scute homolog-1 in the subventricular zone (SVZ) in TG was significantly lower than that in WT, which was correlated with the TPH2 distribution. Double immunofluorescence staining showed that TPH2, mammalian achaete-scute homolog-1 and 5-HT were mainly expressed in neurons but rarely expressed in microglia or astrocytes in the piriform cortex. The relative fluorescence density of TPH2 in the cingulate region was negatively correlated with the disease severity. Our findings suggest that 5-HT plays a protective role in ALS, likely by regulating neural stem cells in the subventricular zone that might be involved in neuron development in the piriform cortex.


Assuntos
Esclerose Lateral Amiotrófica , Cérebro , Camundongos , Animais , Camundongos Transgênicos , Serotonina/metabolismo , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Cérebro/metabolismo , Mamíferos/metabolismo
5.
Pharmacol Res ; 179: 106235, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472635

RESUMO

Adult hippocampal neurogenesis (AHN) is heavily implicated in the pathogenesis of various neuropsychiatric disorders. The mangiferin (MGF), a bioactive compound of the mango, reportedly produces biological effects on a variety of neuropsychiatric disorders. However, the function and underlying mechanisms of MGF in regulating hippocampal neurogenesis remain unknown. Here we discovered that the transcriptome and methylome of MGF-induced neural stem cells (NSCs) are distinct from the control. RNA-seq analysis revealed that the diferentially expressed genes (DEGs) were signifcantly enriched in the PPARs. Furthermore, we found that MGF enhanced neuronal differentiation and proliferation of neural stem cells (NSCs) via PPARß but not PPARα and PPARγ. The combination of WGBS and RNA-seq analysis showed that the expression of some neurogenesis genes was negatively correlated with the DNA methylation level generally. We further found that PPARß increased demethylation of Mash1 promoter by modulating the expressions of active and passive DNA demethylation enzymes in MGF-treated NSCs. Importantly, genetic deficiency of PPARß decreased hippocampal neurogenesis in the adult mice, whereas the defective neurogenesis was notably rescued by Mash1 overexpression. Our findings uncover a model that PPARß-mediated DNA demethylation of Mash1 contributes to MGF-induced neuronal genesis, and advance the concept that targeting PPARß-TET1/DNMT3a-Mash1 axis regulation of neurogenesis might serve as a novel neurotherapeutic strategy.


Assuntos
Células-Tronco Neurais , PPAR beta , Animais , Camundongos , Desmetilação do DNA , Neurogênese , PPAR beta/genética , PPAR beta/metabolismo , Xantonas
6.
Cell Tissue Res ; 383(2): 667-675, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32960355

RESUMO

Mammalian taste bud cells have a limited lifespan and differentiate into type I, II, and III cells from basal cells (type IV cells) (postmitotic precursor cells). However, little is known regarding the cell lineage within taste buds. In this study, we investigated the cell fate of Mash1-positive precursor cells utilizing the Cre-loxP system to explore the differentiation of taste bud cells. We found that Mash1-expressing cells in Ascl1CreERT2::CAG-floxed tdTomato mice differentiated into taste bud cells that expressed aromatic L-amino acid decarboxylase (AADC) and carbonic anhydrase IV (CA4) (type III cell markers), but did not differentiate into most of gustducin (type II cell marker)-positive cells. Additionally, we found that Mash1-expressing cells could differentiate into phospholipase C ß2 (PLCß2)-positive cells, which have a shorter lifespan compared with AADC- and CA4-positive cells. These results suggest that Mash1-positive precursor cells could differentiate into type III cells, but not into most of type II cells, in the taste buds.


Assuntos
Envelhecimento/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Fosfolipase C beta/metabolismo , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos
7.
Stem Cell Reports ; 13(1): 132-146, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31178417

RESUMO

In the adult subependymal zone (SEZ), neural stem cells (NSCs) apically contacting the lateral ventricle on activation generate progenitors proliferating at the niche basal side. We here show that Tailless (TLX) coordinates NSC activation and basal progenitor proliferation by repressing the NOTCH effector Hes1. Consistent with this, besides quiescence Hes1 expression also increases on Tlx mutation. Since HES1 levels are higher at the apical SEZ, NOTCH activation is increased in Tlx-/- NSCs, but not in surrounding basal progenitors. Underscoring the causative relationship between higher HES1/NOTCH and increased quiescence, downregulation of Hes1 only in mutant NSCs normalizes NOTCH activation and resumes proliferation and neurogenesis not only in NSCs, but especially in basal progenitors. Since pharmacological blockade of NOTCH signaling also promotes proliferation of basal progenitors, we conclude that TLX, by repressing Hes1 expression, counteracts quiescence and NOTCH activation in NSCs, thereby relieving NOTCH-mediated lateral inhibition of proliferation in basal progenitors.


Assuntos
Regulação da Expressão Gênica , Ventrículos Laterais/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/genética , Animais , Diferenciação Celular , Linhagem da Célula/genética , Proliferação de Células , Células Cultivadas , Imunofluorescência , Ventrículos Laterais/citologia , Camundongos , Camundongos Knockout , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
8.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-751972

RESUMO

Objective To investigate the effects of Mash-1 gene overexpression on neural cell proliferation, differentiation and learning and memory ability in C57BL/6 adult male mice after brain trauma. Methods One hundred and sixty healthy adult male C57BL/6 mice were randomly divided into sham operation group, simple trauma group, negative control group and overexpression group. Gene transfection using recombinant adenovirus Ad5-mMash-1. Detection of Mash-1 mRNA level by RT-PCR at 1 d before TBI and 1 d, 3 d, 7 d, 14 d after traumatic brain injury (TBI). Western blotting was used to detect the expression of Mash-1 protein. The learning and memory ability was evaluated by means of water maze. The proliferation of nerve cells in dentate gyrus and cerebral cortex of hippocampus at 3 d and 7 d after TBI were detected by immunofluorescence. Results Compared with those in sham operation group, the relative expression of Mash-1 mRNA in simple trauma group and negative control group at 1 d, 3 d, 7 d, 14 d after TBI were significantly lower (P<0. 05-0. 01), and the relative expression of Mash-1 mRNA in overexpression group at 1 d, 3 d, 7 d, 14 d after TBI were significantly higher ( all P<0. 01 ). The relative expression of Mash-1 mRNA in overexpression group at 1 d , 3 d , 7 d , 1 4 d after TBI were significantly higher than those in simple trauma group and negative control group (all P<0. 05). Compared with those in sham operation group, expression of Mash-1 protein in simple trauma group at 1 d, 7 d, 14 d after TBI and negative control group and overexpression group at 1 d, 3 d, 7 d, 14 d after TBI (P<0. 05 -0. 01), expression of Mash-1 protein in simple trauma group at 3 d after TBI (P<0. 05). The expression of Mash-1 protein in overexpression group at 1 d, 3 d, 7 d, 14 d after TBI were significantly higher than those in simple trauma group and negative control group (all P<0. 05). Compared with those in sham operation group, the number of BrdU positive cells in simple trauma group at 3 d, 7 d after TBI and the number of DCX positive cells at 3 d after TBI were significantly decreased (P<0. 05-0. 01), and they were significantly increased in overexpression group (all P<0. 05). The number of BrdU positive cells at 3 d, 7 d after TBI and the number of DCX positive cells at 3 d after TBI in overexpression group were significantly increased than those in simple trauma group (all P<0. 05). There was no statistical difference of escape latency between simple trauma group, negative control group and overexpression group at 1 d, 3 d, 7 d, 14 d after TBI (all P>0. 05). Compared with those in sham operation group, escape latency in simple trauma group, negative control group and overexpression group at 1 d, 3 d, 7 d, 14 d after TBI were significantly increased (all P<0. 05). Conclusion Overexpression of Mash-1 gene increases neuronal proliferation and differentiation in dentate gyrus and cortex of adult C57BL/6 mice after traumatic brain injury, but it has no effect on learning and memory ability.

9.
J Mol Endocrinol ; 61(3): 127-138, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307165

RESUMO

Multiple signaling molecules and transcription factors are required for pituitary development. Activator-type bHLH genes Mash1, Math, NeuroD (Neurod) and Neurogenin (Neurog) are well known as key molecules in neural development. Although analyses of targeted mouse mutants have demonstrated involvement of these bHLH genes in pituitary development, studies with single-mutant mice could not elucidate their exact functions, because they cooperatively function and compensate each other. The aim of this study was to elucidate the roles of Mash1, Math3 and NeuroD in pituitary development. Mash1;Math3;NeuroD triple-mutant mice were analyzed by immunohistochemistry and quantitative real-time RT-PCR. Misexpression studies with retroviruses in pituisphere cultures were also performed. The triple-mutant adenohypophysis was morphologically normal, though the lumen of the neurohypophysis remained unclosed. However, in triple-mutant pituitaries, somatotropes, gonadotropes and corticotropes were severely decreased, whereas lactotropes were increased. Misexpression of Mash1 alone with retrovirus could not induce generation of hormonal cells, though Mash1 was involved in differentiation of pituitary progenitor cells. These data suggest that Mash1, Math3 and NeuroD cooperatively control the timing of pituitary progenitor cell differentiation and that they are also required for subtype specification of pituitary hormonal cells. Mash1 is necessary for corticotroph and gonadotroph differentiation, and compensated by Math3 and NeuroD. Math3 is necessary for somatotroph differentiation, and compensated by Mash1 and NeuroD. Neurog2 may compensate Mash1, Math3 and NeuroD during pituitary development. Furthermore, Mash1, Math3 and NeuroD are required for neurohypophysis development. Thus, Mash1, Math3 and NeuroD are required for pituitary development, and compensate each other.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase em Tempo Real
10.
Neuroscience ; 393: 164-174, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30316911

RESUMO

It has been reported that oxidative stress could result in damage to the developing brain. L-3-n-butylphthalide (L-NBP) could inhibit neuronal cell apoptosis and has neurogenesis effect in different animal and cellular models. However, whether L-NBP could protect the process of neurogenesis in neural stem cells (NSCs) against oxidative stress injury is still unclear. Here, in the present study, we evaluated the neuroprotective effect of L-NBP in NSCs against H2O2-induced injury and the possible mechanisms. The results showed that L-NBP elevated the proliferation of NSCs by upregulating cyclin D1, and PI3K/Akt might be a possible target in this process. Subsequently, L-NBP was found to promote the migration of NSCs and N-cadherin might be involved in. NSC differentiation was measured using immunofluorescence staining and the results demonstrated that L-NBP could promote the NSCs to differentiate more into neurons. The elevation of achaete-scute homolog1 (Mash1) expression might be a key factor as attenuation of endogenous Mash1 expression by short-interfering RNA could block L-NBP-promoted neuronal differentiation. In summary, L-NBP exerts protective effects in NSCs against H2O2-induced injury by promoting the proliferation, migration and neural differentiation of NSCs, indicating that L-NBP might be a potential therapeutic agent for the neurogenesis-based treatment for some brain diseases, such as Alzheimer's disease (AD).


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Peróxido de Hidrogênio/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
11.
Anat Sci Int ; 93(4): 422-429, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29525940

RESUMO

The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Neurônios/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Fosfolipase C beta/metabolismo , Tamoxifeno/farmacologia , Papilas Gustativas/metabolismo , Papilas Gustativas/fisiologia
12.
Cereb Cortex ; 27(1): 793-808, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26620267

RESUMO

Interneurons play pivotal roles in the modulation of cortical function; however, the mechanisms that control interneuron development remain unclear. This study aimed to explore a new role for Foxg1 in interneuron development. By crossing Foxg1fl/fl mice with a Dlx5/6-Cre line, we determined that conditional disruption of Foxg1 in the subpallium results in defects in interneuron development. In developing interneurons, the expression levels of several receptors, including roundabout-1, Eph receptor A4, and C-X-C motif receptor 4/7, were strongly downregulated, which led to migration defects after Foxg1 ablation. The transcription factors Dlx1/2 and Mash1, which have been reported to be involved in interneuron development, were significantly upregulated at the mRNA levels. Foxg1 mutant cells developed shorter neurites and fewer branches and displayed severe migration defects in vitro. Notably, Prox1, which is a transcription factor that functions as a key regulator in the development of excitatory neurons, was also dramatically upregulated at both the mRNA and protein levels, suggesting that Prox1 is also important for interneuron development. Our work demonstrates that Foxg1 may act as a critical upstream regulator of Dlx1/2, Mash1, and Prox1 to control interneuron development. These findings will further our understanding of the molecular mechanisms of interneuron development.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Interneurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Fatores de Transcrição Forkhead/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/patologia , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Crescimento Neuronal/fisiologia , RNA Mensageiro , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
Hypoxia (Auckl) ; 4: 69-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27800509

RESUMO

Pulmonary neuroepithelial bodies (NEBs), presumed polymodal airway sensors, consist of innervated clusters of amine (serotonin) and peptide-producing cells. While NEB responses to acute hypoxia are mediated by a membrane-bound O2 sensor complex, responses to sustained and/or chronic hypoxia involve a prolyl hydroxylase (PHD)-hypoxia-inducible factor-dependent mechanism. We have previously reported hyperplasia of NEBs in the lungs of Phd1-/- mice associated with enhanced serotonin secretion. Here we use a novel multilabel immunofluorescence method to assess NEB distribution, frequency, and size, together with the number and size of NEB cell nuclei, and to colocalize multiple cytoplasmic and nuclear epitopes in the lungs of Phd1-/-, Phd2+/-, and Phd3-/- mice and compare them with wild-type controls. To define the mechanisms of NEB cell hyperplasia, we used antibodies against Mash1 and Prox1 (neurogenic genes involved in NEB cell differentiation/maturation), hypoxia-inducible factor-1alpha, and the cell proliferation marker Ki67. Morphometric analysis of (% total lung area) immunostaining for synaptophysin (% synaptophysin), a cytoplasmic marker of NEB cells, was significantly increased in Phd1-/- and Phd3-/- mice compared to wild-type mice. In addition, NEB size and the number and size of NEB nuclei were also significantly increased, indicating that deficiency of Phds is associated with striking hyperplasia and hypertrophy of NEBs. In Phd2+/- mice, while mean % synaptophysin was comparable to wild-type controls, the NEB size was moderately increased, suggesting an effect even in heterozygotes. NEBs in all Phd-deficient mice showed increased expression of Mash1, Prox1, Ki67, and hypoxia-inducible factor-1alpha, in keeping with enhanced differentiation from precursor cells and a minor component of cell proliferation. Since the loss of PHD activity mimics chronic hypoxia, our data provide critical information on the potential role of PHDs in the pathobiology and mechanisms of NEB cell hyperplasia that is relevant to a number of pediatric lung disorders.

14.
Toxicol Rep ; 3: 405-413, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158593

RESUMO

Millions of people are exposed to arsenic through their drinking water and food, but the mechanisms by which it impacts embryonic development are not well understood. Arsenic exposure during embryogenesis is associated with neurodevelopmental effects, reduced weight gain, and altered locomotor activity, and in vitro data indicates that arsenic exposure inhibits stem cell differentiation. This study investigated whether arsenic disrupted the Wnt3a signaling pathway, critical in the formation of myotubes and neurons, during the differentiation in P19 mouse embryonic stem cells. Cells were exposed to 0, 0.1, or 0.5 µM arsenite, with or without exogenous Wnt3a, for up to 9 days of differentiation. Arsenic exposure alone inhibits the differentiation of stem cells into neurons and skeletal myotubes, and reduces the expression of both ß-catenin and GSK3ß mRNA to ~55% of control levels. Co-culture of the arsenic-exposed cells with exogenous Wnt3a rescues the morphological phenotype, but does not alter transcript, protein, or phosphorylation status of GSK3ß or ß-catenin. However, arsenic exposure maintains high levels of Hes5 and decreases the expression of MASH1 by 2.2-fold, which are anti- and pro-myogenic and neurogenic genes, respectively, in the Notch signaling pathway. While rescue with exogenous Wnt3a reduced Hes5 levels, MASH1 levels stay repressed. Thus, while Wnt3a can partially rescue the inhibition of differentiation from arsenic, it does so by also modulating Notch target genes rather than only working through the canonical Wnt signaling pathway. These results indicate that arsenic alters the interplay between multiple signaling pathways, leading to reduced stem cell differentiation.

15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-487937

RESUMO

Objective To investigate the effects of overexpression of Mash-1 gene on functional recovery and neural differentiation of embryonic stem cells in spinal cord injury mice. Methods CE3 cell line with overexpression of Mash-1 gene was generated with murine stem cell virus. Spinal cord injury model was established with forceps compression in 4-week-old KM mice. Normal saline (model group, n=12), CE3 cells with or without overexpression Mash-1 gene (CE3-Mash-1 and CE3 groups, n=12 respectively) were transplanted into the ar-eas of injury 3 days after injury. They were assessed with the Basso Mouse Scale (BMS) 1, 7, 14, 21, and 28 days after injury. 6 mice from each group were sacrificed 14 and 28 days after injury respectively. The spinal cord area remained were observed with HE stained, and the expression of Oct3/4, nestin,β-tubulin III and glial fibrillary acidic protein (GFAP) were detected with immunofluorescence in the injured spinal cord in the CE3 and CE3-Mash-1 groups. Results The score of BMS significantly improved in CE3 and CE3-Mash-1 groups com-pared with that of the model group (F>84.471, P49.990, P0.05). Conclusion Overexpression of Mash-1 gene promotes CE3 cells to differentiate into neurons in spinal cord injury mice, and improve the motor function recovery.

16.
Cancer Biol Ther ; 16(3): 353-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781910

RESUMO

Hes1 is one mammalian counterpart of the Hairy and Enhancer of split proteins that play a critical role in many physiological processes including cellular differentiation, cell cycle arrest, apoptosis and self-renewal ability. Recent studies have shown that Hes1 functions in the maintenance of cancer stem cells (CSCs), metastasis and antagonizing drug-induced apoptosis. Pathways that are involved in the up-regulation of Hes1 level canonically or non-canonically, such as the Hedgehog, Wnt and hypoxia pathways are frequently aberrant in cancer cells. Here, we summarize the recent data supporting the idea that Hes1 may have an important function in the maintenance of cancer stem cells self-renewal, cancer metastasis, and epithelial-mesenchymal transition (EMT) process induction, as well as chemotherapy resistance, and conclude with the possible mechanisms by which Hes1 functions have their effect, as well as their crosstalk with other carcinogenic signaling pathways.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Homeodomínio/genética , Células-Tronco Neoplásicas/metabolismo , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Receptores Notch/genética , Transdução de Sinais/genética , Fatores de Transcrição HES-1
17.
Front Cell Neurosci ; 8: 412, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520623

RESUMO

Proneural transcription factors (TFs) such as Ascl1 function as master regulators of neurogenesis in vertebrates, being both necessary and sufficient for the activation of a full program of neuronal differentiation. Novel insights into the dynamics of Ascl1 expression at the cellular level, combined with the progressive characterization of its transcriptional program, have expanded the classical view of Ascl1 as a differentiation factor in neurogenesis. These advances resulted in a new model, whereby Ascl1 promotes sequentially the proliferation and differentiation of neural/stem progenitor cells. The multiple activities of Ascl1 are associated with the activation of distinct direct targets at progressive stages along the neuronal lineage. How this temporal pattern is established is poorly understood. Two modes of Ascl1 expression recently described (oscillatory vs. sustained) are likely to be of importance, together with additional mechanistic determinants such as the chromatin landscape and other transcriptional pathways. Here we revise these latest findings, and discuss their implications to the gene regulatory functions of Ascl1 during neurogenesis.

18.
Neural Regen Res ; 9(1): 25-32, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25206740

RESUMO

To date, it remains poorly understood whether astrocytes can be easily reprogrammed into neurons. Mash1 and Brn2 have been previously shown to cooperate to reprogram fibroblasts into neurons. In this study, we examined astrocytes from 2-month-old Sprague-Dawley rats, and found that Brn2 was expressed, but Mash1 was not detectable. Thus, we hypothesized that Mash1 alone could be used to reprogram astrocytes into neurons. We transfected a recombinant MSCV-MASH1 plasmid into astrocytes for 72 hours, and saw that all cells expressed Mash1. One week later, we observed the changes in morphology of astrocytes, which showed typical neuronal characteristics. Moreover, ß-tubulin expression levels were significantly higher in astrocytes expressing Mash1 than in control cells. These results indicate that Mash1 alone can reprogram astrocytes into neurons.

19.
J Biol Chem ; 289(39): 26973-26988, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25124043

RESUMO

The basic helix-loop-helix transcription factor hASH1, encoded by the ASCL1 gene, plays an important role in neurogenesis and tumor development. Recent findings indicate that local oxygen tension is a critical determinant for the progression of neuroblastomas. Here we investigated the molecular mechanisms underlying the oxygen-dependent expression of hASH1 in neuroblastoma cells. Exposure of human neuroblastoma-derived Kelly cells to 1% O2 significantly decreased ASCL1 mRNA and hASH1 protein levels. Using reporter gene assays, we show that the response of hASH1 to hypoxia is mediated mainly by post-transcriptional inhibition via the ASCL1 mRNA 5'- and 3'-UTRs, whereas additional inhibition of the ASCL1 promoter was observed under prolonged hypoxia. By RNA pulldown experiments followed by MALDI/TOF-MS analysis, we identified heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 and hnRNP-R as interactors binding directly to the ASCL1 mRNA 5'- and 3'-UTRs and influencing its expression. We further demonstrate that hnRNP-A2/B1 is a key positive regulator of ASCL1, findings that were also confirmed by analysis of a large compilation of gene expression data. Our data suggest that a prominent down-regulation of hnRNP-A2/B1 during hypoxia is associated with the post-transcriptional suppression of hASH1 synthesis. This novel post-transcriptional mechanism for regulating hASH1 levels will have important implications in neural cell fate development and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/biossíntese , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Regiões Promotoras Genéticas , Coelhos , Ratos Wistar
20.
Chem Senses ; 39(5): 403-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682237

RESUMO

It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/metabolismo , Papilas Gustativas/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/genética , Proteínas de Homeodomínio/genética , Camundongos Knockout , Palato Mole/embriologia , Palato Mole/metabolismo , Língua/embriologia , Língua/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...