Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Pharm ; 74(1): 149-164, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554387

RESUMO

Lung cancer (LC) is the leading cause of cancer deaths worldwide. Surgery, chemoradiotherapy, targeted therapy, and immunotherapy are considered dominant treatment strategies for LC in the clinic. However, drug resistance and meta-stasis are two major challenges in cancer therapies. Medicarpin (MED) is an isoflavone compound isolated from alfalfa, which is usually used in traditional medicine. This study was de sig ned to evaluate the anti-LC effect and reveal the underlying mechanisms of MED in vivo and in vitro. We found that MED could significantly inhibit proliferation, induce apoptosis, and cell cycle arrest of A549 and H157 cell lines. Basically, MED induced cell apoptosis of LC cells by upregu lating the expression of pro-apoptotic proteins BAX and Bak1, leading to the cleavage of caspase-3 (Casp3). Moreover, MED inhibited the proliferation of LC cells via downregulating the expression of proliferative protein Bid. Overall, MED inhibited LC cell growth in vitro and in vivo via suppressing cell proliferation and inducing cell apoptosis, suggesting the therapeutic potential of MED in treating LC.


Assuntos
Neoplasias Pulmonares , Pterocarpanos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose , Fitoalexinas , Proliferação de Células
2.
Synth Syst Biotechnol ; 8(4): 749-756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38090379

RESUMO

Medicarpin is an important bioactive compound with multiple medicinal activities, including anti-tumor, anti-osteoporosis, and anti-bacterial effects. Medicarpin is associated with pterocarpans derived from medicinal plants, such as Sophora japonica, Glycyrrhiza uralensis Fisch., and Glycyrrhiza glabra L. However, these medicinal plants contain only low amounts of medicarpin. Moreover, the planting area for medicarpin-producing plants is limited; consequently, the current medicarpin supply cannot meet the high demands of medicinal markets. In this study, eight key genes involved in medicarpin biosynthesis were identified using comparative transcriptome and bioinformatic analyses. In vitro and in vivo enzymatic reaction confirmed the catalytic functions of candidate enzymes responsible for the biosynthesis of medicarpin and medicarpin intermediates. Further engineering of these genes in Saccharomyces cerevisiae achieved the heterologous biosynthesis of medicarpin using liquiritigenin as a substrate, with a final medicarpin yield of 0.82 ± 0.18 mg/L. By increasing the gene copy numbers of vestitone reductase (VR) and pterocarpan synthase (PTS), the final medicarpin yield was increased to 2.05 ± 0.72 mg/L. This study provides a solid foundation for the economic and sustainable production of medicarpin through a synthetic biology strategy.

3.
Chem Biol Drug Des ; 102(5): 1097-1109, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515387

RESUMO

Glioblastoma (GBM) is the most malignant brain tumor and incurable. Medicarpin (MED), a flavonoid compound from the legume family, has multiple targets and anticancer properties. However, the role of MED in GBM remains unclear. The objective of this study was to explore the effects of MED on the apoptosis of GBM and to explain the potential molecular mechanisms. We found that the IC50 values of U251 and U-87 MG cells treated with MED for 24 h were 271 µg/mL and 175 µg/mL, and the IC50 values for 48 h were 154 µg/mL and 161 µg/mL, respectively. Additionally, the cell cycle of U251 and U-87 MG cells were arrested at the G2/M phase. Furthermore, the apoptosis rate of U251 and U-87 MG cells increased from 6.26% to 18.36% and 12.46% to 31.33% for 48 h, respectively. The migration rate of U251 and U-87 MG decreased from 20% to 5% and 25% to 15% for 12 h and these of U251 and U-87 MG decreased from 50% to 28% and 60% to 25% for 24 h. MED suppressed GBM tumorigenesis, and improved survival rate of tumor-bearing mice. Taken together, MED triggered GBM apoptosis through upregulation of pro-apoptotic proteins (BID, BAX, CASP3, CASP8, and CYCS), showed strong inhibitory effects on cell proliferation and cell migration, and displayed anti-tumor activity in nude mice.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Apoptose , Proteína X Associada a bcl-2/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Camundongos Nus , Regulação para Cima , Caspase 8/efeitos dos fármacos
4.
Acta Pharm ; 73(2): 211-225, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307373

RESUMO

Bladder cancer (BC) is the tenth most commonly diagnosed cancer. High recurrence, chemoresistance, and low response rate hinder the effective treatment of BC. Hence, a novel therapeutic strategy in the clinical management of BC is urgently needed. Medicarpin (MED), an isoflavone from Dalbergia odorifera, can promote bone mass gain and kill tumor cells, but its anti-BC effect remains obscure. This study reve aled that MED effectively inhibited the proliferation and arrested the cell cycle at the G1 phase of BC cell lines T24 and EJ-1 in vitro. In addition, MED could significantly suppress the tumor growth of BC cells in vivo. Mechanically, MED induced cell apoptosis by upregulating pro-apoptotic proteins BAK1, Bcl2-L-11, and caspase-3. Our data suggest that MED suppresses BC cell growth in vitro and in vivo via regulating mitochondria-mediated intrinsic apoptotic pathways, which can serve as a promising candidate for BC therapy.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Fase G1 , Apoptose , Mitocôndrias
5.
Bioorg Med Chem Lett ; 80: 129118, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581301

RESUMO

Human skeleton requires an adequate supply of many different nutritional factors for optimal growth and development. The role of nutrition in bone growth has piqued interest in recent years, especially in relation to maximizing peak bone mass and reducing the risk of osteoporosis. Protein deficiency-induced bone loss was induced in female growing rats. All experimental rodent diets were prepared as per recommendations for growing animals. 9-Demethoxy-medicarpin (DMM) treatment was given to growing Sprague Dawley (SD) rats at 1 mg and 10 mg dose orally for 30 days. Bones were collected for bone mineral density (BMD). Bone marrow cells were isolated from femur for calcium nodule formation. Serum samples were collected for biochemical parameters. We found that DMM treatment speeds up the recovery of musculoskeletal weakness by replenishing nutrients in proven rodent model. DMM supplementation for four weeks showed significantly increased vertebral, femur and tibial BMD compared with the untreated PD group. Albumin levels were significantly enhanced in treatment groups, in which 10 mg dose imparted a better effect. We conclude that DMM treatment led to increased BMD and biochemical parameters in protein deficient condition in growing rats and has potential as a bone growth supplement.


Assuntos
Densidade Óssea , Osso e Ossos , Animais , Feminino , Humanos , Ratos , Suplementos Nutricionais , Ratos Sprague-Dawley
6.
Neurotox Res ; 40(6): 1937-1947, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36445678

RESUMO

Presently, the regulatory mechanism underlying depression is indistinct, and almost 50% of depression sufferers undergo no apparent effects during treatment. This study explored the effects of medicarpin on depressive-like behaviors in a chronic unpredictable mild stress (CUMS)-induced mouse model of depression. The results of network pharmacological analysis revealed that liver X receptor ß (LXRß) might be a potential target of medicarpin and depression. The LXRß level was reduced in the amygdala of mice induced by CUMS; however, this effect was suppressed by co-treatment with medicarpin. Medicarpin treatment ameliorated depressive-like behaviors in CUMS-induced mice by modulating LXRß level. Moreover, medicarpin treatment reduced M1 polarization and enhanced M2 polarization of amygdala microglia in CUMS-induced mice, as well as increased GFAP level in the amygdala. Medicarpin treatment also suppressed CUMS-induced inflammation and hindered nuclear factor-κ B (NF-κB) signaling activation. These data indicate that medicarpin activated astrocytes and inhibited microglia M1 polarization while promoted M2 polarization by enhancing the expression of LXRß. Hence, our results suggest that medicarpin could have a positive effect on the treatment of depression, and LXRß could serve as a novel therapeutic target.


Assuntos
Antidepressivos , Depressão , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Receptores X do Fígado , Tonsila do Cerebelo , Inflamação/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
7.
J Cancer Res Ther ; 18(1): 180-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381781

RESUMO

Background/Aim: We aimed to investigate the in vitro modulating effects of medicarpin on the PI3K/AKT signal pathway gene expressions in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: The effect of medicarpin on PTEN and other associated genes in the PTEN/AKT signal pathway was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, real-time quantitative polymerase chain reaction, and Western blot analysis in the SCCL-MT1 (HNSCC) and control (HEK-293) cell lines. Results: The IC50 dose was 80 µM as a result of medicarpin treatment on HNSCC cells (P = 0.0006). It was found that PTEN and AKT gene expressions increased after the medicarpin administration while PDK1 gene expression was decreased in SCCL-MT1 cells (P = 0.0002, P = 0.0003, and P = 0.05, respectively). Protein expression results showed that medicarpin-treated cells significantly increased in pAKT (P = 0.024), pPTEN (P = 0.032), and decreased pPDK1 (P = 0.059) in SCCL-MT1. Conclusions: Our data show that medicarpin modulates HNSCC cells by increasing the PTEN and decreasing PDK1 expressions. PDK1 gene expression effects mTOR pathway which may increase AKT gene. Our study suggests that both medicarpin extracts combination with the HNSCC drug may be more effective in cancer treatment. Future prospective studies that integrate molecular and pharmacogenetic studies are crucial for revealing the mechanism and preventive medical efforts.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pterocarpanos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
8.
Mol Plant Pathol ; 23(7): 966-983, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35263504

RESUMO

Powdery mildew (PM) caused by the obligate biotrophic fungal pathogen Erysiphe pisi is an economically important disease of legumes. Legumes are rich in isoflavonoids, a class of secondary metabolites whose role in PM resistance is ambiguous. Here we show that the pterocarpan medicarpin accumulates at fungal infection sites, as analysed by fluorescein-tagged medicarpin, and provides penetration and post-penetration resistance against E. pisi in Medicago truncatula in part through the activation of the salicylic acid (SA) signalling pathway. Comparative gene expression and metabolite analyses revealed an early induction of isoflavonoid biosynthesis and accumulation of the defence phytohormones SA and jasmonic acid (JA) in the highly resistant M. truncatula genotype A17 but not in moderately susceptible R108 in response to PM infection. Pretreatment of R108 leaves with medicarpin increased SA levels, SA-associated gene expression, and accumulation of hydrogen peroxide at PM infection sites, and reduced fungal penetration and colony formation. Strong parallels in the levels of medicarpin and SA, but not JA, were observed on medicarpin/SA treatment pre- or post-PM infection. Collectively, our results suggest that medicarpin and SA may act in concert to restrict E. pisi growth, providing new insights into the metabolic and signalling pathways required for PM resistance in legumes.


Assuntos
Medicago truncatula , Pterocarpanos , Resistência à Doença/genética , Medicago truncatula/microbiologia , Doenças das Plantas/microbiologia , Pterocarpanos/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/fisiologia
9.
Neurochem Res ; 47(2): 347-357, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34523056

RESUMO

Medicarpin, a pterocarpan class of naturally occurring phytoestrogen possesses various biological functions. However, the effect of medicarpin on oxygen-glucose deprivation-reoxygenation (OGD/R)-induced injury in human cerebral microvascular endothelial cells (HCMECs) remains largely unknown. Target genes of medicarpin were predicted from PharmMapper. Target genes of ischemic stroke were predicted from public databases GeneCards and DisGeNET. Kyoto Encyclopedia of Genes and Genomes pathway enrichment of the intersecting targets was analyzed via DAVID 6.8. Cell viability was evaluated using CCK-8 assay. Malondialdehyde content, superoxide dismutase activity, and glutathione level were detected using corresponding commercially available kits. Cell death was assessed by TUNEL assays. Expression of protein kinase B (Akt), phosphorylated-Akt, forkhead box protein O1, phosphorylated-FoxO1, FoxO3a, and phosphorylated-FoxO3a (p-FoxO3a) was detected by western blot analysis. The intersecting targets of medicarpin and ischemic stroke were significantly enriched in phosphatidylinositol 3-kinase (PI3K)/Akt and FoxO pathways. Medicarpina attenuated OGD/R-evoked viability inhibition, oxidative stress, and cell death in HCMECs. Additionally, medicarpin activated the PI3K/Akt and FoxO pathways in OGD/R-induced HCMECs. Inhibition of PI3K/Akt pathway abrogated the neuroprotective effect of medicarpin on OGD/R-induced injury and activation of FoxO pathway in HCMECs. In conclusion, medicarpin suppressed OGD/R-induced injury in HCMECs by activating PI3K/Akt/FoxO pathway.


Assuntos
Pterocarpanos , Traumatismo por Reperfusão , Apoptose , Células Endoteliais/metabolismo , Glucose/metabolismo , Humanos , Farmacologia em Rede , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pterocarpanos/metabolismo , Pterocarpanos/farmacologia , Traumatismo por Reperfusão/metabolismo
10.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615451

RESUMO

Thirteen compounds were isolated from the Canavalia lineata pods and their inhibitory activities against human monoamine oxidase-A (hMAO-A) and -B (hMAO-B) were evaluated. Among them, compounds 8 (medicarpin) and 13 (homopterocarpin) showed potent inhibitory activity against hMAO-B (IC50 = 0.45 and 0.72 µM, respectively) with selectivity index (SI) values of 44.2 and 2.07, respectively. Most of the compounds weakly inhibited MAO-A, except 9 (prunetin) and 13. Compounds 8 and 13 were reversible competitive inhibitors against hMAO-B (Ki = 0.27 and 0.21 µM, respectively). Structurally, the 3-OH group at A-ring of 8 showed higher hMAO-B inhibitory activity than 3-OCH3 group at the A-ring of 13. However, the 9-OCH3 group at B-ring of 13 showed higher hMAO-B inhibitory activity than 8,9-methylenedioxygroup at the B-ring of 12 (pterocarpin). In cytotoxicity study, 8 and 13 showed non-toxicity to the normal (MDCK) and cancer (HL-60) cells and moderate toxicity to neuroblastoma (SH-SY5Y) cell. Molecular docking simulation revealed that the binding affinities of 8 and 13 for hMAO-B (-8.7 and -7.7 kcal/mol, respectively) were higher than those for hMAO-A (-3.4 and -7.1 kcal/mol, respectively). These findings suggest that compounds 8 and 13 be considered potent reversible hMAO-B inhibitors to be used for the treatment of neurological disorders.


Assuntos
Inibidores da Monoaminoxidase , Neuroblastoma , Humanos , Inibidores da Monoaminoxidase/química , Canavalia , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
11.
J Agric Food Chem ; 69(32): 9208-9219, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34346216

RESUMO

Flavonoids play a key role in the regulation of plant-plant and plant-microbe interactions, and factors determining their release have been investigated in most of the common forage legumes. However, little is known about the response of flavonoid production and release to co-cultivation with other crop species. This study investigated alterations in the concentration of flavonoids in plant tissues and root exudates in four legumes [alfalfa (Medicago sativa L.), black medic (Medicago polymorpha L.), crimson clover (Trifolium incarnatum L.), and subterranean clover (Trifolium subterraneum L.)] co-cultivated with durum wheat [Triticum turgidum subsp. durum (Desf.) Husn.]. For this purpose, we carried out two experiments in a greenhouse, one with glass beads as growth media for root exudate extraction and one with soil as growth media for flavonoid detection in shoot and root biomass, using LC-MS/MS analysis. This study revealed that interspecific competition with wheat negatively affected legume growth and led to a significant reduction in shoot and root biomass compared with the same legume species grown in monoculture. In contrast, the concentration of flavonoids significantly increased both in legume biomass and in root exudates. Changes in flavonoid concentration involved daidzein, genistein, medicarpin, and formononetin, which have been found to be involved in legume nodulation and regulation of plant-plant interaction. We hypothesize that legumes responded to the co-cultivation with wheat by promoting nodulation and increasing exudation of allelopathic compounds, respectively, to compensate for the lack of nutrients caused by the presence of wheat in the cultivation system and to reduce the competitiveness of neighboring plants. Future studies should elucidate the bioactivity of flavonoid compounds in cereal-legume co-cultivation systems and their specific role in the nodulation process and inter-specific plant interactions such as potential effects on weeds.


Assuntos
Fabaceae , Flavonoides , Cromatografia Líquida , Raízes de Plantas , Espectrometria de Massas em Tandem
12.
Phytomedicine ; 91: 153662, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333326

RESUMO

BACKGROUND: Medicarpin is a natural pterocarpan-type phytoalexin widely distributed in many traditional Chinese medicines, such as Astragali Radix. A previous study showed that Astragali Radix demonstrated promising protective effects in neurons. However, there is no reported study on the neuroprotective function and the underlying mechanism of Medicarpin. PURPOSE: This study aimed to demonstrate the neuroprotective effect of Medicarpin on Alzheimer's disease (AD) and explore the therapeutic mechanisms. METHOD: First, we carried out animal behavioral tests and biochemical analysis to assess the anti-AD potential of Medicarpin for ameliorating spatial learning and memory and modulating cholinergic metabolism in scopolamine-induced amnesic mice. Subsequently, network proximity prediction was used to measure the network distance between the Medicarpin target network and AD-related endophenotype module. We identified Medicarpin-regulated AD pathological processes and highlighted the key disease targets via network analysis. Finally, experimental approaches including Nissl staining and Western blotting were conducted to validate our network-based findings. RESULT: In this study, we first observed that Medicarpin can ameliorate cognitive and memory dysfunction and significantly modulate cholinergic metabolism in scopolamine-induced amnesic mice. We then proposed an endophenotype network-based framework to comprehensively explore the AD therapeutic mechanisms of Medicarpin by integrating 25 AD-related endophenotype modules, gold-standard AD seed genes, an experimentally validated drug-target network of Medicarpin, and a global human protein-protein interactome. In silico prediction revealed that the effect of Medicarpin is highly relevant to neuronal apoptosis and synaptic plasticity, which was validated by experimental assays. Network analysis and Western blotting further identified two key targets, GSK-3ß and MAPK14 (p38), in the AD-related protein regulatory network, which play key roles in the regulation of neuronal apoptosis and synaptic plasticity by Medicarpin. CONCLUSIONS: This study presented a powerful endophenotype network-based strategy to explore the mechanisms of action (MOAs) of new AD therapeutics, and first identified Medicarpin as a potential anti-AD candidate by targeting multiple pathways.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores/farmacologia , Pterocarpanos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Animais , Glicogênio Sintase Quinase 3 beta , Camundongos , Proteína Quinase 14 Ativada por Mitógeno , Pterocarpanos/farmacologia , Escopolamina
13.
Phytochemistry ; 184: 112655, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33540237

RESUMO

Petal blight caused by fungi is among the most destructive diseases of Rhododendron, especially Rhododendron agastum. Nonetheless, the metabolite changes that occur during petal blight are unknown. We used untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) to compare the metabolite profiles of healthy and petal blight R. agastum flowers. Using GC-TOF-MS, 571 peaks were extracted, of which 189 metabolites were tentatively identified. On the other hand, 364 and 277 metabolites were tentatively identified in the positive and negative ionization modes of the UHPLC-QTOF-MS/MS, respectively. Principal component analysis (PCA) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were able to clearly discriminate between healthy and petal blight flowers. Differentially abundant metabolites were primarily enriched in the biosynthesis of specialized metabolites. 17 accumulated specialized metabolites in petal blight flowers have been reported to have antifungal activity, and literature indicates that 9 of them are unique to plants. 3 metabolites (chlorogenic acid, medicarpin, and apigenin) are reportedly involved in resistance to blight caused by pathogens. We therefore speculate that the accumulation of chlorogenic acid, medicarpin, and apigenin may be involved in the resistance to petal blight. Our results suggest that these metabolites may be used as candidate biocontrol agents for the control fungal petal blight in Rhododendron.


Assuntos
Rhododendron , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica
14.
J Ethnopharmacol ; 267: 113623, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246124

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Propolis has been used in folk medicine to treat gastric disorders for centuries. However, although studies have been conducted to validate the gastroprotective and anti-ulcer activity of some types of propolis, red propolis activity remains unknown. AIM OF THE STUDY: The present study aimed to evaluate the gastroprotective effect of the hydroalcoholic extract of red propolis (HERP), its mode of action, and the main compounds involved in its activity, therefore contributing to validate the chemical and pharmacological potential of this product. MATERIAL AND METHODS: The effect of HERP (30, 100 and 300 mg/kg p.o. and 30 mg/kg i.p.), and the isolated compounds vestitol (VS), neovestitol (NV), methylvestitol (MV), medicarpin (MD), and oblongifolin AB (OB) (10 mg/kg p.o.) were evaluated on gastric ulcers induced by 60% ethanol/0.3 M HCl (5 mL/kg, p.o.) in mice. Histological changes and mucin levels were assessed by HE and PAS, respectively. Moreover, oxidative stress parameters and myeloperoxidase activity were analyzed on ulcerated tissue. The effect of HERP on gastric acid secretion was evaluated by pyloric ligature model and the mechanisms involved in its gastroprotective effect were investigated by pretreating mice with L-NAME (a non-selective nitric oxide synthase inhibitor, 70 mg/kg, i.p.), NEM (a sulfhydryl group chelator, 10 mg/kg, i.p.), yohimbine (an alpha-adrenergic receptor antagonist, 2 mg/kg, i.p.) and indomethacin (a non-selective cyclooxygenase inhibitor, 10 mg/kg, i.p.). RESULTS: HERP (300 mg/kg p.o. or 30 mg/kg i.p.), MV, and MD (10 mg/kg p.o.) protected gastric mucosa against the damage induced by ethanol/HCl. Histological changes were attenuated by the HERP, MV, and MD. Moreover, HERP and MV increased mucin levels. Besides, oxidative stress and MPO activity were reduced by the three treatments. HERP did not display anti-secretory action, but its effect was abolished by indomethacin treatment. CONCLUSIONS: HERP displays gastroprotective property against ethanol/HCl-induced damage. Its effect is dependent on prostaglandins and mucin production. The compounds MV and MD may have an essential role in the activity of HERP. Our data contribute to validate the traditional use of propolis for gastric disorders.


Assuntos
Antiulcerosos/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Própole , Úlcera Gástrica/prevenção & controle , Animais , Antiulcerosos/isolamento & purificação , Brasil , Modelos Animais de Doenças , Etanol , Ácido Gástrico/metabolismo , Mucinas Gástricas/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Ácido Clorídrico , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Própole/química , Prostaglandinas/metabolismo , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patologia
15.
Food Chem ; 313: 126092, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31923866

RESUMO

Trigonella foenum-graecum L. (fenugreek) is used as a leafy vegetable and spice in China and North African countries. However, the biochemical components of its aerial parts were rarely explored. In this study, the bioactivities of the various extract fractions from the aerial parts of this edible plant were assessed, the ethyl acetate extract fraction exhibited strong antioxidant and anti-inflammatory effects. Through bioassay-guided isolation, one new pterocarpan (1), as well as twelve known pterocarpans (2-13) were obtained, nine of them (5-13) were first reported in the fenugreek, four pterocarpans (9, 11-13) had strong antioxidant activity, eleven pterocarpans (1-3, 5-12) possessed obvious anti-inflammatory activity. This study indicates that pterocarpans are main bioactive components of this edible plant. Apart from its nutritional value as food, the aerial parts of this plant can also be further explored as functional foods or antioxidants in food industry.


Assuntos
Pterocarpanos/química , Trigonella/química , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Conformação Molecular , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Pterocarpanos/metabolismo
16.
J Pharm Biomed Anal ; 180: 112978, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31855725

RESUMO

Medicarpin, one of the active constituents isolated from the extract of Butea monosperma, has been shown to have various pharmacological activities including potent anti-osteoporotic properties. The aim of this study was to investigate the oral pharmacokinetics, tissue distribution and excretion of medicarpin following single oral dose administration in female rats. Oral pharmacokinetics was explored at 5 and 20 mg/kg while tissue distribution, urinary and fecal excretion were studied following 20 mg/kg oral dose. Medicarpin was quantified in rat plasma, urine, feces and tissue samples using a validated LC-MS/MS method following reverse-phase HPLC separation on RP18 column (4.6 mm × 50 mm, 5.0 µm) using methanol and 10 mM ammonium acetate (pH 4.0) as mobile phase in the ratio of 80:20 (v/v) at a flow rate of 0.8 mL/min. The oral bioavailability of medicarpin was found to be low with low systemic levels. The concentration in tissues was significantly higher than plasma. Highest tissue concentrations were found in the liver followed by bone marrow. Urinary and fecal excretion of medicarpin was < 1 %. In conclusion, medicarpin was found to be highly distributed in body tissues and minimally excreted via urine or feces.


Assuntos
Líquidos Corporais/metabolismo , Osteoporose/tratamento farmacológico , Pterocarpanos , Animais , Disponibilidade Biológica , Análise Química do Sangue , Cromatografia Líquida de Alta Pressão , Fezes , Feminino , Limite de Detecção , Extração Líquido-Líquido , Pterocarpanos/administração & dosagem , Pterocarpanos/síntese química , Pterocarpanos/farmacocinética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
17.
Molecules ; 24(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121832

RESUMO

Medicarpin is a bioactive pterocarpan that has been attracting increasing attention in recent years. However, its metabolic fate in vivo is still unknown. To clarify its metabolism and the distribution of its metabolites in rats after oral administration, the HPLC-ESI-IT-TOF-MSn technique was used. A total of 165 new metabolites (13 phase I and 152 phase II metabolites) were tentatively identified, and 104, 29, 38, 41, 74, 28, 24, 15, 42, 8, 10, 3, and 17 metabolites were identified in urine, feces, plasma, the colon, intestine, stomach, liver, spleen, kidney, lung, heart, brain, and thymus, respectively. Metabolic reactions included demethylation, hydrogenation, hydroxylation, glucuronidation, sulfation, methylation, glycosylation, and vitamin C conjugation. M1 (medicarpin glucuronide), M5 (vestitol-1'-O-glucuronide) were distributed to 10 organs, and M1 was the most abundant metabolite in seven organs. Moreover, we found that isomerization of medicarpin must occur in vivo. At least 93 metabolites were regarded as potential new compounds by retrieving information from the Scifinder database. This is the first detailed report on the metabolism of ptercarpans in animals, which will help to deepen the understanding of the metabolism characteristics of medicarpin in vivo and provide a solid basis for further studies on the metabolism of other pterocarpans in animals.


Assuntos
Pterocarpanos/administração & dosagem , Pterocarpanos/farmacocinética , Administração Oral , Animais , Química Encefálica , Cromatografia Líquida de Alta Pressão , Colo/química , Fezes/química , Fígado/química , Masculino , Metaboloma , Estrutura Molecular , Plasma/química , Pterocarpanos/química , Ratos , Ratos Sprague-Dawley , Baço/química , Distribuição Tecidual , Urina/química
18.
Pest Manag Sci ; 75(10): 2765-2769, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30801938

RESUMO

BACKGROUND: Pueraria peduncularis belongs to the genus Pueraria DC, and has a wide range of medical and agricultural activities. Previous studies have shown that P. peduncularis extracts have broad bioactivities against phytopathogens. In this paper, we systematically studied the fungicidal activity of root methanol extracts and further isolated the active compounds. RESULTS: The root methanol extract inhibited the mycelial growth of the five tested phytopathogens to different degrees. Among these phytopathogens, the inhibitory effect was greatest against R. solani, with an EC50 value of 324.72 mg L-1 . Eight compounds were subsequently isolated and identified from P. peduncularis. Among them, puercarpan A and medicarpin showed strong fungicidal activity, with MIC values against Rhizoctonia solani of 1.6 and 6.25 mg L-1 , respectively. Puercarpan A is a new compound, and its structure was established as (6aR,6bS,11aR)-6b-hydroxy-3-methoxypterocarpan-10-ene-7-one. CONCLUSION: The P. peduncularis extracts exhibit high antimicrobial activity against R. solani and have great potential value of P. peduncularis as a fungicide. © 2019 Society of Chemical Industry.


Assuntos
Fungicidas Industriais/farmacologia , Raízes de Plantas/química , Pueraria/química , Rhizoctonia/efeitos dos fármacos
19.
Genes Environ ; 41: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890055

RESUMO

BACKGROUND: An extract from Spatholobus suberectus (S. suberectus) Dunn has been reported to show potent antimutagenic effects against N-alkyl-N-nitrosoureas in umu screening. The aim of this study was to identify the antimutagenic components from extracts of S. suberectus against N-methyl-N-nitrosourea (MNU) in the Ames assay with Salmonella typhimurium strain TA1535 and to elucidate the antimutagenic mechanism of the flavonoids. RESULTS: From the ethyl acetate fraction obtained from fractionation of the methanol extract of S. suberectus Dunn, medicarpin, formononetin and isoliquiritigenin were successfully isolated through a combination of normal- and reversed-phase chromatography. Genistein and naringenin, which were already reported to be contained in S. suberectus Dunn, were also tested for their antimutagenicity towards MNU, along with formononetin, isoliquiritigenin and medicarpin. Our results demonstrated that genistein, isoliquiritigenin, medicarpin and naringenin were antimutagenic against MNU without showing cytotoxicity. MNU is reported to cause not only DNA alkylation but also induce reactive oxygen species. The hydroxyl radical scavenging capacity of the flavonoids was correlated with the antimutagenic capacity, indicating that the hydroxyl radical scavenging activity was involved in their antimutagenicity towards MNU. CONCLUSIONS: It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention. Genistein, isoliquiritigenin, medicarpin and naringenin were demonstrated to possess an antigenotoxic effects against carcinogenic MNU due to their radical scavenging activity.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-851371

RESUMO

Objective: To investigate the effects of five kinds of flavonoids (calycosin, formononetin, ononin, isoliquiritigenin, and medicarpin) from Hedysari Radix on promoting osteogenic differentiation of rat bone marrow stromal cells (rBMSCs) and rat calvarial osteoblasts (ROBs). Methods: rBMSCs were isolated according to plastic adherence. ROBs were isolated by enzyme digestion method. The proliferation of rBMSCs and ROBs were detected by MTT assay. ALP activity and calcium content of rBMSCs and ROBs cells were detected by alkaline phosphatase kit and calcium kit. Mineralized nodule formation was detected by alizarin red staining. Results: The five components could promote proliferation, increase ALP activity, increase calcium content, and increase the area and number of calcified nodules of rBMSCs and ROBs (P < 0.05). Among them, calycosin had the best effect on promoting the osteogenic differentiation of rBMSCs, and medicarpin promoted the osteogenic differentiation of ROBs with the best effect, followed by calycosin. Conclusion: Five flavonoids promoted the improvement of osteogenic function, while calycosin has better osteogenic activity on rBMSCs and ROBs and can be used as an excellent osteoinductive factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...