Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
ACS Appl Mater Interfaces ; 16(29): 37806-37817, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38988002

RESUMO

Food waste is an enormous challenge, with implications for the environment, society, and economy. Every year around the world, 1.3 billion tons of food are wasted or lost, and food waste-associated costs are around $2.6 trillion. Waste upcycling has been shown to mitigate these negative impacts. This study's optimized pomelo-peel biomass-derived porous material-based triboelectric nanogenerator (PP-TENG) had an open circuit voltage of 58 V and a peak power density of 254.8 mW/m2. As porous structures enable such triboelectric devices to respond sensitively to external mechanical stimuli, we tested our optimized PP-TENG's ability to serve as a self-powered sensor of biomechanical motions. As well as successfully harvesting sufficient mechanical energy to power light-emitting diodes and portable electronics, our PP-TENGs successfully monitored joint motions, neck movements, and gait patterns, suggesting their strong potential for use in healthcare monitoring and physical rehabilitation, among other applications. As such, the present work opens up various new possibilities for transforming a prolific type of food waste into value-added products and thus could enhance long-term sustainability while reducing such waste.


Assuntos
Biomassa , Fontes de Energia Elétrica , Porosidade , Nanotecnologia , Alimentos , Humanos , Citrus/química , Perda e Desperdício de Alimentos
2.
ACS Sens ; 9(6): 3009-3016, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38836608

RESUMO

Immune checkpoint inhibitors (ICIs) targeting programmed cell death ligand 1 (PD-L1), or its receptor, PD-1 have improved survival in patients with non-small-cell lung cancer (NSCLC). Assessment of PD-L1 expression requires tissue biopsy or fine needle aspiration that are currently used to identify patients most likely to respond to single agent anti-PD-1/PD-L1 therapy. However, obtaining sufficient tissue to generate a PD-L1 tissue proportion score (TPS) ≥ 50% using immunohistochemistry remains a challenge that potentially may be overcome by liquid biopsies. This study utilized a mesoporous gold sensor (MGS) assay to examine the phosphorylation status of PD-L1 in plasma extracellular vesicles (EV pPD-L1) and PD-L1 levels in plasma from NSCLC patient samples and their association with tumor PD-L1 TPS. The 3-dimensional mesoporous network of the electrodes provides a large surface area, high signal-to-noise ratio, and a superior electro-conductive framework, thereby significantly improving the detection sensitivity of PD-L1 nanosensing. Test (n = 20) (Pearson's r = 0.99) and validation (n = 45) (Pearson's r = 0.99) cohorts show that EV pPD-L1 status correlates linearly with the tumor PD-L1 TPS assessed by immunohistochemistry irrespective of the tumor stage, with 64% of patients overall showing detectable EV pPD-L1 levels in plasma. In contrast to the EV pPD-L1 results, plasma PD-L1 levels did not correlate with the tumor PD-L1 TPS score or EV pPD-L1 levels. These data demonstrate that EV pPD-L1 levels may be used to select patients for appropriate PD-1 and PD-L1 ICI therapy regimens in early, locally advanced, and advanced NSCLC and should be tested further in randomized controlled trials. Most importantly, the assay used has a less than 24h turnaround time, facilitating adoption of the test into the routine diagnostic evaluation of patients prior to therapy.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Ouro , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/sangue , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ouro/química , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fosforilação , Porosidade , Técnicas Biossensoriais/métodos , Pessoa de Meia-Idade , Masculino , Feminino
3.
Adv Sci (Weinh) ; 11(23): e2309564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582520

RESUMO

Self-assembly processes triggered by physical or chemical driving forces have been applied to fabricate hierarchical materials with subtle nanostructures. However, various physicochemical processes often interfere with each other, and their precise control has remained a great challenge. Here, in this paper, a rational synthesis of 1D magnetite-chain and mesoporous-silica-nanorod (Fe3O4&mSiO2) branched magnetic nanochains via a physical-chemical coupling coassembly approach is reported. Magnetic-field-induced assembly of magnetite Fe3O4 nanoparticles and isotropic/anisotropic assembly of mesoporous silica are coupled to obtain the delicate 1D branched magnetic mesoporous nanochains. The nanochains with a length of 2-3 µm in length are composed of aligned Fe3O4@mSiO2 nanospheres with a diameter of 150 nm and sticked-out 300 nm long mSiO2 branches. By properly coordinating the multiple assembly processes, the density and length of mSiO2 branches can well be adjusted. Because of the unique rough surface and length in correspondence to bacteria, the designed 1D Fe3O4&mSiO2 branched magnetic nanochains show strong bacterial adhesion and pressuring ability, performing bacterial inhibition over 60% at a low concentration (15 µg mL-1). This cooperative coassembly strategy deepens the understanding of the micro-nanoscale assembly process and lays a foundation for the preparation of the assembly with adjustable surface structures and the subsequent construction of complex multilevel structures.

4.
ACS Sens ; 9(5): 2585-2595, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38642060

RESUMO

Achieving ultrasensitive and rapid detection of 3-methylbutyraldehyde is crucial for monitoring chemical intermediate leakage in pharmaceutical and chemical industries as well as diagnosing ventilator-associated pneumonia by monitoring exhaled gas. However, developing a sensitive and rapid method for detecting 3-methylbutyraldehyde poses challenges. Herein, a wireless chemiresistive gas sensor based on a mesoporous ZnO-SnO2 heterostructure is fabricated to enable the ultrasensitive and rapid detection of 3-methylbutyraldehyde for the first time. The mesoporous ZnO-SnO2 heterostructure exhibits a uniform spherical shape (∼79 nm in diameter), a high specific surface area (54.8 m2 g-1), a small crystal size (∼4 nm), and a large pore size (6.7 nm). The gas sensor demonstrates high response (18.98@20 ppm), short response/recovery times (13/13 s), and a low detection limit (0.48 ppm) toward 3-methylbutyraldehyde. Furthermore, a real-time monitoring system is developed utilizing microelectromechanical systems gas sensors. The modification of amorphous ZnO on the mesoporous SnO2 pore wall can effectively increase the chemisorbed oxygen content and the thickness of the electron depletion layer at the gas-solid interface, which facilitates the interface redox reaction and enhances the sensing performance. This work presents an initial example of semiconductor metal oxide gas sensors for efficient detection of 3-methylbutyraldehyde that holds great potential for ensuring safety during chemical production and disease diagnosis.


Assuntos
Compostos de Estanho , Óxido de Zinco , Óxido de Zinco/química , Compostos de Estanho/química , Porosidade , Limite de Detecção , Aldeídos/química , Gases/química , Gases/análise , Tecnologia sem Fio
5.
Turk J Chem ; 48(1): 50-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544887

RESUMO

The magnetic mesoporous silica material, Mag-MCM-41, was synthesized by coating magnetite (Fe3O4) nanoparticles with a mesoporous material called MCM-41. Mag-MCM-41 and modified nanomaterials Mag-MCM-41-NN and Mag-MCM-41-NN-Fe+3 which were modified with aminopropyl functional groups. In water and wastewater, phosphate anions are considered significant contaminants due to their detrimental impact on the environment. They promote the growth of algae, leading to eutrophication. The purpose of this study is to investigate the removal of phosphate anions from aqueous solutions using modified magnetic silica particles. The Mag-MCM-41 material exhibits hexagonal properties and belongs to the class of "mesoporous" materials. It has a surface area of 923 m2.g-1, which was determined through N2 adsorption-desorption isotherms, FTIR, TEM, BET, and SAXS analysis. Kinetic and adsorption isotherm studies were conducted using Mag-MCM-41, Mag-MCM-41-NN, and Mag-MCM-41-NN-Fe+3 adsorbents to examine the behavior of phosphate anions. The kinetic and adsorption isotherm studies of phosphate anions revealed that the adsorption process on Mag-MCM-41, Mag-MCM-41-NN, and Mag-MCM-41-NN-Fe+3 adsorbents followed the chemical adsorption mechanism. Phosphate adsorption on all adsorbents occurred in a monolayer, and the MCM-41-NN-Fe+3 adsorbent exhibited the highest maximum adsorption capacity (qm) value of 112.87 mg.g-1 compared to the other adsorbents.

6.
Angew Chem Int Ed Engl ; 62(47): e202312001, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37806963

RESUMO

Rechargeable sodium/chlorine (Na/Cl2 ) batteries are emerging candidates for sustainable energy storage owing to their superior energy densities and the high abundance of Na and Cl elements. However, their practical applications have been plagued by the poor rate performance (e.g., a maximum discharge current density of 150 mA g-1 ), as the widely used carbon nanosphere cathodes show both sluggish electron-ion transport and reaction kinetics. Here, by mimicking the sufficient mass and energy transport in a sponge, we report a bicontinuous-structured carbon cubosome with heteroatomic doping, which allows efficient Na+ and electron transport and promotes Cl2 adsorption and conversion, thus unlocking ultrahigh-rate Na/Cl2 batteries, e.g., a maximum discharge current density of 16,000 mA g-1 that is more than two orders of magnitude higher than previous reports. The optimized solid-liquid-gas (carbon-electrolyte-Cl2 ) triple interfaces further contribute to a maximum reversible capacity and cycle life of 2,000 mAh g-1 and 250 cycles, respectively. This study establishes a universal approach for improving the sluggish kinetics of conversion-type battery reactions, and provides a new paradigm to resolve the long-standing dilemma between high energy and power densities in energy storage devices.

7.
Pharmaceutics ; 15(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37765227

RESUMO

Currently, the treatment of wounds is still a challenge for healthcare professionals due to high complication incidences and social impacts, and the development of biocompatible and efficient medicines remains a goal. In this regard, mesoporous materials loaded with bioactive compounds from natural extracts have a high potential for wound treatment due to their nontoxicity, high loading capacity and slow drug release. MCM-41-type mesoporous material was synthesized by using sodium trisilicate as a silica source at room temperature and normal pressure. The synthesized mesoporous silica was characterized by using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), N2 absorption-desorption (BET), Dynamic Light Scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR), revealing a high surface area (BET, 1244 m2/g); pore diameter of approx. 2 nm; and a homogenous, ordered and hexagonal geometry (TEM images). Qualitative monitoring of the desorption degree of the Salvia officinalis (SO) extract, rich in ursolic acid and oleanolic acid, and Calendula officinalis (CO) extract, rich in polyphenols and flavones, was performed via the continuous recording of the UV-VIS spectra at predetermined intervals. The active ingredients in the new composite MCM-41/sage and marigold (MCM-41/SO&CO) were quantified by using HPLC-DAD and LC-MS-MS techniques. The evaluation of the biological composites' activity on the wound site was performed on two cell lines, HS27 and HaCaT, naturally involved in tissue-regeneration processes. The experimental results revealed the ability to stimulate collagen biosynthesis, the enzymatic activity of the main metalloproteinases (MMP-2 and MMP-9) involved in tissue remodeling processes and the migration rate in the wound site, thus providing insights into the re-epithelializing properties of mesoporous composites.

8.
Materials (Basel) ; 16(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570122

RESUMO

This paper describes a novel electrode material, diclofenac-impregnated mesoporous carbon modified with a cationic surfactant, cetyltrimethylammonium bromide (DF-CMK-3/CTAB), for ultratrace analysis of the arsenic drug roxarsone (ROX). DF-CMK-3 amorphous carbon is a material with a high specific surface area and well-defined, hexagonally ordered, thin mesopores. The functional groups attached to the carbonaceous surface, such as chromene and pyron-like oxygen groups, lactam, and aromatic carbon rings, have the basic character and they can donate electrons. Modification of DF-CMK-3 with a CTAB layer significantly increases the analytical signal due to electrostatic interactions between the cationic surfactant and the anion form of ROX in the acidic medium. The voltammetric procedure at the glassy carbon sensor modified with DF-CMK-3/CTAB exhibited excellent sensitivity (limit of detection of 9.6 × 10-11 M) with a wide range of linearity from 5.0 × 10-10 to 1.0 × 10-4 M. Analysis of real samples (treated municipal wastewater and river water) showed recoveries from 96 to 102% without applying the complicated sample pretreatment step. The sensor demonstrated excellent sensitivity in the analysis of the arsenic drug ROX in the presence of interferences in environmental water samples.

9.
J Environ Manage ; 345: 118629, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499417

RESUMO

Equipped with hierarchical pores and three-dimensional (3D) center-radial channels, dendritic mesoporous nanoparticles (DMNs) make their pore volumes extremely large, specific surface areas super-high, internal spaces especially accessible, and so on. Other entities (like organic moieties or nanoparticles) can be modified onto the interfaces or skeletons of DMNs, accomplishing their functionalization for desirable applications. This comprehensive review emphasizes on the design and construction of DMNs-based systems which serve as sensors, adsorbents and catalysts for the detection, adsorption, and degradation of hazardous substances, mainly including the construction procedures of brand-new DMNs-based materials and the involved hazardous substances (like industrial chemicals, chemical dyes, heavy metal ions, medicines, pesticides, and harmful gases). The sensitive, adsorptive, or catalytic performances of various DMNs have been compared; correspondingly, the reaction mechanisms have been revealed strictly. It is honestly anticipated that the profound discussion could offer scientists certain enlightenment to design novel DMNs-based systems towards the detection, adsorption, and degradation of hazardous substances, respectively or comprehensively.


Assuntos
Metais Pesados , Nanopartículas , Substâncias Perigosas , Adsorção , Porosidade , Nanopartículas/química
10.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903467

RESUMO

Mesoporous bioactive glass is a promising biomaterial for bone tissue engineering due to its good biocompatibility and bioactivity. In this work, we synthesized a hierarchically porous bioactive glass (HPBG) using polyelectrolyte-surfactant mesomorphous complex as template. Through the interaction with silicate oligomers, calcium and phosphorus sources were successfully introduced into the synthesis of hierarchically porous silica, and HPBG with ordered mesoporous and nanoporous structures was obtained. The morphology, pore structure and particle size of HPBG can be controlled by adding block copolymer as co-template or adjusting the synthesis parameters. The ability to induce hydroxyapatite deposition in simulated body fluids (SBF) demonstrated the good in vitro bioactivity of HPBG. Overall, this work provides a general method for the synthesis of hierarchically porous bioactive glasses.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Porosidade , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Dióxido de Silício , Cálcio , Vidro/química
11.
Colloids Surf B Biointerfaces ; 225: 113273, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965332

RESUMO

Porous silicon nanoparticles (pSiNPs) have gained attention from drug delivery systems (DDS) due to their biocompatibility, high drug-loading efficiency, and facile surface modification. To date, many surface chemistries of pSiNPs have been developed to maximize the merits and overcome the drawbacks of pSiNPs. In this work, we newly disclosed a formulation, iron-silicate-coated pSiNPs (Fe-pSiNPs-NCS), using the surface modification method with iron-silicate and 3-isothiocyanatopropyltriethoxysilane (TEPITC). Fe-pSiNPs-NCS demonstrated effective reactive-oxygen species (ROS) self-generation ability via a Fenton-like reaction of iron-silicate and in situ hydrogen peroxide (H2O2) generation of TEPITC on the surface of pSiNPs, resulting in excellent anticancer effect in U87MG cancer cells. Moreover, we confirmed that Fe-pSiNPs-NCS could be used as a drug delivery carrier as it was proven that anticancer drugs (doxorubicin, SN-38) were loaded into Fe-pSiNPs-NCS with high-loading efficiency. These findings could offer efficient strategies for developing nanotherapeutics in biomedical fields.


Assuntos
Nanopartículas , Silício , Silício/farmacologia , Espécies Reativas de Oxigênio , Ferro , Porosidade , Peróxido de Hidrogênio , Silicatos , Portadores de Fármacos , Dióxido de Silício
12.
Int J Pharm X ; 5: 100149, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36593988

RESUMO

The incorporation of drug-loaded mesoporous materials in dosage forms prepared with fused deposition modeling (FDM) has shown the potential to solve challenges relating to additive manufacturing techniques, such as the stability of poorly-soluble drugs in the amorphous state. However, the addition of these non-melting mesoporous materials significantly affects the mechanical properties of the filament used in FDM, which in turn affects the printability of the feedstock material. Therefore, in this study a full-factorial experimental design was utilized to investigate different processing parameters of the hot melt extrusion process, their effect on various mechanical properties and the potential correlation with the filaments' printability. The thermolabile, poorly-soluble drug ibuprofen was utilized as a model drug to assess the potential of two mesoporous materials, Mesoporous Magnesium Carbonate (MMC) and a silica-based material (MCM-41), to thermally protect the loaded drug. Factorial and principal components analysis displayed a correlation between non-printable MCM-41 filaments and their mechanical properties where printable filaments had a maximum stress >7.5 MPa and a Young's modulus >83 MPa. For MMC samples there was no clear correlation, which was in large part attributed to the filaments' inconsistencies and imperfections. Finally, both mesoporous materials displayed a thermal protective feature, as the decomposition due to the thermal degradation of a significant portion of the thermolabile drug was shifted to higher temperatures post-loading. This highlights the potential capability of such a system to be implemented for thermosensitive drugs in FDM applications.

13.
Environ Sci Pollut Res Int ; 30(28): 71649-71664, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34185274

RESUMO

In this study, LUS-1, as a mesoporous silica material, was functionalized using sulfur-containing ligand (Bis [3-(triethoxysilyl) propyl] tetrasulfide, TESPT) and used for mercury removal from the aqueous solution. Different characterizations such as N2 adsorption-desorption (BET), TGA, XRD, FT-IR, and SEM were used to verify the nanocomposite synthesis. In addition, the effects of several independent parameters like pH, the contact time of reaction, and adsorbent dose on the removal efficiency of mercury from aqueous in a batch system were studied using response surface methodology (RSM). Based on the results and after both theoretical and experimental studies, the optimum conditions using the LUS-1-TESPT were contact time of reaction of 23.16 min, sorbent dose of 51.12 mg, and pH of 4.5. The kinetic and isotherm models for the adsorption process showed a maximum adsorption capacity of adsorbent which was 136.73 mg g-1 with 99% removal of Hg(II) via the Langmuir model. Meanwhile, the sorbent's reusability and efficiency verified that the sorbent could be used five times after recovery with 99% efficiency.


Assuntos
Mercúrio , Nanocompostos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Mercúrio/química , Água/química , Nanocompostos/química , Adsorção , Cinética
14.
Environ Res ; 218: 114983, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462696

RESUMO

Dearomatization through photocatalytic oxidation is a swiftly rising phenolic compounds removal technology that works at trifling operations requirements with a special emphasis on the generation of nontoxic products. The study aims to develop a LaVO4/MCM-48 nanocomposite that was prepared via a hydrothermally approach assisting the employment of an MCM-48 matrix, which was then utilized for phenol degradation processes. Various techniques including UV-Vis DRS, FTIR, PL, Raman, TEM, and BET analyses are employed to characterize the developed photocatalyst. The developed photocatalyst presented remarkable characteristics, especially increased light photon utilization, and reduced recombination rate leading to enhanced visible-light-driven photodegradation performance owing to the improved specific surface area, specific porosities, and <2 eV narrow energy bandgap. The LaVO4/MCM-48 nanocomposite was experienced on aqueous phenol solution having 20 mg/L concentration under visible-light exposure, demonstrating exceptional performance in photodegradation up to 99.28%, comparatively higher than pure LaVO4. The conducted kinetic measurements revealed good accordance with pseudo first-order. A possible reaction mechanism for photocatalytic degradation was also predicted. The as-synthesized LaVO4/MCM-48 nanocomposite presented excellent stability and recyclability.


Assuntos
Nanocompostos , Fenol , Águas Residuárias , Luz , Fenóis
15.
J Environ Sci Health B ; 58(1): 1-9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573540

RESUMO

The present study examined the effects of mesoporous silica nanoparticles (MSNs) on its adsorption capacity of aflatoxin B1 (AFB1). Moreover, the study evaluated the toxicity of MSNs with AFB1 using NIH3T3 cells and hemolysis test. The obtained MSNs were spherical, irregular-like in shape, having a mean size of 39.97 ± 7.85 nm and a BET surface area of 1195 m2/g. At 0.1 mg mL-1 concentration of MSN, the AFB1 adsorption capacity was 30%, which reached 70% when the MSN concentration increased to 2.0 mg mL-1. Our findings showed that AFB1 was adsorbed (∼67%) in the first few minutes on being in contact with MSNs, reaching an adsorption capacity of ∼70% after 15 min. Thereafter, the adsorption capacity remained constant in solution, demonstrating that the MSNs adsorbed toxins even beyond overnight. MSN treatment (0.5-2.0 mg mL-1) using NIH3T3 cells did not result in any reduction in cell viability. In addition, MSN treatment completely reversed the cytotoxic effect of AFB1 at all concentrations. Hemolysis test also revealed no hemolysis in MSNs evaluated alone and in those combined with AFB1. To the best of our knowledge, this study is the first to demonstrate that MSN can reduce cell toxicity produced by AFB1 due to its potential to adsorb mycotoxins.


Assuntos
Micotoxinas , Nanopartículas , Animais , Camundongos , Aflatoxina B1 , Dióxido de Silício , Células NIH 3T3
16.
Turk J Chem ; 47(6): 1518-1528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38544702

RESUMO

Studies on natural products with anticancer properties have gained more importance in recent years in order to not damage healthy tissues during cancer treatments or to perform the treatment causing the least damage. Curcumin is a common natural product with anticancer properties, but its low solubility, instability, and bioavailability have limited its use in clinical applications in cancer research. As a proposed solution to this problem, a new mesoporous organosilica nanocarrier (MON-A) functionalized with a 1,2-diphenylethane-1,2-diamine structure capable of pH-controlled release was prepared in this study. MON-A was characterized by TGA, BET, XRD, FT-IR, and SEM-EDS analyses. Dispersion of MON-A into curcumin stock solution in ethanol afforded a curcumin-loaded MON-A-Cur system. Elevated loading capacity and pH-controlled release were provided by the Schiff base reaction that occurred during loading of curcumin with 1,2-diphenylethane-1,2-diamine placed on the silica wall of the nanocarrier system. The encapsulation efficiency was 25% for MON-A-Cur. In in vitro release experiments, curcumin release from the MON-A-Cur system was 0.5% at physiological and endosomal pH values. The resulting low release percentage indicates the presence of very strong interactions between the nanocarrier MON-A and curcumin. This strong interaction showed that MON-A nanocarrier could carry 99.5% of the curcumin without leakage under physiological and endosomal pH conditions without using pore capping agents. At a lower acidic pH value (pH 4.5), 26.3% curcumin release was obtained. These findings showed that the cumulative release of curcumin from the MON-A-Cur system can be achieved in a long-term and pH-controlled manner.

17.
Gels ; 8(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36354619

RESUMO

As a third-generation ß-lactam antibiotic, cefotaxime shows a broad-spectrum with Gram-positive and Gram-negative bacteria activity and is included in WHO's essential drug list. In order to obtain new materials with sustained release properties, the present research focuses on the study of cefotaxime absorption and desorption from different functionalized mesoporous silica supports. The MCM-41-type nanostructured mesoporous silica support was synthesized by sol-gel technique using a tetraethyl orthosilicate (TEOS) route and cetyltrimethylammonium bromide (CTAB) as a surfactant, at room temperature and normal pressure. The obtained mesoporous material (MCM-41 class) was characterized through nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), N2 absorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR), proving a good micro-structured homogeneity (SEM images), a high surface area (BET, 1029 m2/g) correlated with high silanolic activity (Q3/Q4 peak ratio from 29Si MAS-NMR), and an expected uniform hexagonal structure (2-3 nm, HRTEM). In order to non-destructively link the antibiotic compound on the solid phase, MCM-41 was further functionalized in two steps: with aminopropyl trimethoxysilane (APTMS) and glutaraldehyde (GA). Three cefotaxime-loaded materials were comparatively studied for low release capacity: the reference material with adsorbed cefotaxime on MCM-41, MCM-41/APS (aminopropyl silyl surface functionalization) adsorbed cefotaxime material, and APTMS-GA bounded MCM-41-cefotaxime material. The slow-release profiles were obtained by using an on-flow modified HPLC system. A significant improved release capacity was identified in the case of MCM-41/APS/GA-cefotaxime due to the covalent surface grafting of the biological active compound, recommending this class of materials as an effective carrier of bioactive compounds in wound dressing, anti-biofilm coatings, advanced drugs, and other related applications.

18.
J Colloid Interface Sci ; 625: 435-445, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35724466

RESUMO

Mesoporous vanadium oxide nanospheres are a very promising nanozyme for antibacterial and chemical sensing. However, controllable synthesis of mesoporous vanadium oxide nanospheres with uniform structure and small diameter (<200 nm) remains challenging. Herein, mesoporous vanadium oxide nanospheres (MVONs) with a small, uniform and adjustable particle size (52-105 nm), large mesopore size (5.1-5.8 nm), and high specific surface area (up to 63.7 m2 g-1) are constructed via a self-template strategy using tannic acid, formaldehyde and vanadium compounds as a polymerizable ligand, cross-linking agent and metal source, respectively. The relationships between synthesis conditions and material nanostructure are systematically investigated. The particle size and peroxidase-like activity of MVONs can be easily changed by adding different amounts of Pluronic block copolymer F127. Owing to the mesoporous structure, high specific surface area and small particle size, MVONs can effectively convert H2O2 into extremely toxic reactive oxygen species, and further kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). This research establishes a universal, reliable method for synthesizing mesoporous vanadium oxide nanospheres, which might be used in catalysis, biosensors, and antibacterial treatment.


Assuntos
Nanosferas , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Peróxido de Hidrogênio/química , Nanosferas/química , Óxidos/farmacologia , Peroxidases , Poloxâmero , Porosidade , Staphylococcus aureus , Vanádio
19.
Biomedicines ; 10(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327463

RESUMO

ß-Tricalcium phosphate was combined with silica aerogel in composites prepared using the sol-gel technique and supercritical drying. The materials were used in this study to check their biological activity and bone regeneration potential with MG63 cell experiments. The composites were sintered in 100 °C steps in the range of 500-1000 °C. Their mechanical properties, porosities, and solubility were determined as a function of sintering temperature. Dissolution studies revealed that the released Ca-/P molar ratios appeared to be in the optimal range to support bone tissue induction. Cell viability, ALP activity, and type I collagen gene expression results all suggested that the sintering of the compound at approximately 700-800 °C as a scaffold could be more powerful in vivo to facilitate bone formation within a bone defect, compared to that documented previously by our research team. We did not observe any detrimental effect on cell viability. Both the alkaline phosphatase enzyme activity and the type I collagen gene expression were significantly higher compared with the control and the other aerogels heat-treated at different temperatures. The mesoporous silica-based aerogel composites containing ß-tricalcium phosphate particles treated at temperatures lower than 1000 °C produced a positive effect on the osteoblastic activity of MG63 cells. An in vivo 6 month-long follow-up study of the mechanically strongest 1000 °C sample in rat calvaria experiments provided proof of a complete remodeling of the bone.

20.
Environ Sci Pollut Res Int ; 29(8): 11172-11184, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34532800

RESUMO

This study describes the sustainable and eco-friendly synthesis of the silica-based mesoporous structure from the use of alternative amorphous silica extracted from rice husk ash (RHA). The mesoporous material was called MCM-48 (RHA), and its application as adsorbent to the antimony (Sb) remediation in environmental samples was tested. The adsorbent was prepared by an efficient and sustainable hydrothermal method, which exhibited an amorphous framework with type IV isotherms and type H1 hysteresis, and surface area, total pore volume, and pore diameter values of 820.9 m2 g-1, 0.6 cm3 g-1, and 3.7 nm, respectively. In addition, the MCM-48 (RHA) exhibited a three-dimensional cubic mesostructure (Ia3d space-group symmetry) with a narrow mesopore distribution, uniform spherical particles, and well-defined architecture. Multivariate optimization using a factorial design (24) was employed in the adsorption tests of Sb. The variables evaluated and the optimum conditions obtained were (i) adsorbent mass (45 mg); (ii) adsorption time (115 min); (iii) pH 2; and (iv) Sb initial concentration of 8 mol L-1. In these conditions, we found a maximum adsorption efficiency of Sb in the order of 95%. The adsorbent material proposed in this study proved to be efficient for Sb remediation in water samples under different experimental conditions. A total of five samples were analyzed and Sb concentrations on the order of 8 ppm were added, in which a removal efficiency of Sb raging between 88 and 96% was obtained for the remediation in real samples. In addition, the low cost of the synthesis of MCM-48 (RHA) in combination with its high and fast adsorption capacities offers a great promise for wastewater remediation, which makes it very attractive for environmental approaches.


Assuntos
Antimônio , Poluentes Químicos da Água , Adsorção , Projetos de Pesquisa , Dióxido de Silício , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...