Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.207
Filtrar
1.
Sci Rep ; 14(1): 15192, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956293

RESUMO

This article examines the effects of different storage conditions on selected physicochemical properties of three types of agro-biomass pellets: sunflower husks, wheat straw and hemp hurds, and wood pellets. The tests were carried out in a climatic chamber, which allows simulation of real storage conditions, i.e. conditions with high air humidity and variable (±) ambient air temperatures. The results showed higher degradability of agro-biomass pellets compared to woody biomass. The pellets degraded to a less extent at varying ± temperatures than at high humidity (90% RH). After complete moisture saturation, durability decreases for agro-pellets by an average of 9%, while after freezing and defreezing for sunflower husk pellets and woody pellets durability decreases by 2%, and for hemp hurd pellets by 11%. In contrast, strength-by-dropping index for agro-pellets decreased by 20% after being in the environment (30 °C and 90%RH) and 15% under varying temperature conditions. No change in the energy parameters of all pellets in the dry matter was noted. On the other hand, an increase in the moisture content of pellets when they are stored under different environmental conditions results in a decrease in calorific value.

2.
Sci Rep ; 14(1): 15825, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982185

RESUMO

Silicon nitride (Si3N4) is a bioceramic material with potential applications. Customization and high reliability are the foundation for the widespread application of Si3N4 bioceramics. This study constructed a new microwave heating structure and successfully prepared 3D printed dense Si3N4 materials, overcoming the adverse effects of a large amount of 3D printed organic forming agents on degreasing and sintering processes, further improving the comprehensive performance of Si3N4 materials. Compared with control materials, the 3D printed Si3N4 materials by microwave sintering have the best mechanical performance: bending strength is 928 MPa, fracture toughness is 9.61 MPa·m1/2. Meanwhile, it has the best biocompatibility and antibacterial properties, and cells exhibit the best activity on the material surface. Research has shown that the excellent mechanical performance and biological activity of materials are mainly related to the high-quality degreasing, high cleanliness sintering environment, and high-quality liquid-phase sintering of materials in microwave environments.

3.
Sci Rep ; 14(1): 15644, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977732

RESUMO

Aluminum alloys have been widely studied because of their current engineering applications. Due to their high strength and lightweight, cracking can easily initiate on their surface, deteriorating their overall functional and structural properties and causing environmental attacks. The current study highlights the significant influence of incorporating 1 wt% silica nanostructure in aluminum-10 zinc alloys. The characteristics of the composites were examined using Vickers hardness, tensile, and electrochemical testing (OCP, Tafel, and EIS) at various artificial aging temperatures (423, 443, and 463 K). Silica nanorods may achieve ultrafine grains, increase hardness by up to 13.8%, increase σUTS values by up to 79% at 443 K, and improve corrosion rate by up to 89.4%, surpassing Al-10 Zn bulk metallics. We demonstrate that silica nanorods contribute to the creation of a superior nanocomposite that not only limits failure events under loading but also resists corrosion. Our findings suggest that silica nanocomposite can produce unique features for use in a variety of automotive, construction, and aerospace applications. This improvement can be attributed mainly to the large surface area of nano-silica particles, which alters the Al matrix. Microstructural, mechanical, and electrochemical studies revealed that the effects of structure refinement were dependent on nano-silica.

4.
J Mech Behav Biomed Mater ; 157: 106646, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981181

RESUMO

Graphene oxide (GO) exhibits excellent mechanical strength and modulus. However, its effectiveness in mechanically reinforcing polymer materials is limited due to issues with interfacial bonding and dispersion arising from differences in the physicochemical properties between GO and polymers. Surface modification using coupling agents is an effective method to improve the bonding problem between polymer and GO, but there may be biocompatibility issues when used in the biomedical field. In this study, the biomolecule L-lysine, was applied to improve the interfacial bonding and dispersion of GO in polylactic acid (PLA) without compromising biocompatibility. The PLA/L-lysine-modified GO (PLA/L-GO) bone scaffold with triply periodic minimal surface (TPMS) structure was prepared using fused deposition modeling (FDM). The FTIR results revealed successful grafting of L-lysine onto GO through the reaction between their -COOH and -NH2 groups. The macroscopic and microscopic morphology characterization indicated that the PLA/L-GO scaffolds exhibited an characteristics of dynamic diameter changes, with good interlayer bonding. It was noteworthy that the L-lysine modification promoted the dispersion of GO and the interfacial bonding with the PLA matrix, as characterized by SEM. As a result, the PLA/0.1L-GO scaffold exhibited higher compressive strength (13.2 MPa) and elastic modulus (226.8 MPa) than PLA/0.1GO. Moreover, PLA/L-GO composite scaffold exhibited superior biomineralization capacity and cell response compared to PLA/GO. In summary, L-lysine not only improved the dispersion and interfacial bonding of GO with PLA, enhancing the mechanical properties, but also improved the biological properties. This study suggests that biomolecules like L-lysine may replace traditional modifiers as an innovative bio-modifier to improve the performance of polymer/inorganic composite biomaterials.

5.
Chem Asian J ; : e202400327, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987921

RESUMO

Spinning fibers from carbon nanotube (CNT)/superacid dispersions has emerged as a promising strategy for industrial-scale production of high-performance CNT fibers (CNTFs). The oxygen content and types of functional groups on CNT surfaces significantly influence dispersion, assembly processes, and fiber properties. In this study, Tuball-SWCNTs were purified and oxidized at varying levels. The dispersion behavior of CNTs with different oxidation levels in chlorosulfonic acid was systematically observed, and the mechanical properties of fibers spun from these dispersions were compared. By adjusting the dispersion concentration, highly oriented CNTFs were produced with a specific strength of 1.03 N/tex, a tensile strength of 1.59 GPa, and an electrical conductivity of 3.58 MS/m. Further investigations indicated that oxygen-containing functional groups decrease the coagulation rate, increasing the maximum draw ratio during spinning and improving CNT alignment in the fibers. Molecular dynamics simulations demonstrated that these functional groups (-OH, -COOH) enhance load transfer between CNTs through hydrogen bonding. This specific strength is the highest achieved using Tuball-SWCNTs for superacid-spun fibers, surpassing previous works due to the oxidation-controlled coagulation rate, enhanced fiber orientation, and improved load transfer via hydrogen bonding. This study provides insights for designing and optimizing high-performance CNTFs.

6.
Front Rehabil Sci ; 5: 1402114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962729

RESUMO

Background: Although mechanical properties of running specific prostheses (RSPs) can affect running performance, manufacturers do not consistently report them. This study aimed to review existing literature on RSP mechanical and structural properties and their relationship with running performance. Methods: A comprehensive search was conducted using keywords related to mechanical properties of RSPs and running performance. Search terms included stiffness and hysteresis, as well as performance outcomes including metabolic cost and running speed. Non-peer-reviewed and non-English publications were excluded. Results: Twenty articles were included in the review. Sixteen studies used a material testing machine to measure RSP material properties, and four articles used other techniques including 2D/3D video capture and force platforms. Both measurement techniques and reporting of outcomes were inconsistent, which limits the ability to draw broad conclusions. Additionally, several studies did not report the numerical data for material properties despite measuring them. Relatively few articles measured both material properties and running performance and assessed correlations. Conclusion: Several articles connected prosthesis properties to running performance. However, inconsistent measurement and reporting of mechanical properties, along with the multifactorial nature of the athlete-prosthesis system, limit the ability to draw broad conclusions regarding the relationship between material and structural properties and athlete performance. Current evidence may be useful for clinicians seeking ways to optimize RSP stiffness in a case-by-case basis; however, clinicians would benefit from more consistent and systematic comparisons of the attributes of different RSPs and their role in performance.

7.
Adv Mater ; : e2406574, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948960

RESUMO

Interconnecting macromolecules via multiple hydrogen bonds (H-bonds) can simultaneously strengthen and toughen polymers, but material synthesis becomes extremely difficult with increasing number of H-bonding donors and acceptors; therefore, most reports are limited to triple and quadruple H-bonds. Herein, this bottleneck is overcome by adopting a quartet-wise approach of constructing H-bonds instead of the traditional pairwise method. Thus, large multiple hydrogen bonds can be easily established, and the supramolecular interactions are further reinforced. Especially, when such multiple H-bond motifs are embedded in polymers, four macromolecular chains-rather than two as usual-are tied, distributing the applied stress over a larger volume and more significantly improving the overall mechanical properties. Proof-of-concept studies indicate that the proposed intermolecular multiple H-bonds (up to duodecuple) are readily introduced in polyurethane. A record-high tensile strength (105.2 MPa) is achieved alongside outstanding toughness (352.1 MJ m-3), fracture energy (480.7 kJ m-2), and fatigue threshold (2978.4 J m-2). Meantime, the polyurethane has acquired excellent self-healability and recyclability. This strategy is also applicable to nonpolar polymers, such as polydimethylsiloxane, whose strength (15.3 MPa) and toughness (50.3 MJ m-3) are among the highest reported to date for silicones. This new technique has good expandability and can be used to develop even more and stronger polymers.

8.
J Biomech ; 172: 112209, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38986274

RESUMO

Micro-Finite Element analysis (µFEA) has become widely used in biomechanical research as a reliable tool for the prediction of bone mechanical properties within its microstructure such as apparent elastic modulus and strength. However, this method requires substantial computational resources and processing time. Here, we propose a computationally efficient alternative to FEA that can provide an accurate estimation of bone trabecular mechanical properties in a fast and quantitative way. A lattice element method (LEM) framework based on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) open-source software package is employed to calculate the elastic response of trabecular bone cores. A novel procedure to handle pore-material boundaries is presented, referred to as the Firm and Floppy Boundary LEM (FFB-LEM). Our FFB-LEM calculations are compared to voxel- and geometry-based FEA benchmarks incorporating bovine and human trabecular bone cores imaged by micro Computed Tomography (µCT). Using 14 computer cores, the apparent elastic modulus calculation of a trabecular bone core from a µCT-based input with FFB-LEM required about 15 min, including conversion of the µCT data into a LAMMPS input file. In contrast, the FEA calculations on the same system including the mesh generation, required approximately 30 and 50 min for voxel- and geometry-based FEA, respectively. There were no statistically significant differences between FFB-LEM and voxel- or geometry-based FEA apparent elastic moduli (+24.3% or +7.41%, and +0.630% or -5.29% differences for bovine and human samples, respectively).

9.
J Mech Behav Biomed Mater ; 157: 106642, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38963998

RESUMO

Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38967851

RESUMO

Geopolymer concrete (GPC) utilizes industrial wastes such as fly ash, bottom, ash, and slag instead of conventional Portland cement as the primary binder, and thus promote a sustainable solution for bulk concrete works. Nanomaterials (NMs) have often been linked with developing these sustainable high-strength mixes. Furthermore, NMs have been proven to imbibe enhanced physio-mechanical properties, often eliminating the need for thermal curing. This not only reduces total energy demand for concrete production but also offers enhanced durability due to denser inter-particle packing of the mix. This review meticulously summarizes the performance of GPCs dosed with different types of NMs including nano-silica (NS), nano-alumina (NA), nano-titanium di oxide (NT), nano-clay (NC), nano-graphene oxide (NG), and carbon nanotubes (CNT). The reported findings of previous studies were carefully studied and compiled in a systematic manner in terms of physio-mechanical, durability, and microstructural properties. It was observed that addition of NM, in general, leads to a slight reduction in the mix's workability; however, the same can be counteracted by use of suitable superplasticizers. Furthermore, inclusion of NMs in GPC offers the distinct advantage of high density and impermeability, resulting in enhanced mechanical and durability characteristics. Two distinct multi-criteria decision making (MCDM) techniques were employed in this study to statistically analyze the most preferred NM for GPC. It was found that addition of NS (2%) yields the most desirable outcomes. Finally, limitations and challenges associated with production of NM dosed GPC along with scopes for future works are presented toward the end of this review.

11.
Biopolymers ; : e23612, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994706

RESUMO

Natural-derived biomaterials can be used as substrates for the growth, proliferation, and differentiation of cells. In this study, bovine vitreous humor as a biological material was cross-linked to silk fibroin with different concentration ratios to design a suitable substrate for corneal tissue regeneration. The cross-linked samples were evaluated with different analyses such as structural, physical (optical, swelling, and degradation), mechanical, and biological (viability, cell adhesion) assays. The results showed that all samples had excellent transparency, especially those with higher silk fibroin content. Increasing the ratio of vitreous humor to silk fibroin decreased mechanical strength and increased swelling and degradation, respectively. There was no significant difference in the toxicity of the samples, and with the increase in vitreous humor ratio, adhesion and cell proliferation increased. Generally, silk fibroin with vitreous humor can provide desirable characteristics as a transparent film for corneal wound healing.

12.
Sci Rep ; 14(1): 15995, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987292

RESUMO

This paper focuses on the effect of granite-micro-filler on static mechanical properties, damping behavior, and physical characteristics of silk-sisal hybrid composite. The composites structures are fabricated by using three layers of plain weaves mat with varying weight percentages (2, 4, and 6 wt%) of granite-micro-filler by hand layer process. The effect of granite-micro-filler on silk-sisal is analyzed and results are compared with pure silk-sisal (without granite-Micro-filler) hybrid composite. The results infer that; the tensile strength and flexural strength value of the developed silk-sisal hybrid composites are increased with the increase in wt% of granite-micro-filler content than pure silk-sisal, approximately 5% and 9% improved value in order by adding 6 wt% granite-micro-filler on silk-sisal. The tensile and flexural fracture morphology analysis indicated that composed plain weave of silk-sisal fiber mat with two (longitudinal and transverse) directions possesses higher mechanical properties and also observed that, granite-micro-filler dispersed on silk-sisal fiber mat and resin with closely packed. The improved damping factor is obtained by adding 6 wt% of granite-micro-filler content, which is approximately 75.8% higher than pure silk-sisal. The physical properties of silk-sisal hybrid composite have also been analyzed and well discussed in this paper.

13.
Heliyon ; 10(12): e33031, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988540

RESUMO

With the development of the technical trend, concrete using waste alternate material instead of sand material found economic potential for good structural behaviour. Besides, the susceptible crack, low strength-to-weight ratio, and low compressive strength are the reasons for shrinkage. Due to this reason, the investigation aims to limit the shrinkage under live load and increase the compression and flexural strength by the introduction of coconut waste chopped fiber (wCF), waste fly ash (wFA), and carbon nanotube powder (CNT) blended with conventional Portland paste. The developed concrete consists of 5 wt% wCF, 10 wt% wFA, and 0, 5, 10, and 15 wt% of CNT and is subjected to X-ray diffraction analysis, bulk density, compression and flexural strength, and water absorption studies. The X-ray diffraction pattern revealed the wCF, wFA, CNT, and matrix compositions. The concrete developed with 5 wt% wCF, 10 wt% wFA, and 15 wt% CNT cured within 28 days recorded maximum behaviour of compression strength (47 ± 1.8 MPa), flexural strength (4.9 ± 0.19 MPa), and water absorption of (2.8 ± 0.05 %).

14.
Artigo em Inglês | MEDLINE | ID: mdl-38958205

RESUMO

Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38958640

RESUMO

Polyacrylonitrile (PAN) is an important commercial polymer, bearing atactic stereochemistry resulting from nonselective radical polymerization. As such, an accurate, fundamental understanding of governing interactions among PAN molecular units is indispensable for advancing the design principles of final products at reduced processability costs. While ab initio molecular dynamics (AIMD) simulations can provide the necessary accuracy for treating key interactions in polar polymers, such as dipole-dipole interactions and hydrogen bonding, and analyzing their influence on the molecular orientation, their implementation is limited to small molecules only. Herein, we show that the neural network interatomic potentials (NNIPs) that are trained on the small-scale AIMD data (acquired for oligomers) can be efficiently employed to examine the structures and properties at large scales (polymers). NNIP provides critical insight into intra- and interchain hydrogen-bonding and dipolar correlations and accurately predicts the amorphous bulk PAN structure validated by modeling the experimental X-ray structure factor. Furthermore, the NNIP-predicted PAN properties, such as density and elastic modulus, are in good agreement with their experimental values. Overall, the trend in the elastic modulus is found to correlate strongly with the PAN structural orientations encoded in the Hermans orientation factor. This study enables the ability to predict the structure-property relations for PAN and analogues with sustainable ab initio accuracy across scales.

16.
J Dent ; : 105214, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950767

RESUMO

OBJECTIVES: To evaluate the mechanical properties of root canal dentin treated with sodium hypochlorite (NaOCl) in combination with hydroxyethylidene diphosphonic acid (HEDP) or ethylenediaminetetraacetic acid (EDTA). METHODS: For testing fracture resistance, 45 single-rooted teeth were instrumented and irrigated with NaOCl/HEDP, NaOCl/EDTA, or distilled water. Fifteen untreated teeth served as control. After obturation, specimens from the experimental groups were thermocycled, dynamically-loaded, and then statically-loaded in a universal testing machine until failure. For flexural strength analysis, 15 teeth were instrumented and irrigated with NaOCl/HEDP or NaOCl/EDTA. Root segments were sectioned into dentin bars and tested for flexural strength using a universal testing machine. For microhardness evaluation, 20 teeth were instrumented and irrigated with NaOCl/HEDP or NaOCl/EDTA. Dentin disks from the coronal-third of each root segment were prepared, one before and one after irrigation, for microhardness testing with a Knoop hardness tester. RESULTS: The highest fracture resistance was recorded in the untreated group, and the lowest in the EDTA group. Although the HEDP group had higher fracture resistance than the EDTA group, the distilled water group demonstrated even greater fracture resistance than the HEDP group. Specimens treated with HEDP had significantly higher flexural strength and microhardness values when compared with those treated with EDTA. CONCLUSION: The fracture resistance, flexural strength, and microhardness of root canal dentin were higher when root canals were irrigated with NaOCl/HEDP, when compared with NaOCl/EDTA. CLINICAL SIGNIFICANCE: Irrigating root canals with NaOCl combined with HEDP significantly improves the mechanical integrity of root canal dentin compared to the use of NaOCl with EDTA.

17.
Acta Biomater ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969079

RESUMO

Mutation in oncogene KRas plays a crucial role in the occurrence and progression of numerous malignant tumors. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. We hypothesize that oncogene KRas mutations are intrinsic to alterations in cellular mechanics that promote malignant tumor generation and progression. Here, we demonstrate the use of optical tweezers coupled with a confocal fluorescence imaging system and gene interference technique to reveal that the mutant KRas protein can be transported between homogeneous and heterogeneous tumor cells by tunneling nanotubes (TNTs), resulting in a significant reduction of membrane tension and acceleration of membrane phospholipid flow in the recipient cells. Simultaneously, the changes in membrane mechanical properties of the tumor cells also enhance the metastatic and invasive ability of the tumors, which further contribute to the deterioration of the tumors. This finding helps to clarify the association between oncogene mutations and changes in the mechanical properties of tumor cells, which provides a theoretical basis for the development of cancer treatment strategies. STATEMENT OF SIGNIFICANCE: Here, we present a laser confocal fluorescence system integrated with optical tweezers to observe the transfer of mutant KRasG12D protein from mutant cells to wild-type cells through TNTs. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. Our results demonstrate a significant decrease in membrane tension and an increase in membrane phospholipid flow in recipient cells. These alterations in mechanical properties augment the migration and invasive capabilities of tumor cells, contributing to tumor malignancy. Our findings propose that cellular mechanical properties could serve as new markers for tumor development, and targeting membrane tension may hold potential as a therapeutic strategy.

18.
Dent Mater J ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38960668

RESUMO

The glass infiltration technique was employed for surface modification of zirconia implants in this study. The prepared glass-infiltrated zirconia with low infiltrating temperature showed excellent mechanical properties and enough infiltrating layer. The zirconia substrate was pre-sintered at 1,200°C and the glass infiltration depth reached 400 µm after infiltrating at 1,200°C for 10 h. The infiltrating glass has good wetting ability, thermal expansion match and good chemical compatibility with the zirconia substrate. Indentation fracture toughness and flexural strength of the dense sintered glass-infiltrated zirconia composite are respectively 5.37±0.45 MPa•m1/2 and 841.03±89.31 MPa. Its elasticity modulus is 163.99±7.6 GPa and has about 500 µm infiltrating layer. The glass-infiltrated zirconia can be acid etched to a medium roughness (1.29±0.09 µm) with a flexural strength of 823.65±87.46 MPa, which promotes cell proliferation and has potential for dental implants.

19.
Sci Rep ; 14(1): 15322, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961183

RESUMO

The present study introduces a novel approach utilizing machine learning techniques to predict the crucial mechanical properties of engineered cementitious composites (ECCs), spanning from typical to exceptionally high strength levels. These properties, including compressive strength, flexural strength, tensile strength, and tensile strain capacity, can not only be predicted but also precisely estimated. The investigation encompassed a meticulous compilation and examination of 1532 datasets sourced from pertinent research. Four machine learning algorithms, linear regression (LR), K nearest neighbors (KNN), random forest (RF), and extreme gradient boosting (XGB), were used to establish the prediction model of ECC mechanical properties and determine the optimal model. The optimal model was utilized to employ SHapley Additive exPlanations (SHAP) for scrutinizing feature importance and conducting an in-depth parametric analysis. Subsequently, a comprehensive control strategy was devised for ECC mechanical properties. This strategy can provide actionable guidance for ECC design, equipping engineers and professionals in civil engineering and material science to make informed decisions throughout their design endeavors. The results show that the RF model demonstrated the highest prediction accuracy for compressive strength and flexural strength, with R2 values of 0.92 and 0.91 on the test set. The XGB model outperformed in predicting tensile strength and tensile strain capacity, with R2 values of 0.87 and 0.80 on the test set, respectively. The prediction of tensile strain capacity was the least accurate. Meanwhile, the MAE of the tensile strain capacity was a mere 0.84%, smaller than the variability (1.77%) of the test results in previous research. Compressive strength and tensile strength demonstrated high sensitivity to variations in both water-cement ratio (W) and water reducer (WR). In contrast, flexural strength exhibited high sensitivity solely to changes in W. Conversely, the sensitivity of tensile strain capacity to input features was moderate and consistent. The mechanical attributes of ECC emerged from the combined effects of multiple positive and negative features. Notably, WR exerted the most significant influence on compressive strength among all features, whereas polyethylene (PE) fiber emerged as the primary driver affecting flexural strength, tensile strength, and tensile strain capacity.

20.
Sci Rep ; 14(1): 15512, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969766

RESUMO

This article is aimed at discussing the combined effect of mineral admixture and servicing temperature, especially in cold environment, on the properties of magnesium phosphate repair mortar (MPM). The influence mechanism of fly ash content on the microstructure and performance of MPM were firstly investigated, and then the evolution rules in properties of fly ash modified MPM cured at - 20 °C, 0 °C, 20 °C and 40 °C were further revealed. The results show that the incorporation of fly ash has no significant effect on the setting time and fluidity of MPM. When MPM is modified with 10 wt% and 15 wt% fly ash, its mechanical properties, adhesive strength, water resistance, and volume stability are effectively improved. Fly ash reduces the crystallinity and continuity of struvite enriched in hardened MPM, and its particles are embedded among struvite and unreacted MgO. The compressive strength of MPM-10 cured for various ages increases with the elevating of curing temperature, while the flexural strength, interfacial bonding strength, strength retention and linear shrinkage exhibits the opposite laws. When cured at 0 °C and - 20 °C, MPM-10 still has good early strength, water resistance and interfacial bonding properties, which indicates that MPM-10 provides with an ability of emergency repair of cracked components served in cold environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...