Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Pharmacol Biochem Behav ; 242: 173818, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971471

RESUMO

Anxiety disorders are chronic, disabling psychiatric disorders, and there is a growing medical need for the development of novel pharmacotherapeutic agents showing improved efficacy and an improved side effect profile as compared with the currently prescribed anxiolytic drugs. In the course of the search for next-generation anxiolytics, neuropeptide receptors have garnered interest as potential therapeutic targets, underscored by pivotal roles in modulating stress responses and findings from animal studies using pharmacological tools. Among these neuropeptide receptors, the type 1 receptor for melanin-concentrating hormone (MCH1), which has been demonstrated to be involved in an array of physiological processes, including the regulation of stress responses and affective states, has gained attraction as a therapeutic target for drugs used in the treatment of psychiatric disorders, including anxiety disorders. To date, a plethora of MCH1 antagonists have been synthesized, and studies using MCH1 antagonists and genetically manipulated mice lacking MCH1 have revealed that the blockade of MCH1 produces anxiolytic-like effects across diverse rodent paradigms. In addition, MCH1 antagonists have been demonstrated to show a rapid onset of antidepressant-like effects; therefore, they may be effective for conditions commonly encountered in patients with anxiety disorders, which is an advantage for anxiolytic drugs. Notably, MCH1 antagonists have not manifested the undesirable side effects observed with the currently prescribed anxiolytics. All these preclinical findings testify to the potential of MCH1 antagonists as novel anxiolytics. Although there are still issues that need to be resolved prior to the initiation of clinical trials, such as elucidating the precise neuronal mechanisms underlying their anxiolytic effects and exploring pertinent biomarkers that can be used in clinical trials, MCH1 blockade appears to be an attractive way to tackle anxiety disorders.

2.
PNAS Nexus ; 3(7): pgae275, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035036

RESUMO

Melanin-concentrating hormone-producing neurons (MCH neurons), found mainly in the lateral hypothalamus and surrounding areas, play essential roles in various brain functions, including sleep and wakefulness, reward, metabolism, learning, and memory. These neurons coexpress several neurotransmitters and act as glutamatergic neurons. The contribution of glutamate from MCH neurons to memory- and metabolism-related functions has not been fully investigated. In a mouse model, we conditionally knocked out Slc17a6 gene, which encodes for vesicular glutamate transporter 2 (vGlut2), in the MCH neurons exclusively by using two different methods: the Cre recombinase/loxP system and in vivo genome editing using CRISPR/Cas9. Then, we evaluated several aspects of memory and measured metabolic rates using indirect calorimetry. We found that mice with MCH neuron-exclusive vGlut2 ablation had higher discrimination ratios between novel and familiar stimuli for novel object recognition, object location, and three-chamber tests. In contrast, there was no significant change in body weight, food intake, oxygen consumption, respiratory quotient, or locomotor activity. These findings suggest that glutamatergic signaling from MCH neurons is required to regulate memory, but its role in regulating metabolic rate is negligible.

3.
J Sleep Res ; : e14266, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972672

RESUMO

Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.

4.
J Physiol ; 602(14): 3545-3574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38874572

RESUMO

Melanin-concentrating hormone (MCH) neurons can co-express several neuropeptides or neurotransmitters and send widespread projections throughout the brain. Notably, there is a dense cluster of nerve terminals from MCH neurons in the lateral septum (LS) that innervate LS cells by glutamate release. The LS is also a key region integrating stress- and anxiety-like behaviours, which are also emerging roles of MCH neurons. However, it is not known if or where the MCH peptide acts within the LS. We analysed the projections from MCH neurons in male and female mice anteroposteriorly throughout the LS and found spatial overlap between the distribution pattern of MCH-immunoreactive (MCH-ir) fibres with MCH receptor Mchr1 mRNA hybridization or MCHR1-ir cells. This overlap was most prominent along the ventral and lateral border of the rostral part of the LS (LSr). Most MCHR1-labelled LS neurons lay adjacent to passing MCH-ir fibres, but some MCH-ir varicosities directly contacted the soma or cilium of MCHR1-labelled LS neurons. We thus performed whole-cell patch-clamp recordings from MCHR1-rich LSr regions to determine if and how LS cells respond to MCH. Bath application of MCH to acute brain slices activated a bicuculline-sensitive chloride current that directly hyperpolarized LS cells. This MCH-mediated hyperpolarization was blocked by calphostin C, which suggested that the inhibitory actions of MCH were mediated by protein kinase C-dependent activation of GABAA receptors. Taken together, these findings define potential hotspots within the LS that may elucidate the contributions of MCH to stress- or anxiety-related feeding behaviours. KEY POINTS: Melanin-concentrating hormone (MCH) neurons have dense nerve terminals within the lateral septum (LS), a key region underlying stress- and anxiety-like behaviours that are emerging roles of the MCH system, but the function of MCH in the LS is not known. We found spatial overlap between MCH-immunoreactive fibres, Mchr1 mRNA, and MCHR1 protein expression along the lateral border of the LS. Within MCHR1-rich regions, MCH directly inhibited LS cells by increasing chloride conductance via GABAA receptor activation in a protein kinase C-dependent manner. Electrophysiological MCH effects in brain slices have been elusive, and few studies have described the mechanisms of MCH action. Our findings demonstrated, to our knowledge, the first description of MCHR1 Gq-coupling in brain slices, which was previously predicted in cell or primary culture models only. Together, these findings defined hotspots and mechanistic underpinnings for MCH effects such as in feeding and anxiety-related behaviours.


Assuntos
Hormônios Hipotalâmicos , Melaninas , Neurônios , Hormônios Hipofisários , Receptores de Somatostatina , Núcleos Septais , Animais , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Masculino , Feminino , Camundongos , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia , Receptores de Somatostatina/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos Endogâmicos C57BL
5.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38575343

RESUMO

Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.


Assuntos
Comportamento Exploratório , Hormônios Hipotalâmicos , Locus Cerúleo , Melaninas , Neurônios , Hormônios Hipofisários , Animais , Locus Cerúleo/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/fisiologia , Melaninas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipofisários/metabolismo , Masculino , Feminino , Camundongos , Neurônios/fisiologia , Neurônios/metabolismo , Comportamento Exploratório/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Somatostatina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia
6.
Parasit Vectors ; 17(1): 192, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654385

RESUMO

BACKGROUND: Infection with Angiostrongylus cantonensis (AC) in humans or mice can lead to severe eosinophilic meningitis or encephalitis, resulting in various neurological impairments. Developing effective neuroprotective drugs to improve the quality of life in affected individuals is critical. METHODS: We conducted a Gene Ontology enrichment analysis on microarray gene expression (GSE159486) in the brains of AC-infected mice. The expression levels of melanin-concentrating hormone (MCH) were confirmed through real-time quantitative PCR (RT-qPCR) and immunofluorescence. Metabolic parameters were assessed using indirect calorimetry, and mice's energy metabolism was evaluated via pathological hematoxylin and eosin (H&E) staining, serum biochemical assays, and immunohistochemistry. Behavioral tests assessed cognitive and motor functions. Western blotting was used to measure the expression of synapse-related proteins. Mice were supplemented with MCH via nasal administration. RESULTS: Postinfection, a marked decrease in Pmch expression and the encoded MCH was observed. Infected mice exhibited significant weight loss, extensive consumption of sugar and white fat tissue, reduced movement distance, and decreased speed, compared with the control group. Notably, nasal administration of MCH countered the energy imbalance and dyskinesia caused by AC infection, enhancing survival rates. MCH treatment also increased the expression level of postsynaptic density protein 95 (PSD95) and microtubule-associated protein-2 (MAP2), as well as upregulated transcription level of B cell leukemia/lymphoma 2 (Bcl2) in the cortex. CONCLUSIONS: Our findings suggest that MCH improves dyskinesia by reducing loss of synaptic proteins, indicating its potential as a therapeutic agent for AC infection.


Assuntos
Angiostrongylus cantonensis , Metabolismo Energético , Hormônios Hipotalâmicos , Melaninas , Hormônios Hipofisários , Infecções por Strongylida , Animais , Feminino , Masculino , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/parasitologia , Encéfalo/patologia , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Melaninas/metabolismo , Melaninas/farmacologia , Hormônios Hipofisários/metabolismo , Hormônios Hipofisários/farmacologia , Infecções por Strongylida/patologia
7.
Biochem Biophys Res Commun ; 710: 149917, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604071

RESUMO

Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a G protein-coupled receptor, is poised for interaction with its ligands on the plasma membrane. Analyses of MCHR1 knockout mice suggest that this receptor could be a therapeutic target for the treatment of appetite disorders, glucose metabolism, psychiatric disorders, and inflammation. Binding of MCH to MCHR1 initiates calcium signaling, which is subsequently attenuated through receptor internalization. However, the ultimate destiny of the receptor post-internalization remains unexplored. In this study, we report the extracellular secretion of MCHR1 via exosomes. The recruitment of MCHR1 to exosomes occurs subsequent to its internalization, which is induced by stimulation with the ligand MCH. Although a highly glycosylated form of MCHR1, potentially representing a mature form, is selectively recruited to exosomes, the MCHR1 transferred into other cells does not exhibit functionality. The truncation of MCHR1 at the C-terminus not only impairs its response to MCH but also hinders its recruitment to exosomes. These findings imply that functional MCHR1 could be secreted extracellularly via exosomes, a process that may represent a mechanism for the termination of intracellular MCHR1 signaling.


Assuntos
Exossomos , Hormônios Hipotalâmicos , Receptores do Hormônio Hipofisário , Humanos , Camundongos , Animais , Exossomos/metabolismo , Receptores do Hormônio Hipofisário/metabolismo , Transdução de Sinais , Camundongos Knockout , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Melaninas/metabolismo
8.
Biol Sex Differ ; 15(1): 33, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570844

RESUMO

Recent preclinical research exploring how neuropeptide transmitter systems regulate motivated behavior reveal the increasing importance of sex as a critical biological variable. Neuropeptide systems and their central circuits both contribute to sex differences in a range of motivated behaviors and regulate sex-specific behaviors. In this short review, we explore the current research of how sex as a biological variable influences several distinct motivated behaviors that are modulated by the melanin-concentrating hormone (MCH) neuropeptide system. First, we review how MCH regulates feeding behavior within the context of energy homeostasis differently between male and female rodents. Then, we focus on MCH's role in lactation as a sex-specific process within the context of energy homeostasis. Next, we discuss the sex-specific effects of MCH on maternal behavior. Finally, we summarize the role of MCH in drug-motivated behaviors. While these topics are traditionally investigated from different scientific perspectives, in this short review we discuss how these behaviors share commonalities within the larger context of motivated behaviors, and that sex differences discovered in one area of research may impact our understanding in another. Overall, our review highlights the need for further research into how sex differences in energy regulation associated with reproduction and parental care contribute to regulating motivated behaviors.


Assuntos
Hormônios Hipotalâmicos , Melaninas , Neuropeptídeos , Feminino , Masculino , Animais , Caracteres Sexuais , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipotalâmicos/fisiologia , Hormônios Hipofisários/farmacologia , Hormônios Hipofisários/fisiologia
9.
Neuroendocrinology ; 114(7): 605-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547853

RESUMO

INTRODUCTION: Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS: This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress. RESULTS: Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and Western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION: This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.


Assuntos
Diarreia , Modelos Animais de Doenças , Núcleo Dorsal da Rafe , Hormônios Hipotalâmicos , Síndrome do Intestino Irritável , Melaninas , Hormônios Hipofisários , Animais , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Núcleo Dorsal da Rafe/metabolismo , Hormônios Hipofisários/metabolismo , Hormônios Hipotalâmicos/metabolismo , Camundongos , Diarreia/metabolismo , Diarreia/etiologia , Masculino , Melaninas/metabolismo , Camundongos Endogâmicos C57BL , Motilidade Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Serotonina/metabolismo , Emoções/fisiologia , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Ansiedade/etiologia , Ansiedade/fisiopatologia , Ansiedade/metabolismo , Depressão/etiologia , Depressão/metabolismo , Depressão/fisiopatologia , Comportamento Animal/fisiologia
10.
Sleep Med Rev ; 74: 101907, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422648

RESUMO

Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.


Assuntos
Tronco Encefálico , Sono REM , Humanos , Sono REM/fisiologia , Tronco Encefálico/fisiologia , Hipotálamo , Neurônios GABAérgicos/fisiologia , Tonsila do Cerebelo
11.
Peptides ; 172: 171128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070684

RESUMO

It has been revealed that hypothalamic neurons containing the peptide, melanin-concentrating hormone (MCH) can influence learning [1] and memory formation [2], but the cellular mechanisms by which they perform this function are not well understood. Here, we examine the role of MCH neural input to the hippocampus, and show in vitro that optogenetically increasing MCH axon activity facilitates hippocampal plasticity by lowering the threshold for synaptic potentiation. These results align with increasing evidence that MCH neurons play a regulatory role in learning, and reveal that this could be achieved by modulating plasticity thresholds in the hippocampus.


Assuntos
Hormônios Hipotalâmicos , Hormônios Hipotalâmicos/metabolismo , Hipocampo/metabolismo , Hormônios Hipofisários , Neurônios/metabolismo , Melaninas
12.
Int J Neuropsychopharmacol ; 27(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135278

RESUMO

BACKGROUND: Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that projects throughout the central nervous system, including the noradrenergic locus coeruleus (LC). Our previous study suggested that MCH/MCH receptor 1 (MCHR1) in the LC may be involved in the regulation of depression. The present study investigated whether the role of MCH/MCHR1 in the LC in depression-like behaviors is associated with the regulation of norepinephrine. METHOD: Chronic unpredictable stress (CUS) and an acute intra-LC microinjection of MCH induced depression-like behaviors in rats. The MCHR1 antagonist SNAP-94847 was also microinjected in the LC in rats that were suffering CUS or treated with MCH. The sucrose preference, forced swim, and locomotor tests were used for behavioral evaluation. Immunofluorescence staining, enzyme-linked immunosorbent assay, western blot, and high-performance liquid chromatography with electrochemical detection were used to explore the mechanism of MCH/MCHR1 in the regulation of depression-like behaviors. RESULTS: CUS induced an abnormal elevation of MCH levels and downregulated MCHR1 in the LC, which was highly correlated with the formation of depression-like behaviors. SNAP-94847 exerted antidepressant effects in CUS-exposed rats by normalizing tyrosine hydroxylase, dopamine ß hydroxylase, and norepinephrine in the LC. An acute microinjection of MCH induced depression-like behaviors through its action on MCHR1. MCHR1 antagonism in the LC significantly reversed the MCH-induced downregulation of norepinephrine production by normalizing MCHR1-medicated cAMP-PKA signaling. CONCLUSIONS: Our study confirmed that the MCH/MCHR1 system in the LC may be involved in depression-like behaviors by downregulating norepinephrine production. These results improve our understanding of the pathogenesis of depression that is related to the MCH/MCHR1 system in the LC.


Assuntos
Hormônios Hipotalâmicos , Locus Cerúleo , Ratos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Norepinefrina , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipofisários/farmacologia , Melaninas/farmacologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-37369782

RESUMO

RATIONALE: In a social context, individuals are able to detect external information from others and coordinate behavioral responses according to the situation, a phenomenon called social decision-making. Social decision-making is multifaceted, influenced by emotional and motivational factors like stress, sickness, and hunger. However, the neurobiological basis for motivational state competition and interaction is not well known. OBJECTIVE: We investigated possible neural mechanisms through which internal states could shape social behavior in a social affective preference (SAP) test. In the SAP test, experimental rats given a choice to interact with naïve or stressed conspecifics exhibit an age-dependent preference to interact with stressed juvenile conspecifics, but avoid stressed adult conspecifics. First, we assessed the effect of food and water deprivation on SAP behavior. Behavior in the SAP test requires the insular cortex, which receives input from the ingestion-related peptides melanin-concentrating hormone (MCH) and orexin neurons of the lateral hypothalamus (LH). This study aimed to evaluate the role of LH and insular MCH and orexin in SAP test. METHODS: SAP tests were conducted in rats that were sated, food and water deprived or allowed 1 h of access to food and water after 14 h of deprivation (relieved condition). Separate cohorts of sated rats received cannula implants for microinjection of drugs to inhibit the LH or to block or stimulate MCH or orexin receptors in the insula prior to SAP tests or social interaction tests. RESULTS: Food and water deprivation prior to SAP tests with juvenile rats caused a shift in preference away from the stressed rat toward the naïve juveniles. Pharmacological inhibition of LH with muscimol (100 ng/side) abolished the preference for the juvenile-stressed conspecific, as well as the preference for the adult naïve conspecific. The blockade of MCH receptor 1or orexin receptors in the insular cortex with SNAP94847 (50 µM) or TCS1102 (1 µM), respectively, also abolished the preference for the stressed juvenile conspecific, but only the antagonism of orexin receptors was able to abolish the preference for the adult naïve conspecific. Microinjection of increasing doses (50 or 500 nM) of MCH or orexin-A in the insular cortex increased the interaction time in the one-on-one social interaction test with juvenile conspecifics; however, only the microinjection of orexin-A increased the interaction time with adult naïve conspecifics. CONCLUSIONS: Taken together, these results suggest that lateral hypothalamus peptides shape the direction of social approach or avoidance via actions MCH and orexin neurotransmission in the insular cortex.

14.
Front Neuroendocrinol ; 70: 101069, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149229

RESUMO

Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.


Assuntos
Hormônios Hipotalâmicos , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipotalâmicos/farmacologia , Hormônios Hipofisários/farmacologia , Hormônios Hipofisários/fisiologia , Neurônios/metabolismo , Melaninas/farmacologia , Melaninas/fisiologia , Hipotálamo/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/fisiologia , Neurotransmissores , Ácido gama-Aminobutírico
15.
Neuroscience ; 522: 1-10, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121379

RESUMO

Human heroin addicts and mice administered morphine for a 2 week period show a greatly increased number of hypothalamic hypocretin (Hcrt or orexin) producing neurons with a concomitant reduction in Hcrt cell size. Male rats addicted to cocaine similarly show an increased number of detectable Hcrt neurons. These findings led us to hypothesize that humans with alcohol use disorder (AUD) would show similar changes. We now report that humans with AUD have a decreased number and size of detectable Hcrt neurons. In addition, the intermingled melanin concentrating hormone (MCH) neurons are reduced in size. We saw no change in the size and number of tuberomammillary histamine neurons in AUD. Within the Hcrt/MCH neuronal field we found that microglia cell size was increased in AUD brains. In contrast, male rats with 2 week alcohol exposure, sufficient to elicit withdrawal symptoms, show no change in the number or size of Hcrt, MCH and histamine neurons, and no change in the size of microglia. The present study indicates major differences between the response of Hcrt neurons to opioids and that to alcohol in human subjects with a history of substance abuse.


Assuntos
Hormônios Hipotalâmicos , Neuropeptídeos , Humanos , Masculino , Ratos , Camundongos , Animais , Orexinas/metabolismo , Neuropeptídeos/metabolismo , Histamina , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas , Neurônios/metabolismo , Etanol
16.
Methods Cell Biol ; 175: 69-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967146

RESUMO

The primary cilium is a structural organelle present in most mammalian cells. Primary cilia are enriched with a unique protein repertoire distinct from that of the cytosol and the plasma membrane. Such a highly organized microenvironment creates effective machinery for translating extracellular cues into intracellular signals. G protein-coupled receptors (GPCRs) are key receptors in sensing environmental stimuli transmitted via a second messenger into a cellular response. Recent data has demonstrated that a limited number of non-olfactory GPCRs, including melanin-concentrating hormone receptor 1 (MCHR1), are preferentially localized to ciliary membranes of several mammalian cell types, including neuronal cells. Evidence was accumulated to support the functional importance of ciliary-GPCR signaling accompanying ciliary structural changes using cilia-specific cell and molecular biology techniques. Thus, cilia are now considered to function as a unique sensory platform for the integration of GPCR signaling and various cytoplasmic domains. Dissociated neurons expressing ciliary-GPCRs can be a useful tool for examining ciliary dynamics. However, losing preexisting neuronal connectivity may alter neuronal ciliary morphology, such as abnormal elongation. Brain slices prepared under ex vitro conditions are a powerful approach that maintains the cytoarchitecture, enabling researchers to have accurate control over experimental conditions and to study individual cells from subregions of the brain. Here, we present a detailed description of our novel modified method for organotypic culture of rat brain slice and a validated immunostaining protocol to characterize ciliary-GPCR dynamics in coupling with neuropeptides or aminergic activation.


Assuntos
Encéfalo , Receptores Acoplados a Proteínas G , Ratos , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Encéfalo/metabolismo , Cílios/metabolismo , Mamíferos/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-36565982

RESUMO

Interest in the role of melanin-concentrating hormone (MCH) in memory processes has increased in recent years, with some studies reporting memory-enhancing effects, while others report deleterious effects. Due to these discrepancies, this study seeks to provide new evidence about the role of MCH in memory consolidation and its relation with BDNF/TrkB system. To this end, in the first experiment, increased doses of MCH were acutely administered in both hippocampi to groups of male rats (25, 50, 200, and 500 ng). Microinjections were carried out immediately after finishing the sample trial of two hippocampal-dependent behavioral tasks: the Novel Object Recognition Test (NORT) and the modified Elevated Plus Maze (mEPM) test. Results indicated that a dose of 200 ng of MCH or higher impaired memory consolidation in both tasks. A second experiment was performed in which a dose of 200 ng of MCH was administered alone or co-administered with the MCHR-1 antagonist ATC-0175 at the end of the sample trial in the NORT. Results showed that MCH impaired memory consolidation, while the co-administration with ATC-0175 reverted this detrimental effect. Moreover, MCH induced a significant decrease in hippocampal MCHR-1 and TrkB expression with no modification in the expression of BDNF and NMDA receptor subunits NR1, NR2A, and NR2B. These results suggest that MCH in vivo elicits pro-amnesic effects in the rat hippocampus by decreasing the availability of its receptor and TrkB receptors, thus linking both endogenous systems to memory processes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Consolidação da Memória , Hormônios Hipofisários , Receptor trkB , Receptores de Somatomedina , Animais , Masculino , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Melaninas , Hormônios Hipofisários/metabolismo , Receptor trkB/metabolismo , Receptores de Somatomedina/metabolismo
19.
Front Neurosci ; 16: 952275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177357

RESUMO

Given the widespread prevalence of sleep disorders and their impacts on health, it is critical that researchers continue to identify and evaluate novel avenues of treatment. Recently the melanin-concentrating hormone (MCH) system has attracted commercial and scientific interest as a potential target of pharmacotherapy for sleep disorders. This interest emerges from basic scientific research demonstrating a role for MCH in regulating sleep, and particularly REM sleep. In addition to this role in sleep regulation, the MCH system and the MCH receptor 1 (MCHR1) have been implicated in a wide variety of other physiological functions and behaviors, including feeding/metabolism, reward, anxiety, depression, and learning. The basic research literature on sleep and the MCH system, and the history of MCH drug development, provide cause for both skepticism and cautious optimism about the prospects of MCH-targeting drugs in sleep disorders. Extensive efforts have focused on developing MCHR1 antagonists for use in obesity, however, few of these drugs have advanced to clinical trials, and none have gained regulatory approval. Additional basic research will be needed to fully characterize the MCH system's role in sleep regulation, for example, to fully differentiate between MCH-neuron and peptide/receptor-mediated functions. Additionally, a number of issues relating to drug design will continue to pose a practical challenge for novel pharmacotherapies targeting the MCH system.

20.
Horm Behav ; 146: 105257, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115135

RESUMO

Intracerebroventricular (ICV) administration of estradiol benzoate (E2B) and progesterone (P) induces intense lordosis behavior in ovariectomized rats primed peripherally with E2B. The present study tested the hypothesis that the Kisspeptin (Kiss) and melanin-concentrating hormone (MCH) pathways regulate female sexual behavior induced by these steroid hormones. In Experiment 1, we tested the relevance of the Kiss pathway by ICV infusion of its inhibitor, kiss-234, before administration of E2B or P in estrogen-primed rats. Lordosis induced by E2B alone or with the addition of P was reduced significantly at 30, 120, and 240 min. In Experiment 2, ICV infusion of MCH 30 min before E2B or P significantly reduced lordosis in rats primed with E2B alone. These data support the hypothesis that the Kiss and MCH pathways, which can release or modulate gonadotropin-releasing hormone (GnRH), are involved in E2B- and P-induced lordosis.


Assuntos
Lordose , Progesterona , Animais , Feminino , Ratos , Estradiol/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Kisspeptinas/farmacologia , Lordose/induzido quimicamente , Ovariectomia , Progesterona/farmacologia , Comportamento Sexual Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...