Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
Acta Diabetol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896283

RESUMO

BACKGROUND: Diabetic Kidney Disease (DKD) is a complex disease associated with circadian rhythm and biological clock regulation disorders. Melatonin (MT) is considered a hormone with renal protective effects, but its mechanism of action in DKD is unclear. METHODS: We used the GSE151325 dataset from the GEO database for differential gene analysis and further explored related genes and pathways through GO and KEGG analysis and PPI network analysis. Additionally, this study used a type 2 diabetes db/db mouse model and investigated the role of melatonin in DKD and its relationship with clock genes through immunohistochemistry, Western blot, real-time PCR, ELISA, chromatin immunoprecipitation (ChIP), dual-luciferase reporter technology, and liposome transfection technology to study DEC1 siRNA. RESULTS: Bioinformatics analysis revealed the central position of clock genes such as CLOCK, DEC1, Bhlhe41, CRY1, and RORB in DKD. Their interaction with key inflammatory regulators may reveal melatonin's potential mechanism in treating diabetic kidney disease. Further experimental results showed that melatonin significantly improved the renal pathological changes in db/db mice, reduced body weight and blood sugar, regulated clock genes in renal tissue, and downregulated the TLR2/MyD88/NF-κB signaling pathway. We found that the transcription factor DEC1 can bind to the TLR2 promoter and activate its transcription, while CLOCK's effect is unclear. Liposome transfection experiments further confirmed the effect of DEC1 on the TLR2/MyD88/NF-κB signaling pathway. CONCLUSION: Melatonin shows significant renal protective effects by regulating clock genes and downregulating the TLR2/MyD88/NF-κB signaling pathway. The transcription factor DEC1 may become a key regulatory factor for renal inflammation and fibrosis by activating TLR2 promoter transcription. These findings provide new perspectives and directions for the potential application of melatonin in DKD treatment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38867675

RESUMO

Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells communicate via endocrine and paracrine signaling mechanisms to maintain structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels modulates the functions of all three cell types. The last two decades have witnessed pivotal advances in understanding of Ca2+ channel function and regulation in glomerular cells, particularly non-voltage gated Ca2+ channels, in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage gated Ca2+ channel signaling in glomerular capillary endothelium, mesangial cells and podocytes. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-D-aspartate receptors and purinergic 2X receptors also are discussed. This update of Ca2+ channel functions in the renal corpuscle and their cellular signaling cascades is intended to inform development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.

3.
J Diabetes ; 16(6): e13565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751373

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a diabetic complication. LncRNAs are reported to participate in the pathophysiology of DN. Here, the function and mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) in DN were explored. METHODS: Streptozotocin (STZ)-induced DN mouse models and high glucose (HG)-treated human mesangial cells (MCs) were used to detect SNHG14 expression. SNHG14 silencing plasmids were applied to examine the function of SNHG14 on proliferation and fibrosis in HG-treated MCs. Potential targets of SNHG14 were predicted using bioinformatics tools and verified by luciferase reporter, RNA pulldown, and northern blotting assays. The functional role of SNHG14 in DN in vivo was detected by injection with adenoviral vector carrying sh-SNHG14 into DN mice. Serum creatinine, blood urea nitrogen, blood glucose, 24-h proteinuria, relative kidney weight, and renal pathological changes were examined in DN mice. RESULTS: SNHG14 expression was elevated in the kidneys of DN mice and HG-treated MCs. SNHG14 silencing inhibited proliferation and fibrosis of HG-stimulated MCs. SNHG14 bound to miR-30e-5p to upregulate SOX4 expression. In rescue assays, SOX4 elevation diminished the effects of SNHG14 silencing in HG-treated MCs, and SOX4 silencing reversed the effects of SNHG14 overexpression. In in vivo studies, SNHG14 downregulation significantly ameliorated renal injuries and renal interstitial fibrosis in DN mice. CONCLUSIONS: SNHG14 silencing attenuates kidney injury in DN mice and reduces proliferation and fibrotic phenotype of HG-stimulated MCs via the miR-30e-5p/SOX4 axis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Progressão da Doença , MicroRNAs , RNA Longo não Codificante , Fatores de Transcrição SOXC , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Camundongos , MicroRNAs/genética , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Masculino , Inativação Gênica , Fibrose , Proliferação de Células , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL
4.
Artigo em Inglês | MEDLINE | ID: mdl-38536435

RESUMO

Chronic glomerulonephritis (CGN) refers to the inflammation of glomeruli in the kidneys. Glomerular mesangial cells (GMCs) play a pivotal role in the development of CGN. In the present study, we investigated the impact of ALKBH5, a m6A demethylase, on inflammation and hyperproliferation in mouse glomerular mesangial cells (MMCs) and elucidated the molecular mechanisms contributing to CGN. Western blotting and reverse transcriptase-polymerase chain reaction (RT-qPCR) were employed to evaluate the expression of ALKBH5 and TRIM13. In addition, enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of inflammatory factors (IL-1ß, TNF-α, and IL-10) in the lipopolysaccharide (LPS)-induced MMCs supernatant. Methylated RNA immunoprecipitation (MeRIP) was performed to investigate the effect of ALKBH5 on the levels of TRIM13-m6A mRNA. The stability of TRIM13 mRNA was evaluated using an actinomycin D assay. Significantly elevated expression of ALKBH5 was found in LPS-induced MMCs. Interference with ALKBH5 expression inhibited inflammation and excessive proliferation in LPS-induced MMCs. Moreover, interfering with ALKBH5 expression significantly reduced the levels of TRIM13-m6A modification. The overexpression of TRIM13 in MMCs reversed the inflammation and proliferation induced by ALKBH5 interference. In addition, interference with TRIM13 expression inhibited the activation of the NF-κB pathway and suppressed inflammation and proliferation in MMCs. Inhibiting ALKBH5 hinders inflammation and hyperproliferation by improving TRIM13-m6A modification in glomerular MCs. We believe these findings will further provide insights into the molecular mechanisms and potential therapeutic targets for CGN.

5.
Adv Clin Exp Med ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318774

RESUMO

BACKGROUND: Rapamycin is known to induce autophagy, promote cell survival and inhibit the progression of diabetic nephropathy (DN). OBJECTIVES: The aim of this study was to examine the role of autophagy in the treatment of DN with rapamycin to provide the basis for the DN treatment with rapamycin. MATERIAL AND METHODS: Human mesangial cells (HMC) were cultured in a constant temperature incubator with 5% CO2, at 37°C and saturated humidity. Cells were divided into 5 groups and the 5-ethynyl-2-deoxyuridine (EdU) cell proliferation assay was used to determine cell proliferation. Flow cytometry was used to determine cell apoptosis, while GFP-RFP-LC3 showed autophagy flow. Western blot was employed to detect the expression of autophagy-related proteins LC3-II/LC3-I and P62. Enzyme-linked immunosorbent assay (ELISA) was used to determine the contents of type IV collagen fiber (Col4), hyaluronic acid (HA) and laminin (LA) in the extracellular matrix (ECM). RESULTS: Cell proliferation was the lowest in the hyperglycemic group. Additionally, the hyperglycemic group displayed the lowest number of autolysosomes compared to other groups. In contrast, the rapamycin group exhibited the highest number of autolysosomes. The LC3-II/LC3-I ratio was also the lowest in the hyperglycemic group, measuring 0.53 (0.50-0.58), while the expression level of P62 was significantly higher in that group at 0.98 (0.95-1.01) compared to other groups. Upon the introduction of rapamycin, the LC3-II/LC3-I ratio was significantly increased at 2.21 (1.95-2.21), and P62 was significantly decreased 0.38 (0.38-0.39) compared to the hyperglycemic group. Both changes were statistically significant, with p-values of 0.034 and 0.010, respectively. Enzyme-linked immunosorbent assay was employed to detect Col4, HA and LA content. The study findings demonstrated significantly higher levels of glucose in the hyperglycemic group in comparison to other groups. In contrast, the rapamycin group exhibited significantly lower levels of glucose than the hyperglycemic group, yet the difference was not statistically significant. CONCLUSIONS: Hyperglycemic can inhibit the autophagic activity of HMC, promote cell apoptosis, enhance ECM accumulation, and facilitate the DN progression. In contrast, rapamycin can elicit autophagy, decrease mesangial matrix proliferation, and therefore impede DN progression.

6.
Cell Signal ; 117: 111091, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331014

RESUMO

OBJECTIVE: The study aimed to explore the impact of N6-methyladenosine (m6A) modification in circStk4 on glomerular mesangial cells (GMCs) autophagy, proliferation and apoptosis. METHODS: The interactions between circStk4 and miR-133a-3p, miR-133a-3p and C1 were demonstrated through luciferase reporter assays. The circStk4 localization was analyzed using fluorescence in situ hybridization and nuclear/cytosol fractionation assays. Colorimetric assays, MeRIP-qPCR, and western blot (WB) were employed to confirm the m6A modification of circStk4 and identify the key methylation enzyme. RT-qPCR was conducted to determine the impact of METTL3 on the circStk4 RNA expression. Additionally, CCK-8, flow cytometry, transmission electron microscopy, immunofluorescence, WB and RT-qPCR were employed to investigate the effects of METTL3 or circStk4 on the proliferation, autophagy and apoptosis of GMCs. Enzyme-linked immunosorbent assay was utilized to assess the inflammatory factors. RESULTS: m6A modifications were found in circStk4 and METTL3 was a key methylating enzyme. Furthermore, it was observed that circStk4 competitively bound miR-133a-3p and increased C1 levels. Silencing circStk4 resulted in decreased GMCs proliferation, increased autophagy and apoptosis, and reduced inflammation levels. Additionally, METTL3 played a role in inhibiting GMCs proliferation and promoting autophagy and apoptosis by regulating the circStk4 expression. On verifying the interplay between autophagy, proliferation and apoptosis, and found that the inhibition of autophagy led to an increase in cell proliferation and a decrease in apoptosis. CONCLUSION: m6A modification of circStk4 mediated by METTL3 influenced circStk4 expression and impacted autophagy, proliferation and apoptosis in GMCs via the miR-133a-3p/C1 axis. This discovery introduces a novel therapeutic approach for CGN treatment.


Assuntos
Adenosina , Metiltransferases , MicroRNAs , Animais , Camundongos , Apoptose , Autofagia , Proliferação de Células , Hibridização in Situ Fluorescente , MicroRNAs/genética , Metiltransferases/metabolismo
7.
Biomed Pharmacother ; 171: 116208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286036

RESUMO

Diabetic kidney disease (DKD) stands as a pressing health challenge, with mesangial cell fibrosis identified as a pivotal hallmark leading to glomerular sclerosis. Gaining a deeper grasp on the molecular dynamics behind this can potentially introduce groundbreaking therapeutic avenues. Recent revelations from studies on ROCK1-deficient mice, which displayed resilience against high-fat diet (HFD)-induced glomerulosclerosis and mitochondrial fragmentation, spurred our hypothesis regarding ROCK1's potential role in mesangial cell fibrosis. Subsequent rigorous experiments corroborated our theory, highlighting the critical role of ROCK1 in orchestrating mesangial cell proliferation and fibrosis, especially in high-glucose settings. Mechanistically, ROCK1 inhibition led to a notable hindrance in the high-glucose-triggered MAPK signaling pathway, particularly emphasizing the ROCK1/ERK/P38 axis. To translate this understanding into potential therapeutic interventions, we embarked on a comprehensive drug screening journey. Leveraging molecular modeling techniques, Myricetin surfaced as an efficacious inhibitor of ROCK1. Dose-dependent in vitro assays substantiated Myricetin's prowess in curtailing mesangial cell proliferation and fibrosis via ROCK1/ERK/P38 pathway. In vivo verifications paralleled these findings, with Myricetin treatment resulting in significant renal function enhancements and diminished DKD pathological markers, all pivoted around the ROCK1/ERK/P38 nexus. These findings not only deepen our comprehension of DKD molecular underpinnings but also elevate ROCK1 to the pedestal of a promising therapeutic beacon. Concurrently, Myricetin is spotlighted as a potent natural contender, heralding a new era in DKD therapeutic design.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/metabolismo , Flavonoides/farmacologia , Células Mesangiais/metabolismo , Glucose/metabolismo , Fibrose , Rim , Diabetes Mellitus/metabolismo
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 123-131, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37368032

RESUMO

To investigate the effect of isoliquiritigenin (ISL) on high glucose (HG)-induced glomerular mesangial cells (GMCs) proliferation, extracellular matrix (ECM) deposition and inflammation, and the underlying mechanisms. Mouse GMCs (SV40-MES-13) were cultured in HG medium, with or without ISL. The proliferation of GMCs was determined by MTT assay. The production of proinflammatory cytokines was detected by qRT-PCR and ELISA. The expression of connective tissue growth factor (CTGF), TGF-ß1, collagen IV, and fibronectin was measured by qRT-PCR and western blot. The phosphorylation of JAK2 and STAT3 was examined by western blot. Next, JAK2 inhibitor AG490 was applied to HG-exposed GMCs. The levels of JAK2/STAT3 phosphorylation and pro-fibrotic markers were analyzed by western blot, and the secretion of TNF-α and IL-1ß was evaluated by ELISA. GMCs were treated with HG, HG plus ISL or HG plus ISL, and recombinant IL-6 (rIL-6) which is a JAK2 activator. The levels of JAK2/STAT3 activation, ECM formation, and proinflammatory cytokines secretion were determined by western blot and ELISA, respectively. In mouse GMCs, ISL successfully repressed HG-induced hyperproliferation; production of TNF-α and IL-1ß; expression of CTGF, TGF-ß1, collagen IV, and fibronectin; and activation of JAK2/STAT3. Similar to ISL, AG490 was able to reverse the inflammation and ECM generation caused by HG. Moreover, rIL-6 impeded the amelioration of ISL on HG-induced adverse effects. Our study demonstrated that ISL displayed preventive effects on HG-exposed GMCs through inhibiting JAK2/STAT3 pathway and provided an insight into the application of ISL for diabetic nephropathy (DN) treatment.


Assuntos
Células Mesangiais , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fibronectinas , Fator de Necrose Tumoral alfa/metabolismo , Glucose/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Proliferação de Células , Matriz Extracelular/metabolismo , Colágeno/metabolismo
9.
Int Immunopharmacol ; 126: 111237, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37977063

RESUMO

BACKGROUND AND PURPOSE: Diabetic nephropathy (DN) is a prevalent complication of diabetes mellitus characterized by hyperglycemia, hyperlipidemia, albuminuria and edema. Increasing evidence indicated that berberine (BBR) could alleviate the occurrence and development of DN. However, the molecular mechanism underlying the beneficial effects of BBR in the treatment of DN remains unclear. METHODS: The online public databases were chosen to screen the relevant targets of BBR and DN and the screened overlapped targets were analyzed by GO enrichment analysis, KEGG enrichment analysis and protein-protein interaction network analysis. The interaction between BBR and the key proteinwas verified by molecular docking and cellularthermalshiftassay. Additionally, the expression of key proteins and related indicators of DN were verified by immunofluorescence and western blot in vitro and in vivo. RESULTS: We successfully identified 92 overlapped targets of BBR and DN based on network pharmacology. Notably, VEGFR2 was identified to be the main target of BBR. Meanwhile, we found that BBR exhibited a high binding affinity to VEGFR2 protein, as confirmed by molecular docking and CETSA. This binding led to interfering with the PI3K/AKT/mTOR signaling pathway. In addition, we found that BBR could inhibit the abnormal proliferation of mesangial cells and reduce the expression of downstream pathway protein in vitro and in vivo. Finally, BBR was found to effectively lower the level of blood glucose and improve kidney function in mice, highlighting its potential as a therapeutic agent for the treatment of DN. CONCLUSION: Berberine interfered the PI3K/AKT/mTOR signaling pathway via targeting VEGFR2 protein, further led to the inhibition of abnormal proliferation of mesangial cells and ultimately resulted in improved renal function.


Assuntos
Berberina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166933, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37951508

RESUMO

OBJECTIVE: Mesangial cells (MCs) in the kidney play central role in maintaining glomerular integrity, and their abnormal proliferation leads to major glomerular diseases including diabetic kidney disease (DKD). Although high blood glucose elicits MCs impairment, the underlying molecular mechanism is poorly understood. The present study aimed to investigate the effect of secreted frizzled-related protein 2 (Sfrp2) from single-nucleus RNA profiling on MC proliferation of DKD in vitro and in vivo and explored the specific mechanisms. RESULTS: By snRNA-seq analysis of isolated renal cells from leptin receptor-deficient db/db mice and control db/m mice, we found that Sfrp2 was increased in the MCs of DKD in comparison to other intrinsic renal cells, which was further verified in vitro and in vivo. We also found that the expression of Sfrp2 was significantly upregulated in DKD patients and correlated with renal function, demonstrating that Sfrp2 might serve as an independent biomarker for DKD patients. Functionally, we showed the loss and acquisition of Sfrp2 affected cytosolic Ca2+ concentration, cell proliferation and fibrosis of MC, albuminuria and kidney injury in vitro and in vivo. Mechanistically, we identify c-Jun as a transcription factor of Sfrp2 promoting its transcription, and the Ca2+ signaling related protein frizzled receptor 5 (Fzd5) as the binding protein of Sfrp2. And we further found Sfrp2 promoted Fzd5-induced cytosolic Ca2+ concentration and the downstream CaMKII/Mek/Erk pathway activation, leading to MC proliferation and fibrosis in DKD. CONCLUSION: Our study revealed a novel involvement for Sfrp2 in the regulation of MC function and the effect of Sfrp2 on cell proliferation and fibrosis of MC via the Fzd5/Ca2+/CaMKII/Mek/Erk pathway, implying that Sfrp2 may be a possible biomarker and therapeutic target for DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Biomarcadores/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/genética , Fibrose , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células Mesangiais/metabolismo
11.
Chinese Pharmacological Bulletin ; (12): 133-138, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013616

RESUMO

Aim To explore the effect of exogenous hydrogen sulfide ( H2 S ) on hypoxia/reoxygenation ( H/R) injury in glomerular mesangial cells and elucidate its relevant mechanism. Methods H/R induced mouse mesangial cell line ( SV40MES13 ) to establish cell damage model. Cell viability was detected by cell proliferation kit ( CCK8 ), the content of H

12.
Environ Toxicol ; 39(4): 2326-2339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156429

RESUMO

Diabetic nephropathy (DN) is one of the complications of diabetes mellitus and the main cause of end-stage renal disease (ESRD), which is a serious threat to human health. In DN, mesangial cells (MCs) are a critical target cell that perform a variety of key functions, and abnormal proliferation of MCs is a common and prominent pathological change in DN. In recent years, the investigation of Chinese medicine interventions for DN has increased significantly in recent years due to the many potential adverse effects and controversies associated with the treatment of DN with Western medicines. In this study, we evaluated the protective effect of resveratrol (RES), an active ingredient known as a natural antioxidant, on HMCs under high glucose and explored its possible mechanism of action. We found that RES inhibited the proliferation of human mesangial cell (HMC) under high glucose and blocked cell cycle progression. In the high glucose environment, RES upregulated miR-1231, reduced IGF1 expression, inhibited the activity of the extracellular signal-regulated kinase (ERK) signaling pathway and reduced levels of the inflammatory factors TNF-α and IL-6. In addition, we found that miR-1231 mimics were synergistically inhibited with RES, whereas miR-1231 inhibitor attenuated the protective effect of RES on HMCs. Thus, our results suggest that the protective effect of RES on HMCs under high glucose is achieved, at least in part, through modulation of the miR-1231/IGF1/ERK pathway. The discovery of this potential mechanism may provide a new molecular therapeutic target for the prevention and treatment of DN, and may also bring new ideas for the clinical research in DN.


Assuntos
Nefropatias Diabéticas , MicroRNAs , Humanos , Células Mesangiais/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Glucose/toxicidade , Glucose/metabolismo , Nefropatias Diabéticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Fator de Crescimento Insulin-Like I/metabolismo
13.
Kidney Blood Press Res ; 48(1): 738-751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37935137

RESUMO

INTRODUCTION: Oxidative stress is pivotal in advancing diabetic nephropathy (DN). Salvianolic acid B (SAB), derived from Radix Salviae miltiorrhizae, exhibits renoprotective effects. However, the mechanisms underlying its action in DN are not fully elucidated. This study explores SAB's protective effect on DN, focusing on its antioxidative properties in glomerular mesangial cells. METHODS: The renoprotective effects of various SAB dosages on DN rats were assessed by evaluating kidney tissue pathological alterations through hematoxylin and eosin, periodic acid-Schiff, Masson, TUNEL staining, and kidney function through biochemical detection. Cell counting kit-8 and lactate dehydrogenase cytotoxicity assays were utilized to evaluate the viability of high glucose (HG)-induced HBZY-1 cells treated with various SAB dosages. Oxidative stress and inflammation levels were measured using enzyme-linked immunosorbent assay kits. The Sirtuin 3 (SIRT3)/Forkhead box transcription factor O1 (FOXO1) pathway was examined through Western blot and immunohistochemistry. RESULTS: SAB mitigated kidney histopathological alterations and function and cell apoptosis in DN rats at various dosages. It enhanced the activity of glutathione peroxidase and superoxide dismutase while decreasing reactive oxygen species and malondialdehyde levels both in vivo and in vitro. SAB also suppressed the levels of pro-inflammatory cytokines (IL-1ß, IL-6, MCP-1, and TNF-α) and the expression of collagen IV and fibronectin in HG-induced HBZY-1 cells. Furthermore, SAB activated the SIRT3/FOXO1 signaling pathway. CONCLUSION: Our findings suggest that SAB may alleviate oxidative stress in DN both in vivo and in vitro, potentially through the activation of the SIRT3/FOXO1-mediated signaling pathway. This study provides initial insights into the possible antioxidative and renoprotective effects of SAB, indicating its potential utility as a therapeutic agent for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Sirtuína 3 , Ratos , Animais , Células Mesangiais/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Sirtuína 3/uso terapêutico , Nefropatias Diabéticas/patologia , Glucose/metabolismo , Estresse Oxidativo , Transdução de Sinais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus/metabolismo
15.
Front Pharmacol ; 14: 1260300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822879

RESUMO

Background: N6-methyladenosine (m6A) is a prevalent post-transcriptional modification presented in messenger RNA (mRNA) of eukaryotic organisms. Chronic glomerulonephritis (CGN) is characterised by excessive proliferation and insufficient apoptosis of human glomerular mesangial cells (HGMCs) but its underlying pathogenesis remains undefined. Moreover, the role of m6A in CGN is poorly understood. Methods: The total level of m6A modification was detected using the m6A quantification assay (Colorimetric). Cell proliferation was assessed by EdU cell proliferation assay, and cell apoptosis was detected by flow cytometry. RNA sequencing was performed to screen the downstream target of fat mass and obesity-associated protein (FTO). MeRIP-qPCR was conducted to detect the m6A level of forkhead box o6 (FOXO6) in HGMCs. RIP assay was utilized to indicate the targeting relationship between YTH domain family 3 (YTHDF3) and FOXO6. Actinomycin D assay was used to investigate the stability of FOXO6 in HGMCs. Results: The study found that the expression of FTO was significantly reduced in lipopolysaccharide (LPS)-induced HGMCs and renal biopsy samples of patients with CGN. Moreover, FTO overexpression and knockdown could regulate the proliferation and apoptosis of HGMCs. Furthermore, RNA sequencing and cellular experiments revealed FOXO6 as a downstream target of FTO in regulating the proliferation and apoptosis of HGMCs. Mechanistically, FTO overexpression decreases the level of FOXO6 m6A modification and reduces the stability of FOXO6 mRNA in a YTHDF3-dependent manner. Additionally, the decreased expression of FOXO6 inhibits the PI3K/AKT signaling pathway, thereby inhibiting the proliferation and promoting apoptosis of HGMCs. Conclusion: This study offers insights into the mechanism through which FTO regulates the proliferation and apoptosis of HGMCs by mediating m6A modification of FOXO6 mRNA. These findings also suggest FTO as a potential diagnostic marker and therapeutic target for CGN.

16.
Cell Commun Signal ; 21(1): 288, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845726

RESUMO

Diabetic kidney disease (DKD) is a major cause of end-stage renal disease and imposes a heavy global economic burden; however, little is known about its complicated pathophysiology. Investigating the cellular crosstalk involved in DKD is a promising avenue for gaining a better understanding of its pathogenesis. Nonetheless, the cellular crosstalk of podocytes and endothelial cells in DKD is better understood than that of mesangial cells (MCs) and renal tubular epithelial cells (TECs). As the significance of MCs and TECs in DKD pathophysiology has recently become more apparent, we reviewed the existing literature on the cellular crosstalk of MCs and TECs in the context of DKD to acquire a comprehensive understanding of their cellular communication. Insights into the complicated mechanisms underlying the pathophysiology of DKD would improve its early detection, care, and prognosis. Video Abstract.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Humanos , Nefropatias Diabéticas/patologia , Células Mesangiais/patologia , Células Endoteliais/patologia , Células Epiteliais/patologia , Podócitos/patologia , Diabetes Mellitus/patologia
17.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119568, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597773

RESUMO

Hydrogen sulfide (H2S) is the third gas signaling molecule that has been shown to be involved in the regulating vital activities in the body, including inhibition of aging. However, it is unknown whether H2S alleviates aging in the kidney and glomerular mesangial cells (GMCs) by modulating their mitophagy. Here, results of experiments in vivo and in vitro showed that compared with control group, the renal function of mice and GMCs viability were decreased in D-gal (D-galactose) group, while the activity of SA-ß-gal and p21 expression were increased, Cyclin D1 and Klotho expressions were decreased; H2S content and CSE expression were lower; ROS and MDA contents and mitochondrial permeability transition pore (mPTP) opening were risedose; ATP production and mitochondrial membrane potential (Δψm) were reduced; Apoptotic rate, the expression of Cleaved caspase-9 and -3, Cyt c, p62 and Drp1 were enhanced and the expression of Bcl-2, Mfn2, Beclin-1, LC3 II/I, PINK1 and parkin were decreased. In addition, phospho-AMPK/AMPK and phospho-ULK1/ULK1 were also decreased significantly. Compared with the D-gal group, the changes of above indexes were reversed in the D-gal + NaHS (Sodium hydrosulfide, an exogenous H2S donor) group. The reverse effects of NaHS were similar to that of AICAR (an AMPK agonist) and kinetin (a PINK1 agonist), respectively. Taken together, these results suggest that exogenous H2S increases mitophagy and inhibits apoptosis as well as oxidative stress through up-regulation of AMPK-ULK1-PINK1-parkin pathway, which delays kidney senescence in mice.


Assuntos
Células Mesangiais , Mitofagia , Proteínas Quinases Ativadas por AMP , Rim , Estresse Oxidativo
18.
Front Pharmacol ; 14: 1150829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397485

RESUMO

Objective: Despite the use of renin-angiotensin system blockade and immunosuppressive drugs, including corticosteroids, the current treatment regimens for Immunoglobulins A nephropathy (IgAN) are severely limited. The proliferation of mesangial cell and deposition of deglycosylated human IgA1 immune complex are the most common pathologic features of IgAN. We examined the tetrandrine potential of suppressing the proliferation of mesangial cells and explored its underlying mechanisms with a focus on IgA receptor/MAPK/NF-κB signaling pathway. Methods: Standard human IgA (native IgA) were enzymatically desialylated (deS IgA) or further degalactosylated (deS/deGal IgA) using neuraminidase and ß-galactosidase. Rat glomerular mesangial cells (HBZY-1) and human renal mesangial cells (HRMC) stimulated by IgA were used to observe the suppressive effect of tetrandrine. The MTT assay was used to detect the cell viability. The protein expression of IgA receptor/MAPK/NF-κB signaling pathway was examined by Western blot. Cell cycle analysis was measured by flow cytometer. Results: Native IgA and deS IgA showed limited stimulation effect on both HBZY-1 cells and HRMCs, whereas deS/deGal IgA significantly stimulated the proliferation of both HBZY-1 cells and HRMCs (p < 0.05). Compared with non-stimulation of deS/deGal IgA, 1-3 µM of tetrandrine had stronger inhibitory effect on the proliferation of HBZY-1 cells and HRMCs with the stimulation of deS/deGal IgA (p < 0.05), suggesting that tetrandrine possibly inhibited the proliferation of mesangial cells induced by deglycosylated human IgA1 specifically. Molecular mechanism study revealed that tetrandrine decreased the expression of IgA1 receptor, CD71 and ß4GALT1, and inhibited the activation of MAPK/NF-κB significantly (p < 0.05). Moreover, these inhibitory effect of tetrandrine caused cell cycle arrest and stopped the cell growth in the S phase companied with the upregulating of cyclin A2 and downregulating of cyclin D1. Conclusion: Taken together, tetrandrine inhibited the proliferation of mesangial cells induced by enzymatically deglycosylated human IgA1 via IgA receptor/MAPK/NF-κB signaling pathway. Based on these potential molecular mechanisms, tetrandrine would be an appealing therapeutic option for IgAN.

19.
Mol Med ; 29(1): 99, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488524

RESUMO

BACKGROUND: To elucidate the mechanism by which DEC2 modulates the proliferation of mesangial cells (MCs) in lupus nephritis (LN). METHODS: The 32-week-old female Fcgr2b-/- mice and their serum-treated MCs were used as in vivo and in vitro LN model. MCs knocked down of DEC2 and overexpressed with DEC2 were also established. The expression of DEC2 was measured in the kidneys of Fcgr2b-/- mice and LN serum-treated MCs using RT-qPCR and Western blot. MCs proliferation was detected by 5-ethynyl-2'-deoxyuridine (EdU) labeling assay and PCNA expression using immunofluorescence. The glucose metabolism was evaluated in LN serum-treated MCs, and the levels of lactate production, glucose consumption, ATP production and mitochondrial membrane potential were assayed. The glycolysis and mitochondrial respiration function of the MCs were measured using the Extracellular Flux Analyzer. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were dynamically monitored and multiple important bioenergetic parameters can be calculated. The expression of Toll like receptor 4 (TLR4) and glucose transporter 1 (GLUT1) were detected in the MCs. Multiple signaling proteins were screened. RESULTS: DEC2 was found overexpressed in the kidney of Fcgr2b-/- LN mice. Knockdown of DEC2 inhibited LN serum-induced MCs proliferation. DEC2 was associated with the glucose metabolism in LN serum-treated MCs. DEC2 regulated glycolysis in LN serum-treated MCs. DEC2 was associated with mitochondrial fitness in LN serum treated MCs. DEC2 activated MCs glycolysis through TLR4 and glucose transporter 1 (GLUT1) regulation. DEC2 regulated MCs proliferation through two signaling pathways including dependent and independent of glycolysis, which located in the downstream of TLR4 signaling. CONCLUSION: Knockdown of DEC2 expression inhibits the proliferation of MCs through suppressed glycolysis and p38 MAPK/ERK pathway in LN.


Assuntos
Nefrite Lúpica , Feminino , Animais , Camundongos , Células Mesangiais , Sistema de Sinalização das MAP Quinases , Transportador de Glucose Tipo 1 , Receptor 4 Toll-Like , Glicólise , Glucose , Ácido Láctico , Proliferação de Células
20.
J Biol Chem ; 299(8): 104995, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394007

RESUMO

Infiltrated pre-inflammatory monocytes and macrophages have important roles in the induction of diabetic lung injuries, but the mechanism mediating their infiltration is still unclear. Here, we showed that airway smooth muscle cells (SMCs) activated monocyte adhesion in response to hyperglycemic glucose (25.6 mM) by significantly increasing hyaluronan (HA) in the cell matrix, with concurrent 2- to 4-fold increases in adhesion of U937 monocytic-leukemic cells. The HA-based structures were attributed directly to the high-glucose and not to increased extracellular osmolality, and they required growth stimulation of SMCs by serum. Treatment of SMCs with heparin in high-glucose induces synthesis of a much larger HA matrix, consistent with our observations in the glomerular SMCs. Further, we observed increases in tumor necrosis factor-stimulated gene-6 (TSG-6) expression in high-glucose and high-glucose plus heparin cultures, and the heavy chain (HC)-modified HA structures existed on the monocyte-adhesive cable structures in high-glucose and in high-glucose plus heparin-treated SMC cultures. Interestingly, these HC-modified HA structures were unevenly distributed along the HA cables. Further, the in vitro assay with recombinant human TSG-6 and the HA14 oligo showed that heparin has no inhibitory activity on the TSG-6-induced HC-transfer to HA, consistent with the results from SMC cultures. These results support the hypothesis that hyperglycemia in airway smooth muscle induces the synthesis of a HA matrix that recruits inflammatory cells and establishes a chronic inflammatory process and fibrosis that lead to diabetic lung injuries.


Assuntos
Diabetes Mellitus , Hiperglicemia , Lesão Pulmonar , Humanos , Diabetes Mellitus/metabolismo , Matriz Extracelular/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Heparina/farmacologia , Heparina/metabolismo , Ácido Hialurônico/metabolismo , Hiperglicemia/metabolismo , Lesão Pulmonar/metabolismo , Monócitos/metabolismo , Animais , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...