RESUMO
Models using near-infrared spectroscopy (NIRS) were constructed based on physical-mechanical tests to determine the quality of cattle leather. The following official parameters were used, considering the industry requirements: tensile strength (TS), percentage elongation (%E), tear strength (TT), and double hole tear strength (DHS). Classification models were constructed with the use of k-nearest neighbor (kNN), soft independent modeling of class analogy (SIMCA), and partial least squares-discriminant analysis (PLS-DA). The evaluated figures of merit, accuracy, sensitivity, and specificity presented results between 85% and 93%, and the false alarm rates from 9% to 14%. The model with lowest validation percentage (92%) was kNN, and the highest was PLS-DA (100%). For TS, lower values were obtained, from 52% for kNN and 74% for SIMCA. The other parameters %E, TT, and DHS presented hit rates between 87 and 100%. The abilities of the models were similar, showing they can be used to predict the quality of cattle leather.
Assuntos
Pele/anatomia & histologia , Animais , Calibragem , Bovinos , Análise Discriminante , Análise dos Mínimos Quadrados , Análise de Regressão , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho/métodosRESUMO
Transforming growth factor beta 1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) are important regulators of bone repair and regeneration. In this study, we examined whether TGF-β1 and BMP-2 expressions were delayed during bone healing in type 1 diabetes mellitus. Tibial fractures were created in 95 diabetic and 95 control adult male Wistar rats of 10 weeks of age. At 1, 2, 3, 4, and 5 weeks after fracture induction, five rats were sacrificed from each group. The expressions of TGF-β1 and BMP2 in the fractured tibias were measured by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction, weekly for the first 5 weeks post-fracture. Mechanical parameters (bending rigidity, torsional rigidity, destruction torque) of the healing bones were also assessed at 3, 4, and 5 weeks post-fracture, after the rats were sacrificed. The bending rigidity, torsional rigidity and destruction torque of the two groups increased continuously during the healing process. The diabetes group had lower mean values for bending rigidity, torsional rigidity and destruction torque compared with the control group (P<0.05). TGF-β1 and BMP-2 expression were significantly lower (P<0.05) in the control group than in the diabetes group at postoperative weeks 1, 2, and 3. Peak levels of TGF-β1 and BMP-2 expression were delayed by 1 week in the diabetes group compared with the control group. Our results demonstrate that there was a delayed recovery in the biomechanical function of the fractured bones in diabetic rats. This delay may be associated with a delayed expression of the growth factors TGF-β1 and BMP-2.