RESUMO
Cells are constantly adapting to maintain their identity in response to the surrounding media's temporal and spatial heterogeneity. The plasma membrane, which participates in the transduction of external signals, plays a crucial role in this adaptation. Studies suggest that nano and micrometer areas with different fluidities at the plasma membrane change their distribution in response to external mechanical signals. However, investigations linking fluidity domains with mechanical stimuli, specifically matrix stiffness, are still in progress. This report tests the hypothesis that the stiffness of the extracellular matrix can modify the equilibrium of areas with different order in the plasma membrane, resulting in changes in overall membrane fluidity distribution. We studied the effect of matrix stiffness on the distribution of membrane lipid domains in NIH-3 T3 cells immersed in matrices of varying concentrations of collagen type I, for 24 or 72 h. The stiffness and viscoelastic properties of the collagen matrices were characterized by rheometry, fiber sizes were measured by Scanning Electron Microscopy (SEM) and the volume occupied by the fibers by second harmonic generation imaging (SHG). Membrane fluidity was measured using the fluorescent dye LAURDAN and spectral phasor analysis. The results demonstrate that an increase in collagen stiffness alters the distribution of membrane fluidity, leading to an increasing amount of the LAURDAN fraction with a high degree of packing. These findings suggest that changes in the equilibrium of fluidity domains could represent a versatile and refined component of the signal transduction mechanism for cells to respond to the highly heterogeneous matrix structural composition. Overall, this study sheds light on the importance of the plasma membrane's role in adapting to the extracellular matrix's mechanical cues.
Assuntos
Lauratos , Fluidez de Membrana , Membrana Celular/metabolismo , Lauratos/química , Colágeno/metabolismoRESUMO
Actinoporins have emerged as archetypal α-pore-forming toxins (PFTs) that promote the formation of pores in membranes upon oligomerization and insertion of an α-helix pore-forming domain in the bilayer. These proteins have been used as active components of immunotoxins, therefore, understanding their lytic mechanism is crucial for developing this and other applications. However, the mechanism of how the biophysical properties of the membrane modulate the properties of pores generated by actinoporins remains unclear. Here we studied the effect of membrane fluidity on the permeabilizing activity of sticholysin I (St I), a toxin that belongs to the actinoporins family of α-PFTs. To modulate membrane fluidity we used vesicles made of an equimolar mixture of phosphatidylcholine (PC) and egg sphingomyelin (eggSM), in which PC contained fatty acids of different acyl chain lengths and degrees of unsaturation. Our detailed single-vesicle analysis revealed that when membrane fluidity is high, most of the vesicles are partially permeabilized in a graded manner. In contrast, more rigid membranes can be either completely permeabilized or not, indicating an all-or-none mechanism. Altogether, our results reveal that St I pores can be heterogeneous in size and stability, and that these properties depend on the fluid state of the lipid bilayer. We propose that membrane fluidity at different regions of cellular membranes is a key factor to modulate the activity of the actinoporins, which has implications for the design of different therapeutic strategies based on their lytic action.
Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Fluidez de Membrana , Compostos Orgânicos/química , Bicamadas Lipídicas , Membrana Celular/metabolismo , Fosfatidilcolinas , Venenos de Cnidários/química , Anêmonas-do-Mar/químicaRESUMO
Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model of multiple sclerosis (MS). Oxidative stress and chronic inflammation play a major role in the pathogenesis of MS and EAE. Melatonin, a neurohormone, has potent anti-inflammatory properties. The aim of our study was to assess the therapeutic properties of melatonin alone or in combination with interferon ß-1b (IFNß-1b) or glatiramer acetate (GA) on EAE. EAE was induced in male Sprague-Dawley rats with an intraperitoneal injection of a homogenate of spinal cord and pig brain. At day 10 post immunization, rats were euthanized, and their brains were immediately excised and processed to measure oxidative stress markers and membrane fluidity. In addition, proinflammatory cytokines were quantified in plasma. Melatonin alone or in combination with GA and IFNß-1b inhibited the disease process of EAE and the synthesis of proinflammatory cytokines, caused a significant decrement in oxidative stress markers, and preserved the membrane fluidity in the motor cortex, midbrain, and spinal cord. The cumulative index score was significantly reduced in EAE rats treated with melatonin alone or in combination with GA and IFNß-1b. In conclusion, our findings provide preclinical evidence for the use of melatonin as an adjuvant therapeutic treatment for MS.
Assuntos
Encefalomielite Autoimune Experimental , Melatonina , Esclerose Múltipla , Animais , Biomarcadores , Citocinas , Encefalomielite Autoimune Experimental/patologia , Acetato de Glatiramer/farmacologia , Acetato de Glatiramer/uso terapêutico , Interferon beta-1b/uso terapêutico , Interferon beta , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , SuínosRESUMO
Membranes are essential to cellular organisms, and play several roles in cellular protection as well as in the control and transport of nutrients. One of the most critical membrane properties is fluidity, which has been extensively studied, using mainly single component systems. In this study, we used Fourier transform infrared spectroscopy to evaluate the thermal behavior of multi-component supported lipid bilayers that mimic the membrane composition of tumoral and non-tumoral cell membranes, as well as microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. The results showed that, for tumoral and non-tumoral membrane models, the presence of cholesterol induced a loss of cooperativity of the transition. However, in the absence of cholesterol, the transitions of the multi-component lipid systems had sigmoidal curves where the gel and fluid phases are evident and where main transition temperatures were possible to determine. Additionally, the possibility of designing multi-component lipid systems showed the potential to obtain several microorganism models, including changes in the cardiolipin content associated with the resistance mechanism in Staphylococcus aureus. Finally, the potential use of multi-component lipid systems in the determination of the conformational change of the antimicrobial peptide LL-37 was studied. The results showed that LL-37 underwent a conformational change when interacting with Staphylococcus aureus models, instead of with the erythrocyte membrane model. The results showed the versatile applications of multi-component lipid systems studied by Fourier transform infrared spectroscopy.
RESUMO
4-hydroxy-2-nonenal (HNE) is a reactive aldehyde produced by cells under conditions of oxidative stress, which has been shown to react with proteins and phosphatidylethanolamine in biological membranes. Using electron paramagnetic resonance (EPR) spectroscopy of a spin label it was demonstrated that 2 h of treatment with HNE causes membrane rigidity in promastigotes of Leishmania (L.) amazonensis, J774.A1 macrophages and erythrocytes. Remarkable fluidity-reducing effects on the parasite membrane were observed at HNE concentrations approximately 4-fold lower than in the case of erythrocyte and macrophage membranes. Autofluorescence of the parasites in PBS suspension (1 × 107 cell/mL) with excitation at 354 nm showed a linear increase of intensity in the range of 400 to 600 nm over 3 h after treatment with 30 µM HNE. Parasite ghosts prepared after this period of HNE treatment showed a high degree of membrane rigidity. Bovine serum albumin (BSA) in PBS treated with HNE for 2 h showed an increase in molecular dynamics and suffered a decrease in its ability to bind a lipid probe. In addition, the antiproliferative activity of L. amazonensis promastigotes, macrophage cytotoxicity and hemolytic potential were assessed for HNE. An IC50 of 24 µM was found, which was a concentration > 10 times lower than the cytotoxic and hemolytic concentrations of HNE. These results indicate that the action of HNE has high selectivity indices for the parasite as opposed to the macrophage and erythrocyte.
Assuntos
Aldeídos/farmacologia , Eritrócitos/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Aldeídos/toxicidade , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Soroalbumina Bovina/efeitos dos fármacosRESUMO
Voltage-gated proton channels (HV 1) have been found in many mammalian cells and play a crucial role in the immune system, male fertility, and cancer progression. Glycosaminoglycans play a significant role in various aspects of cell physiology, including the modulation of membrane receptors and ion channel function. We present here evidence that mechanosensitivity of the dimeric HV 1 channel transduce changes on cell membrane fluidity related to the defective biosynthesis of chondroitin sulfate and heparan sulfate in Chinese Hamster Ovary (CHO-745) cells into a leftward shift in the activation voltage dependence. This effect was accompanied by an increase in the H+ current, and an acceleration of the activation kinetics, under symmetrical or asymmetrical pH gradient (ΔpH) conditions. Similar gating alterations were evoked by two naturally occurring HV 1 N-terminal truncated isoforms expressed in wild-type CHO-K1 and CHO-745 cells. On three different monomeric HV 1 constructs, no alterations in the biophysical parameters were observed. Moreover, we have shown that HV 1 gating can be modulated by manipulating CHO-K1 cell membrane fluidity. Our results suggest that the defective biosynthesis of chondroitin sulfate and heparan sulfate on CHO-745 cell increases membrane fluidity and allosterically modulates the coupling between voltage- and ΔpH-sensing through the dimeric HV 1 channel.
Assuntos
Ativação do Canal Iônico , Prótons , Animais , Células CHO , Sulfatos de Condroitina , Cricetinae , Cricetulus , Glicosaminoglicanos , Heparitina Sulfato , Humanos , Ativação do Canal Iônico/fisiologia , MasculinoRESUMO
Sticholysin I (StI) is a pore-forming toxin (PFT) belonging to the actinoporin protein family characterized by high permeabilizing activity in membranes. StI readily associates with sphingomyelin (SM)-containing membranes originating pores that can lead to cell death. Binding and pore-formation are critically dependent on the physicochemical properties of membrane. 1-palmitoyl-2-oleoylphosphatidylcholine hydroperoxide (POPC-OOH) is an oxidized phospholipid (OxPL) containing an -OOH moiety in the unsaturated hydrocarbon chain which orientates towards the bilayer interface. This orientation causes an increase in the lipid molecular area, lateral expansion and decrease in bilayer thickness, elastic and bending modulus, as well as modification of lipid packing. Taking advantage of membrane structural changes promoted by POPC-OOH, we investigated its influence on the permeabilizing ability of StI. Here we report the action of StI on Giant Unilamellar Vesicles (GUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and SM containing increasing amount of POPC-OOH to assess vesicle permeability changes when compared to OxPL-lacking membranes. Inclusion of POPC-OOH in membranes did not promote spontaneous vesicle leaking but resulted in increased membrane permeability due to StI action. StI activity did not modify the fluid-gel phase coexistence boundaries neither in POPC:SM or POPC-OOH:SM membranes. However, the StI insertion mechanism in membrane seems to differ between POPC:SM and POPC-OOH:SM mixtures as suggested by changes in the time course of monolayer surface tension measurements, even though a preferable binding of the toxin to OxPL-containing systems could not be here demonstrated. In summary, modifications in the membrane imposed by lipid hydroperoxidation favor StI permeabilizing activity.
Assuntos
Peróxido de Hidrogênio , Fosfolipídeos , Bicamadas Lipídicas , Compostos Orgânicos , Esfingomielinas , Lipossomas UnilamelaresRESUMO
The lipid matrix in cell membranes is a dynamic, bidimensional array of amphipathic molecules exhibiting mesomorphism, which contributes to the membrane fluidity changes in response to temperature fluctuation. As sessile organisms, plants must rapidly and accurately respond to environmental thermal variations. However, mechanisms underlying temperature perception in plants are poorly understood. We studied the thermal plasticity of membrane fluidity using three fluorescent probes across a temperature range of -5 to 41 °C in isolated microsomal fraction (MF), vacuolar membrane (VM), and plasma membrane (PM) vesicles from Arabidopsis plants. Results showed that PM were highly fluid and exhibited more phase transitions and hysteresis, while VM and MF lacked such attributes. These findings suggest that PM is an important cell hub with the capacity to rapidly undergo fluidity modifications in response to small changes of temperatures in ranges spanning those experienced in natural habitats. PM fluidity behaves as an ideal temperature detector: it is always present, covers the whole cell, responds quickly and with sensitivity to temperature variations, functions with a cell free-energy cost, and it is physically connected with potential thermal signal transducers to elicit a cell response. It is an optimal alternative for temperature detection selected for the plant kingdom.
Assuntos
Arabidopsis/fisiologia , Membrana Celular/fisiologia , Fluidez de Membrana/fisiologia , Arabidopsis/ultraestrutura , Membrana Celular/ultraestrutura , Corantes Fluorescentes/metabolismo , Temperatura , Vacúolos/metabolismo , Vacúolos/ultraestruturaRESUMO
Two ß-carboline compounds, 8i and 6d, demonstrated in vitro antileishmanial activity against Leishmania (L.) amazonensis promastigotes similar to that of miltefosine (MIL). Estimates of the membrane-water partition coefficient (KM/W) and the compound concentrations in the membrane (cm50) and aqueous phase (cw50) for half maximal inhibitory concentration were made. Whereas these biophysical parameters for 6d were not significantly different from those reported for MIL, 8i showed lower affinity for the parasite membrane (lower KM/W) and a lower concentration of the compound in the membrane required to inhibit the growth of the parasite (lower cm50). A 2-hour treatment of Leishmania promastigotes with the compounds 8i and 6d caused membrane rigidity in a concentration-dependent manner, as demonstrated by the electron paramagnetic resonance (EPR) technique and spin label method. This increased rigidity of the membrane was interpreted to be associated with the occurrence of cross-linking of oxidized cytoplasmic proteins to the parasite membrane skeleton. Importantly, the two ß-carboline-oxazoline derivatives showed low hemolytic action, both in experiments with isolated red blood cells or with whole blood, denoting their great Leishmania/erythrocyte selectivity index. Using electron microscopy, changes in the membrane of both the amastigote and promastigote form of the parasite were confirmed, and it was demonstrated that compounds 8i and 6d decreased the number of amastigotes in infected murine macrophages. Furthermore, 8i and 6d were more toxic to the protozoa than to J774A.1 macrophages, with treated promastigotes exhibiting a decrease in cell volume, mitochondrial membrane potential depolarization, accumulation of lipid bodies, increased ROS production and changes in the cell cycle.
Assuntos
Antiprotozoários/farmacologia , Carbolinas/farmacologia , Membrana Celular/metabolismo , Leishmania/metabolismo , Animais , Antiprotozoários/química , Carbolinas/química , Humanos , Camundongos , Proteínas de Protozoários/metabolismoRESUMO
BACKGROUND: The region of La Cienega in Jalisco Mexico, is an important agricultural reference for the production of corn, sorghum and wheat, among other grains, so the use of pesticides for pest control is high. However, in this rural area there are no toxicological studies that assess the occupational risk of pesticide use. Therefore, this study is the first to determine the oxidative stress levels markers (GSH, GSSG, carbonyl groups, nitric oxide metabolites and lipid peroxides) as well as alteration of the mitochondrial membrane fluidity caused by occupational exposure to organophosphorus and carbamates in farmers of this region. This occupational risk can increase cellular oxidation, which explains the high prevalence of neurodegenerative diseases and cancer in Cienega settlers to be analyzed in future studies. METHODS: Comparative cross-sectional study was performed using two groups: one not exposed group (n = 93) and another one with occupational exposure (n = 113). The latter group was sub-divided into 4 groups based on duration of use/exposure to pesticides. Oxidative stress levels and membrane fluidity were assessed using spectrophotometric methods. Statistical analyses were performed using SPSS software ver. 19.0 for windows. RESULTS: The most commonly used pesticides were organophosphorus, carbamates, herbicide-type glyphosate and paraquat, with an average occupational exposure time of 35.3 years. There were statistically significant differences in markers of oxidative stress between exposed farmers and not exposed group (p = 0.000). However, in most cases, no significant differences were found in markers of oxidative stress among the 4 exposure sub-groups (p > 0.05). CONCLUSION: In the Cienega region, despite the indiscriminate use of organophosphorus and carbamates, there are no previous studies of levels oxidative stress. The results show increased levels of oxidative stress in occupationally exposed farmers, particularly membrane fluidity levels increased three times in contrast to not exposed group.
RESUMO
The omega 3 fatty acids (ω3FA) have been recommended for the treatment of Type 2 Diabetes Mellitus (T2DM) and its complications, but there are studies questioning those beneficial effects. In this research, we supplemented the short-chain ω3FA, alpha-linolenic acid (ALA), to a model of rats with T2DM and normoglycemic controls, for 5 months. We were mainly interested in studying the effects of diabetes and ALA on the physicochemical properties of mitochondrial membranes and the consequences on mitochondrial respiration. We found that the Respiratory Control (RC) of diabetic rats was 46% lower than in control rats; in diabetic rats with ALA supplement, it was only 23.9% lower, but in control rats with ALA supplement, the RC was 29.5% higher, apparently improving. Diabetes also decreased the membrane fluidity, changed the thermotropic characteristics of membranes, and increased the proportion of saturated fatty acids. ALA supplement partially kept regulated the physicochemical properties of mitochondrial membranes in induced rats. Our data indicate that diabetes decreased the membrane fluidity through changes in the fatty acids composition that simultaneously affected the RC, which means that the mitochondrial respiration is highly dependent on the physicochemical properties of the membranes. Simultaneously, it was followed the effects of ALA on the progress of diabetes and we found also that the supplementation of ALA helped in controlling glycaemia in rats induced to T2DM; however, in control non-induced rats, the supplementation of ALA derived in characteristics of initial development of diabetes.
Assuntos
Diabetes Mellitus Experimental/complicações , Mitocôndrias Hepáticas/metabolismo , Ácido alfa-Linolênico/metabolismo , Animais , Feminino , Masculino , Ratos , Ratos WistarRESUMO
A novel chalcone derivative, LQFM064, demonstrated antileishmanial activity against Leishmania (L.) amazonensis, with an IC50 value of ~10 µM for the promastigote form. Electron paramagnetic resonance (EPR) spectroscopy of a spin-labeled stearic acid incorporated in the plasma membrane of L. amazonensis promastigotes revealed that after 2 h of treatment with LQFM064, the parasite showed remarkable reductions in membrane fluidity. The features of the altered EPR spectra were similar to those reported for the erythrocyte membrane, which was suggested to be due to the cross-linking of oxidized hemoglobin with the cytoskeleton spectrin. In comparison to miltefosine (MIL), LQFM064 demonstrated a much lower hemolytic potential against both erythrocytes in PBS and whole blood, less cytotoxicity in J774.A1 macrophages and equivalent ability to kill parasites internalized in J774.A1 macrophages. Measurements of the IC50 values for assays with different cell concentrations enabled the estimation of the membrane-water partition coefficient (KM/W), as well as the concentrations of LQFM064 in membrane (cm50) and aqueous phase (cw50) that reduces the cell population by 50%. From the KM/W and cm50 values it was deduced that LQFM064 has a greater affinity than MIL for the parasite membrane, but the antiproliferative activity of both substances is exerted at a similar concentration in the plasma membrane.
Assuntos
Antiprotozoários , Chalcona , Chalconas , Parasitos , Animais , Antiprotozoários/farmacologia , Chalconas/farmacologia , Espectroscopia de Ressonância de Spin EletrônicaRESUMO
High intake of omega-3 fatty acids has been associated with synaptic plasticity, neurogenesis and memory in several experimental models. To assess the efficacy of fish oil supplementation on oxidative stress markers in patients diagnosed with probable Alzheimer´s disease (AD) we conducted a double blind, randomized, placebo controlled clinical trial. AD patients who met the inclusive criteria were given fish oil (containing 0.45 g eicosapentaenoic acid and 1 g docosahexaenoic acid) or placebo daily for 12 months. Oxidative stress markers [lipoperoxides, nitric oxide catabolites levels, oxidized/reduced glutathione ratio, and membrane fluidity] and fatty acid profile in erythrocytes were assessed at enrollment, and 6 and 12 months after the start of the testing period. At the end of the trial, in patients who received fish oil, we detected a decrease in the omega 6/omega 3 ratio in erythrocyte membrane phospholipids. This change was parallel with decreases in plasma levels of lipoperoxides and nitric oxide catabolites. Conversely, the ratio of reduced to oxidized glutathione was significantly increased. In addition, membrane fluidity was increased significantly in plasma membrane samples. In conclusion fish oil administration has a beneficial effect in decreasing the levels of oxidative stress markers and improving the membrane fluidity in plasma(AU)
El alto consumo de ácidos grasos omega-3 se asocia con la plasticidad sináptica, neurogénesis y memoria en varios modelos experimentales. Para evaluar la eficacia de la suplementación con aceite de pescado en los marcadores de estrés oxidativo en pacientes con diagnóstico de la enfermedad de Alzheimer (EA) probable realizamos un ensayo clínico doble ciego, aleatorizado, controlado con placebo. A los pacientes con la EA que cumplían los criterios de inclusión se les administró aceite de pescado (que contenía 0,45 g de ácido eicosapentaenoico y 1 g de ácido docosahexaenoico) o placebo diariamente durante 12 meses. Los marcadores de estrés oxidativo plasmático [niveles de lipoperóxidos y catabolitos del óxido nítrico, cociente de glutatión reducido a glutatiónoxidado) y fluidez de la membrana] y el perfil de ácidos grasos en los eritrocitos se evaluaron al inicio, 6 meses y alos 12 meses. Al final del ensayo, en pacientes que recibieron aceite de pescado detectamos una disminución en el cociente de ácidos grasos omega 6/omega 3 en los fosfolípidos de la membrana eritrocitaria. Este cambio ocurrió en paralelo a la disminución de los niveles plasmáticos de lipoperóxidos y catabolitos del óxido nítrico. Por el contrario, el cociente de glutatión reducido a glutatión oxidado se incrementó significativamente. Además, la fluidez de la membrana aumentó significativamente en las muestras analizadas. En conclusión, la administración de aceite de pescado tiene un efecto beneficioso al disminuir los niveles de marcadores de estrés oxidativo plasmático y mejorar la fluidez de la membrana plasmática(AU)
Assuntos
Humanos , Masculino , Feminino , Óleos de Peixe , Ácidos Graxos Ômega-3 , Estresse Oxidativo , Doença de Alzheimer , Membrana Celular , Doença Crônica , NeurogêneseRESUMO
Using the electron paramagnetic resonance (EPR) of spin-labeled stearic acid and a spin label chemically attached to the membrane proteins, the interaction of miltefosine (MIL) and the ionic surfactants sodium dodecyl sulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) with the plasma membrane of Leishmania (L.) amazonensis promastigotes was studied. The spin-label EPR data indicated that the four compounds studied have the ability to increase the molecular dynamics of membrane proteins to a large extent. Compared to the other compounds, SDS produced the smallest increases in dynamics and demonstrated the lowest antileishmanial activity and cytotoxicity to J774.A1 macrophages. The activities of the other three compounds were not different from each other, but CTAC had a stronger activity against L. amazonensis promastigotes at higher cellular concentrations (> 1 × 109 cells/mL) and was the most effective against L. amazonensis-infected macrophages. However, CTAC was also the most cytotoxic to macrophages. By measuring the IC50/CC50 values for assays of different cell concentrations, we estimated the membrane-water partition coefficient (KM/W) as well as the concentrations in the membrane (cm50) and aqueous phase (cw50) of the compounds at their IC50/CC50. Compared to the other compounds, SDS showed the lowest value of KM/W and the highest value of cm50. In all experiments in this study, the data for the zwitterionic molecules HPS and MIL were not significantly different.
Assuntos
Antiprotozoários/farmacologia , Cetrimônio/farmacologia , Citotoxinas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia , Antiprotozoários/química , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cetrimônio/química , Citotoxinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Concentração Inibidora 50 , Leishmania braziliensis/crescimento & desenvolvimento , Leishmania braziliensis/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Simulação de Dinâmica Molecular , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Compostos de Amônio Quaternário/química , Dodecilsulfato de Sódio/química , Marcadores de Spin , Ácidos Esteáricos/química , Tensoativos/químicaRESUMO
Genetic and environmental factors may contribute to high blood pressure, which is termed essential hypertension. Hypertension is a major independent risk factor for cardiovascular disease, stroke and renal failure; thus, elucidation of the etiopathology of hypertension merits further research. We recently reported that the platelets and neutrophils of patients with hypertension exhibit altered biophysical characteristics. In the present study, we assessed whether the major structural elements of erythrocyte plasma membranes are altered in individuals with hypertension. We compared the phospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingosine) and cholesterol contents of erythrocytes from individuals with hypertension (HTN) and healthy individuals (HI) using LC/MS-MS. HTN erythrocytes contained higher phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine contents and a lower cholesterol content than HI erythrocytes. Furthermore, atomic force microscopy revealed important morphological changes in HTN erythrocytes, which reflected the increased membrane fragility and fluidity and higher levels of oxidative stress observed in HTN erythrocytes using spectrophotofluorometry, flow cytometry and spectrometry. This study reveals that alterations to the lipid contents of erythrocyte plasma membranes occur in hypertension, and these alterations in lipid composition result in morphological and physiological abnormalities that modify the dynamic properties of erythrocytes and contribute to the pathophysiology of hypertension.
Assuntos
Membrana Celular/metabolismo , Eritrócitos/metabolismo , Hipertensão/metabolismo , Adulto , Idoso , Fenômenos Biofísicos/fisiologia , Colesterol/metabolismo , Eritrócitos/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/química , Masculino , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/metabolismo , Microscopia de Força Atômica/métodos , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismoRESUMO
For miltefosine (MIL), a zwitterionic alkylphospholipid approved for leishmaniasis treatment, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy has indicated that the interaction of MIL with membrane proteins has similarities to that of ionic surfactants. A general concern about leishmanicides is their high hemolytic potential, so we decided to compare the interactions of MIL and three ionic surfactants with the erythrocyte membrane. Measurements with two different spin labels indicated that the surfactants sodium dodecyl sulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) as well as MIL increase the dynamics of erythrocyte membrane proteins in a concentration-dependent manner. SDS produced the smallest increases in protein dynamics and was also the least hemolytic for measurements in PBS and in whole blood. Spin label EPR measurements performed directly in the blood plasma detected increased albumin stiffness caused by 2.5 mM SDS due to electrostatic/hydrophobic interactions. For 10 mM concentrations of the compounds, the EPR spectra showed a fraction of albumin with greater mobility and another with the same as that of the untreated plasma. The zwitterionic compounds MIL and HPS did not present significant differences in this study.
Assuntos
Antiprotozoários/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Proteínas de Membrana/química , Fosforilcolina/análogos & derivados , Animais , Antiprotozoários/química , Compostos de Bis-Trimetilamônio/química , Compostos de Bis-Trimetilamônio/farmacologia , Bovinos , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Membrana Eritrocítica/química , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Micelas , Fosforilcolina/química , Fosforilcolina/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Soroalbumina Bovina/química , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/farmacologia , Marcadores de Spin , Eletricidade EstáticaRESUMO
The sesquiterpene nerolidol is a membrane-active compound that has demonstrated antitumor, antibacterial, antifungal and antiparasitic activities. In this study, we used electron paramagnetic resonance (EPR) spectroscopy and biophysical parameters determined via cell culture assays to study the mechanisms underlying the in vitro antileishmanial activity of nerolidol. The EPR spectra of a spin-labeled stearic acid indicated notable interactions of nerolidol with the cell membrane of Leishmania amazonensis amastigotes. The nerolidol IC50 values in L. amazonensis amastigotes and promastigotes were found to depend on the cell concentration used in the assay. This dependence was described by an equation that considers various cell suspension parameters, such as the 50% inhibitory concentrations of nerolidol in the cell membrane (cm50) and the aqueous phase (cw50) and the membrane-water partition coefficient of nerolidol (KM/W). Via cytotoxicity (CC50) and hemolytic potential (HC50) data, these parameters were also determined for nerolidol in macrophages and erythrocytes. With a cw50 of 125⯵M, macrophages were less sensitive to nerolidol than amastigotes and promastigotes, which had mean cw50 values of 56 and 74⯵M, respectively. The estimated cm50 values of nerolidol for amastigotes and promastigotes and macrophages were between 2.6 and 3.0â¯M, indicating substantial accumulation of nerolidol in the cell membrane. In addition, the spin-label EPR data indicated that membrane dynamic changes occurred in L. amazonensis amastigotes at concentrations similar to the nerolidol IC50 value.
Assuntos
Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Hemólise/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Different spin labels were incorporated to the membranes of cultured insect UFL-AG-286â¯cells in order to characterize their physical properties by Electron Paramagnetic Resonance spectroscopy (EPR). The spectrum of the spin label 12-SASL incorporated to cell membranes was similar as those obtained in membrane model systems composed of eggPC/cholesterol. However, the spectrum of the spin label CSL, chemically related to cholesterol, was drastically different in the two systems. Interestingly, when cell cholesterol content was reduced using methyl beta cyclodextrin, an EPR spectrum similar to those of model membranes was obtained. The analysis of these experiments suggests the existence of cholesterol rich regions in UFL-AG-286â¯cell membranes.
Assuntos
Membrana Celular/química , Colesterol/química , Marcadores de Spin , Animais , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Lepidópteros , Lipídeos/química , Lipossomos/químicaRESUMO
Antiparasitic photodynamic therapy (ApPDT) is an emerging approach to manage cutaneous leishmaniasis (CL) since no side effects, contraindications and parasite resistance have been reported. In addition, methylene blue (MB) is a suitable photosensitizer to mediate ApPDT on CL. In this study we aimed to look for the best parameters to eradicate Leishmania amazonensis and investigated the cell death pathways involved in MB-mediated ApPDT. MB uptake by parasites was determined using different MB concentrations (50, 100, 250 and 500⯵M) and incubation times (10, 30 and 60â¯min). L. amazonensis promastigotes were cultured and submitted to ApPDT using different concentrations of MB (50, 100 and 250 µM) combined to a red LED emitting at 645⯱â¯10â¯nm. The pre-irradiation time was 10â¯min. Two optical powers (100â¯mW and 250â¯mW) were tested and cells were exposed to 60 and 300 s of MB-mediated ApPDT delivering energies of 6, 15, 30 and 75â¯J and fluences of 21.2, 53.1, 106.2 and 265.4â¯J/cm2, respectively. Following ApPDT, cells were prepared for flow cytometry and transmission electron microscopy to unravel the mechanisms of cell death. Our results showed the lowest MB concentration (50 µM) and the lowest optical power (100â¯mW) promoted the highest percentage of cell decrease. ApPDT caused alterations on cell membrane permeability as well depolarization of mitochondrial membrane potential. We also observed ultrastructural changes of the parasites such as cell shrinkage, intense vacuolization of the cytoplasm, enlargement of mitochondrion-kinetoplast complex, and small blebs on parasite flagella and cell membrane after MB-mediated ApPDT. Taken together, our findings ratify that ApPDT parameters play a pivotal role in cell susceptibility and suggest that apoptosis is involved in parasite death regardless MB-mediated ApPDT protocol
Assuntos
Fotoquimioterapia , Leishmania/citologia , AntiparasitáriosRESUMO
Background: The beta-amyloid peptide (Aß) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aß in cultured hippocampal neurons. Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-ß-cyclodextrin (MßCD) and MßCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively. Results: The results showed that cholesterol removal decreased the macroscopic association of Aß to neuronal membranes (fluorescent-puncta/20 µm: control = 18 ± 2 vs. MßCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aß with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MßCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aß (fluorescent-puncta/20 µm: control = 18 ± 2 vs. MßCD = 10 ± 1, p < 0.01), but inhibited membrane disruption. Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aß in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aß peptide in the neuronal membrane.