Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Waste Manag Res ; : 734242X241227369, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318839

RESUMO

The use of the polypropylene (PP) recyclates in certain processing methods and applications is still limited by their quality. The high melt flow rate (MFR) and the inconsistent properties of recyclates are common obstacles to their use. Therefore, this work aims to identify possible reasons for the low and inconsistent quality of PP recyclates depending on the source material in PP waste bales. The levels of polymeric and non-polymeric contaminants were assessed. As mixing of different PP grades is an issue for the MFR, the proportions of the different processing grades were also investigated and the potential of sorting by processing method to produce lower MFR recyclates was assessed. The analysis showed that the waste bales, although pre-sorted, still contained high amounts of contaminants. Injection moulding was found to be the predominant processing method in the bales, explaining the high MFR of PP recyclates. However, a sufficiently high amount of low MFR products was found in the bales, which seems promising for the production of low MFR recyclates. Seasonal variations in the composition of the waste bales were identified as one of the reasons for the inconsistent qualities of recyclates. These results highlight the importance of proper sorting and treatment of PP waste bales prior to reprocessing in order to obtain high-quality recycled products.

2.
Materials (Basel) ; 14(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576570

RESUMO

To assess the impact of graphite fillers on the thermal processing of graphite/poly(lactic acid) (PLA) composites, a series of the composite samples with different graphite of industrial grade as fillers was prepared by melt mixing. The average size of the graphite grains ranged between 100 µm and 6 µm. For comparative purposes, one of the carbon fillers was expandable graphite. Composites were examined by SEM, FTIR, and Raman spectroscopy. As revealed by thermogravimetric (TG) analyses, graphite filler slightly lowered the temperature of thermal decomposition of the PLA matrix. Differential scanning calorimetry (DSC) tests showed that the room temperature crystallinity of the polymer matrix is strongly affected by the graphite filler. The crystallinity of the composites determined from the second heating cycle reached values close to 50%, while these values are close to zero for the neat polymer. The addition of graphite to PLA caused a slight reduction in the oxidation induction time (OIT). The melt flow rate (MFR) of the graphite/PLA composites was lower than the original PLA due to an increase in flow resistance associated with the high crystallinity of the polymer matrix. Expandable graphite did not cause changes in the structure of the polymer matrix during thermal treatment. The crystallinity of the composite with this filler did not increase after first heating and was close to the neat PLA MFR value, which was extremely high due to the low crystallinity of the PLA matrix and delamination of the filler at elevated temperature.

3.
Materials (Basel) ; 12(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546895

RESUMO

Among the composite manufacturing methods, injection molding has higher time efficiency and improved processability. The production of composites via injection molding requires a pre-process to mix and pelletize the matrix polymer and reinforcement material. Herein, we studied the effect of extrusion process conditions for making pellets on the mechanical and thermal properties provided by injection molding. Polyamide 6 (PA6) was used as the base, and composites were produced by blending carbon fibers and Al2O3 as the filler. To determine the optimum blending ratio, the mechanical properties, thermal conductivity, and melt flow index (MI) were measured at various blending ratios. With this optimum blending ratio, pellets were produced by changing the temperature and RPM conditions, which are major process variables during compounding. Samples were fabricated by applying the same injection conditions, and the mechanical strength, MI values, and thermal properties were measured. The mechanical strength increased slightly as the temperature and RPM increased, and the MI and thermal conductivity also increased. The results of this study can be used as a basis for specifying the conditions of the mixing and compounding process such that the desired mechanical and thermal properties are obtained.

4.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-759668

RESUMO

The purpose of this study is to evaluate the flow ability of the thermoplasticized Gutta Percha in different temperatures. Four Gutta Percha products were classified by its hardness (soft, medium, and hard) and were experimented by the Rheometer (Melt flow indexer MFI-10, DAVENPORT, England) measuring apparatus, in (23 ± 2) ℃, and in a relative humidity of (50 ± 5) %, following the guidelines of ISO 1133-1:2011. The heating temperature ranged from 108℃, 160℃ to 200℃, and the load at 2.16 kg and 3.8 kg. The Gutta Percha was cut in 5 mm to be suitable for the rheometer pressurization process. After the experiment was conducted with a preheating time of 5 minutes, a cutting time of 5–240 seconds, and a sample of 10 grams, the Gutta Percha did not show any changes in fluidity for 108℃, 160℃, but showed a change in its flow ability in 200℃. Also, the Gutta Percha did not show any changes in its fluidity when it was pressurized by 2.16 and 3.8 kilograms. Therefore, this experiment shows that the heating temperature and the cut-off time showed a significance while measuring the melt flow rate.


Assuntos
Guta-Percha , Dureza , Calefação , Temperatura Alta , Umidade
5.
Springerplus ; 5(1): 1680, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27733982

RESUMO

A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.

6.
Polymers (Basel) ; 8(12)2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30974714

RESUMO

Two novel cycloalkoxy silane compounds (ED1 and ED2) were synthesized and used as the external electron donors (EEDs) in Ziegler⁻Natta catalysts with diethyl 2,3-diisopropylsuccinate as internal electron donor. The results indicated that the Ziegler⁻Natta catalysts using ED1 and ED2 as EEDs had high catalytic activities and good stereoselectivities. The melt flow rate (MFR) and gel permeation chromatography (GPC) results revealed that the obtained polypropylene has higher MFR and lower average molecular weights than the commercial EED cyclohexyl methyl dimethoxysilane. The differential scanning calorimetry (DSC) results indicated that new isospecific active centers formed after the introduction of new external donors. The work implied that the novel EEDs could improve the hydrogen sensitivities of the catalyst system and obtain polymers with high melt flow rate.

7.
J Res Natl Bur Stand A Phys Chem ; 76A(2): 145-146, 1972.
Artigo em Inglês | MEDLINE | ID: mdl-34565850

RESUMO

The melt flow rate of SRM 1475 was determined to be 2.07 g/10 min at 190 °C under a load of 325 g by a method similar to procedure A of ASTM method D 1238-65T. This value is the average of determinations on 42 samples with a standard deviation of a single measurement of 0.040 g/10 min, and a range of 1.991 g/10 min to 2.132 g/10 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...