Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1308841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962681

RESUMO

Background: Untargeted metabonomics has provided new insight into the pathogenesis of sarcopenia. In this study, we explored plasma metabolic signatures linked to a heightened risk of sarcopenia in a cohort study by LC-MS-based untargeted metabonomics. Methods: In this nested case-control study from the Adult Physical Fitness and Health Cohort Study (APFHCS), we collected blood plasma samples from 30 new-onset sarcopenia subjects (mean age 73.2 ± 5.6 years) and 30 healthy controls (mean age 74.2 ± 4.6 years) matched by age, sex, BMI, lifestyle, and comorbidities. An untargeted metabolomics methodology was employed to discern the metabolomic profile alterations present in individuals exhibiting newly diagnosed sarcopenia. Results: In comparing individuals with new-onset sarcopenia to normal controls, a comprehensive analysis using liquid chromatography-mass spectrometry (LC-MS) identified a total of 62 metabolites, predominantly comprising lipids, lipid-like molecules, organic acids, and derivatives. Receiver operating characteristic (ROC) curve analysis indicated that the three metabolites hypoxanthine (AUC=0.819, 95% CI=0.711-0.927), L-2-amino-3-oxobutanoic acid (AUC=0.733, 95% CI=0.598-0.868) and PC(14:0/20:2(11Z,14Z)) (AUC= 0.717, 95% CI=0.587-0.846) had the highest areas under the curve. Then, these significant metabolites were observed to be notably enriched in four distinct metabolic pathways, namely, "purine metabolism"; "parathyroid hormone synthesis, secretion and action"; "choline metabolism in cancer"; and "tuberculosis". Conclusion: The current investigation elucidates the metabolic perturbations observed in individuals diagnosed with sarcopenia. The identified metabolites hold promise as potential biomarkers, offering avenues for exploring the underlying pathological mechanisms associated with sarcopenia.


Assuntos
Metabolômica , Sarcopenia , Humanos , Sarcopenia/metabolismo , Sarcopenia/sangue , Masculino , Metabolômica/métodos , Feminino , Idoso , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Biomarcadores/sangue , Estudos de Coortes , Metaboloma , Idoso de 80 Anos ou mais , Espectrometria de Massas/métodos , Fatores de Risco , Hipoxantina/sangue , Hipoxantina/metabolismo , Espectrometria de Massa com Cromatografia Líquida
2.
Transl Cancer Res ; 13(6): 2721-2734, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988914

RESUMO

Background: Breast cancer (BC) has the highest incidence rate among female malignant tumors. Adjuvant chemotherapy is commonly used to reduce micrometastasis in postoperative patients. However, monitoring the efficacy of chemotherapy in BC is a major challenge in clinical practice. In this study, 1H nuclear magnetic resonance (NMR) metabonomics was performed to explore the serum metabolic characteristics of BC patients before and after adjuvant chemotherapy. Methods: In this study, we collected serum samples from 51 healthy controls and 61 BC patients before and after chemotherapy for 1H NMR metabolomic analysis, and tested the performance of each metabolite and combination segment by the receiver operating characteristic (ROC) curves. Results: Nine metabolites, namely glutamine, citrate, creatine, glycerophosphatidylcholine/phosphatidylcholine, glycine, 1-methylhistidine, lactate, pyruvate and formate had significant changes in BC patients before chemotherapy compared with healthy controls. Lactate, pyruvate, 1-methylhistidine and formate were found to be inversely regulated by chemotherapy. ROC analysis showed that a combination of the four metabolites had good prediction for chemotherapy efficacy with area under the curve of 0.958, sensitivity of 98.36% and specificity of 91.30%. There was no significant correlation between chemotherapy-related metabolites and clinical indicators of cancer patients, indicating that they can be used to evaluate the chemotherapy efficacy of patients with different clinical indicators. Conclusions: Effectively, dynamic and non-invasive metabolic markers for the evaluation of the efficacy of chemotherapy were identified in this study.

3.
Ultrason Sonochem ; 107: 106933, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865900

RESUMO

Extraction of anthocyanins from Lycium ruthenicum Murr. (L. ruthenicum) is a notable challenge in food production, requiring methods that balance efficiency and safety. In this study, we conducted a comparative analysis the extraction of anthocyanins by natural air drying (NAD), vacuum freeze drying (VFD), hot air drying (HAD), and vacuum microwave drying (MVD) combined with ultrasonic-assisted enzymolysis extraction (UAEE). The results demonstrated that the extraction yield and antioxidant activity of anthocyanins were significantly higher in VFD. This phenomenon can be attributed to the modification of raw material's microstructure, leading to an increased extraction yield of specific anthocyanins such as Cyanidin-3-galactoside, Delphinidin chloride, Cyanidin, and Petunidin. According to the pretreatment results, the extraction process of anthocyanins was further optimized. The highest yield (3.16 g/100 g) was obtained in following conditions: 0.24 % pectinase, 48 °C, solid:liquid = 1:21, and 21 min ultrasonic time. This study improves the commercial value and potential application of L. ruthenicum in food industry.


Assuntos
Antocianinas , Dessecação , Lycium , Antocianinas/isolamento & purificação , Antocianinas/química , Lycium/química , Dessecação/métodos , Ondas Ultrassônicas , Fracionamento Químico/métodos , Antioxidantes/isolamento & purificação , Antioxidantes/química , Poligalacturonase , Micro-Ondas
4.
Int J Biol Macromol ; 273(Pt 1): 132887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851621

RESUMO

Acute alcohol intoxication is a harmful clinical condition characterized by behavioral and neurological symptoms, for which few effective therapies are available at present. Dysfunction of microglial BV-2 cells has been reported to be associated with acute alcohol-induced brain injuries. In the present study, the protective effects of Eucommia ulmoides Oliv. leaves polysaccharides (EULP) on acute alcoholic brain injury and microglial dysfunction were investigated. 14-day pretreatment of EULP significantly attenuated neurobehavioral deficit and neurotransmitter damage in the brain tissue of mice caused by acute alcohol exposure. Additionally, EULP regulated the metabolic disorder of brain tissue. Consistently, it was shown that EULP pretreatment significantly improved alcohol-induced phagocytosis decrease, oxidative stress and inflammation in BV-2 cells. Therefore, EULP may be proposed and employed as a potential therapeutic agent for alcohol-induced brain damage.


Assuntos
Eucommiaceae , Microglia , Estresse Oxidativo , Folhas de Planta , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Eucommiaceae/química , Folhas de Planta/química , Estresse Oxidativo/efeitos dos fármacos , Masculino , Etanol , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/metabolismo , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Linhagem Celular , Fagocitose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-38920067

RESUMO

OBJECTIVES: Acute pancreatitis(AP) is a common digestive tract disease, often accompanied by severe metabolic disorders, but there are no specific markers and treatment methods, and the potential metabolic pathways behind it remain to be explored. METHODS: Establish mild acute pancreatitis and severe acute pancreatitis models in rats and intervene with antioxidant NAC. Analyze serum oxidative stress indicators and pathological changes in pancreatic tissue. In addition, non-targeted metabolomics analysis of serum differential metabolites between groups was conducted based on the LC/MS system. RESULTS: The pathological score of the model group rats increased, and the levels of oxidative stress factors ROS and MDA significantly increased, while the activity of the antioxidant enzyme SOD decreased. After NAC intervention, oxidative stress damage in rats was alleviated. Non-targeted metabolomics experiments suggest significant differences in serum metabolic profiles among different groups of rats. CONCLUSION: Metabolomics results show that the obtained differential metabolites are expected to become serum biomarkers for AP.

6.
Food Chem ; 455: 139846, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833863

RESUMO

Eurotium cristatum, a unique probiotic in Fu brick tea, is widely used in food processing to enhance added values. Here, green kernel black beans (GKBBs) were solid-fermented with E. cristatum and dynamic changes in flavour, chemical composition and metabolites during fermentation were investigated. As results, E. cristatum fermentation altered aroma profiles and sensory attributes of GKBBs, especially reduced sourness. After fermentation, total polyphenolic and flavonoid contents in GKBBs were elevated, while polysaccharides, soluble proteins and short-chain fatty acids contents were decreased. E. cristatum fermentation also induced biotransformation of glycosidic isoflavones into sapogenic isoflavones. During fermentation, dynamic changes in levels of 17 amino acids were observed, in which 3 branched-chain amino acids were increased. Non-targeted metabolomics identified 51 differential compounds and 10 related metabolic pathways involved in E. cristatum fermentation of GKBBs. This study lays foundation for the development of green kernel black bean-based functional food products with E. cristatum fermentation.


Assuntos
Eurotium , Fermentação , Valor Nutritivo , Paladar , Humanos , Eurotium/metabolismo , Eurotium/química , Sementes/metabolismo , Sementes/química , Sementes/microbiologia , Polifenóis/metabolismo , Polifenóis/análise , Polifenóis/química , Flavonoides/metabolismo , Flavonoides/análise , Aminoácidos/metabolismo , Aminoácidos/análise
7.
Phytomedicine ; 132: 155329, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38853123

RESUMO

BACKGROUND: Currently, there are many drugs available for the treatment of type 2 diabetes mellitus (T2DM), but most of them cause various side effects due to the need for long-term use. As a traditional Chinese medicine, Gegen Qinlian Decoction (GQD) has shown good efficacy and low side effects in the treatment of T2DM in both clinical and basic research. Based on relevant traditional Chinese medicine theories, dried ginger is innovatively added the formula of traditional GQD to create a modified GQD. This modification reduces the side effects of traditional GQD while exerting its therapeutic effect on T2DM. Previous studies have found that the modified GQD can regulate endoplasmic reticulum stress in the liver, inhibit hepatic gluconeogenesis, protect pancreatic islet ß cells, and control blood sugar levels by inhibiting the FXR/neuronal ceramide signaling pathway. GQD can also regulate the intestinal microbiota to achieve therapeutic and protective effects in various gastrointestinal diseases. However, there is no research exploring whether the modified GQD achieves its therapeutic mechanism for T2DM by regulating the intestinal microbiota. PURPOSE: To explore the mechanism of modified GQD in the treatment of T2DM based on multi-omics, focusing on its effect on the "intestinal flora bile acid TGR5'' axis. METHODS: The T2DM model was established using db/db mice, which were randomly divided into a model group, metformin group, high-dose GQD group, medium-dose GQD group, low-dose GQD group, while m/m mice were used as blank control. The drug intervention lasted for 12 weeks, during which the general conditions, oral glucose tolerance (OGT), blood glucose, and lipid-related indexes were recorded. Additionally, the fasting insulin (FINS), c-peptide, GLP-1 in serum, and cAMP in the ileum were measured by ELISA assay. Furthermore, the composition, abundance, and function of the intestinal microbiota were determined by macro genome sequencing, while bile acid was detected by targeted metabonomics. For histological evaluation, HE staining was used to observe the pathological changes of the ileum and pancreas, and the ultrastructure of the ileum and pancreas was observed by transmission electron microscopy. Apoptosis in the ileum tissue was detected by Tunel staining. Moreover, the mRNA and protein expressions of TGR5, PKA, CREB, PC1/3, GLP-1, and their phosphorylation levels in the ileum were detected by qPCR, immunohistochemistry, and Western blot; The expression of INS in the pancreas was also evaluated using immunohistochemistry. Finally, double immunofluorescence staining was used to detect the co-localization expression of TGR5 and GLP-1, NeuroD1, and GLP-1 in the ileum. RESULTS: The modified GQD was found to significantly reduce blood glucose, improve oral glucose tolerance, and blood lipid levels, as well as alleviate the injury of the ileum and pancreas in T2DM mice. Furthermore, modified GQD was found to effectively regulate intestinal flora, improve bile acid metabolism, activate the TRG5/cAMP/PKA/CREB signal pathway, and stimulate GLP-1 secretion. CONCLUSION: GQD can regulate the "intestinal flora-bile acid-TGR5" axis and has a therapeutic effect on T2DM in mice.

8.
J Pharm Biomed Anal ; 248: 116264, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38889577

RESUMO

Anemarrhena asphodeloides Bunge-Phellodendron chinense Schneid (AAPC) is one of the most widely accepted herb pairs in Chinese medicine prescription for treating benign prostatic hyperplasia (BPH). However, the mechanisms underlying the combination of the two herbs for anti-BPH are still not completely clear. To uncover the potential mechanism of the AAPC herb pair in the treatment of BPH, chemical profiling, network pharmacology, serum metabonomics and experimental validation were integrated. UHPLC-Q-Exactive Orbitrap-MS was performed to characterize the chemical profiling of the herb pair extract, and network pharmacology was employed to forecast the potential effective components, core targets and key signaling pathways. Then, western blot and RT-PCR experiments were conducted to verify the PI3K/Akt/NF-κB signaling pathway predicted by network pharmacology. Finally, the serum differential metabolites and metabolic pathways were analyzed by serum non-targeted metabonomics, and these results were jointly analyzed by MetScape. 51 chemical components of the AAPC herb pair extract were identified, including phellodendrine, magnoflorine, berberine, mangiferin, anemarsaponin BIII, etc. In network pharmacology, the predicted core targets of these components include AKT1, TNF, EGFR, PTGS2, PIK3CA, etc. The KEGG pathway enrichment analysis indicated that PI3K-Akt, Rap1 and MAPK signaling pathways may play a key role in the AAPC herb pair for the treatment of BPH, and the results of animal experiments demonstrated that the herb pair could significantly inhibit the activation and expression of p-PI3K/PI3K, p-Akt/Akt, p-NF-κB/NF-κB in protein and mRNA levels. Furthermore, 31 serum differential metabolites and three main metabolic pathways were obtained by serum non-targeted metabonomics. And the crucial metabolic pathway of arachidonic acid (AA) was obtained by integrated analysis of network pharmacology and metabonomics results. In conclusion, the AAPC herb pair can improve BPH through inhibiting the activation and expression of the PI3K/Akt/NF-κB signaling pathway and AA metabolism.

9.
Front Vet Sci ; 11: 1387853, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835895

RESUMO

Locoweed is a poisonous plant widely present in grasslands around the world. Swainsonine (SW), an indole alkaloid that, is the main toxic component of the locoweed. To understand the mechanism of SW-induced toxicity and to delineate the metabolic profile of locoweed poisoning we performed the LC-MS/MS untargeted metabolomic study to analyze metabolites in SW-treated renal tubular epithelial cells (0.8 mg/mL, 12 h) and in order to identify the SW-induced metabolomic changes. The analysis identified 2,563 metabolites in positive ion mode and 1,990 metabolites in negative ion mode. Our results showed that the metabolites were mainly benzenoids, lipids and lipid-like molecules, nucleosides, nucleotides, and analogs, organic acids, and derivatives. The differential metabolites were primarily enriched in pathways involving bile secretion, primary bile acid biosynthesis, riboflavin metabolism, ferroptosis, drug metabolism-cytochrome P450, and primidine metabolism. We have screened out substances such as swainsonine, 3alpha,7alpha-Dihydroxy-5beta-cholestanate, 2-Hydroxyiminostilbene, and glycochenodeoxycholate, which may have the potential to serve as biomarkers for swainsonine poisoning. This study provides insights into the types of metabolomic alteration in renal tubular epithelial cells induced by swainsonine.

10.
Pestic Biochem Physiol ; 202: 105969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879313

RESUMO

Populus pseudo-cathayana × Populus deltoides is a crucial artificial forest tree species in Northeast China. The presence of the fall webworm (Hyphantria cunea) poses a significant threat to these poplar trees, causing substantial economic and ecological damage. This study conducted an insect-feeding experiment with fall webworm on P. pseudo-cathayana × P. deltoides, examining poplar's physiological indicators, transcriptome, and metabolome under different lengths of feeding times. Results revealed significant differences in phenylalanine ammonia-lyase activity, total phenolic content, and flavonoids at different feeding durations. Transcriptomic analysis identified numerous differentially expressed genes, including AP2/ERF, MYB, and WRKY transcription factor families exhibiting the highest expression variations. Differential metabolite analysis highlighted flavonoids and phenolic acid compounds of poplar's leaves as the most abundant in our insect-feeding experiment. Enrichment analysis revealed significant enrichment in the plant hormone signal transduction and flavonoid biosynthetic pathways. The contents of jasmonic acid and jasmonoyl-L-isoleucine increased with prolonged fall webworm feeding. Furthermore, the accumulation of dihydrokaempferol, catechin, kaempferol, and naringenin in the flavonoid biosynthesis pathway varied significantly among different samples, suggesting their crucial role in response to pest infestation. These findings provide novel insights into how poplar responds to fall webworm infestation.


Assuntos
Populus , Populus/genética , Populus/metabolismo , Animais , Flavonoides/metabolismo , Besouros/fisiologia , Besouros/metabolismo , Oxilipinas/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética , Ciclopentanos/metabolismo , Folhas de Planta/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas , Mariposas/genética , Mariposas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo
11.
Mol Nutr Food Res ; : e2400004, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840434

RESUMO

Fatigue, a common symptom in both diseased and healthy individuals, is a biological phenomenon characterized by a sense of extreme physical or mental exhaustion. To explore novel drugs and food sources of anti-fatigue, the hydroalcoholic extract of the root of Mirabilis himalaica (MH extract) is evaluated as anti-fatigue agents in this work, and clarifies that the mechanism of MH intervention in fatigue symptoms, and distribution of the anti-fatigue constituents in the plant of Mirabilis himalaica is examined. The results show that the MH extract have a significantly anti-fatigue effect via the pharmacological experiment and biochemical indicators. The network pharmacology, metabolomics, molecular docking, and pharmacology are integrated to determine that boeravinone A, B, and E are the pharmacoperones of anti-fatigue. Moreover, the compounds of boeravinone are present only in the root and not in the leaf and stem of the Mirabilis himalaica, which validates that root of Mirabilis himalaica is historically and officially utilized medicinal parts.

12.
BMC Complement Med Ther ; 24(1): 240, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902771

RESUMO

BACKGROUND: Acupuncture is a method for treating tic disorder. However, there is a lack of sufficient clinical objective basis in regards of its treatment efficacy. Indeed, there are structural abnormalities present in energy metabolism and infrared thermography in children with tic disorder. Therefore, this study proposes a clinical trial scheme to explore the possible mechanism of acupuncture in treating tic disorder. METHODS: This randomized controlled trial will recruit a total of 90 children, in which they will be divided into non-intervention group and intervention group. The non-intervention group consists of 30 healthy children while the intervention group consists of 60 children with tic disorder. The intervention group will be randomly allocated into either the treatment group or the control group, with 30 children randomly assigned in each group. Children either received acupuncture treatment and behavioral therapy (treatment group) or sham acupuncture treatment and behavioral therapy (control group), 3 treatment sessions per week for a period of 12 weeks, with a total of 36 treatment sessions. Outcome measures include YGTSS, urinary and fecal metabolomics, infrared thermography of body surface including governor vessel. For the intervention group, these outcome measures will be collected at the baseline and 90th day prior to intervention. Whereas for the non-intervention group, outcome measures (excluding YGTSS) will be collected at the baseline. DISCUSSION: The main outcome will be to observe the changes of the severity of tic condition, the secondary outcome will be to observe the changes of structural characteristic of infrared thermography of body surface/acupoints along the governor vessel and to evaluate the changes of urinary and fecal metabolomics at the end of the treatment, so as to analyze the relationship between them and to provide further knowledge in understanding the possible mechanism of acupuncture in improving the clinical symptoms via regulating and restoring the body metabolomics network, which in future it can develop as a set of clinical guideline (diagnosis, treatment, assessment, prognosis) in treating tic disorder. ChiCTR2300075188(Chinese Clinical Trial Registry, http://www.chictr.org.cn , registered on 29 August 2023).


Assuntos
Terapia por Acupuntura , Metabolômica , Termografia , Transtornos de Tique , Humanos , Termografia/métodos , Terapia por Acupuntura/métodos , Criança , Transtornos de Tique/terapia , Feminino , Masculino , Pré-Escolar , Adolescente , Raios Infravermelhos , Ensaios Clínicos Controlados Aleatórios como Assunto
13.
Biomed Pharmacother ; 177: 116894, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878634

RESUMO

BACKGROUND: To explore the neuroprotective mechanism of artemisinin against ischemic stroke from the perspective of NLRP3-mediated pyroptosis. METHODS: Serum metabolomics technology was used to analyze the serum samples of mice, and KEGG metabolic pathway was analyzed for the different metabolites in the samples. PIT model and OGD/R model were used to simulate ischemic stroke damage in vivo and in vitro. Hoechst 33342 staining, Annexin V-FITC/PI staining and TUNEL staining were used to detect the pyroptosis rate of cells. The contents of IL-1ß and IL-18 in PC12 cells and serum of mice were detected by ELISA. The expressions of NLRP3, ASC-1, Caspase-1 and TXNIP in PC12 cells and mouse brain tissue were detected by Western Blot. RESULTS: Serum metabolic profiles of animal models identified 234 different metabolites and 91 metabolic pathways. Compared with the Sham group and the Stroke+ART group, the KEGG pathway in the Stroke group was concentrated in the Necroptosis pathway associated with cell growth and death, and the NLRP3 inflammasome-mediated pyroptosis pathway was activated in the Necroptosis pathway after ischemic stroke. The results of in vivo and in vitro experiments showed that pretreatment with 10 µM artemisinin reduced ROS production, decreased Δψm, reduced pyroptosis, maintained neuronal cell morphology, and down-regulated the contents of IL-1ß and IL-18 as well as the expression of key proteins of NLRP3, ASC-1, Caspase-1 and TXNIP(p<0.01). CONCLUSION: Artemisinin can reduce neuronal pyroptosis induced by ischemic stroke by inhibiting ROS/TXNIP/NLRP3/Caspase-1 signaling pathway.

14.
Foods ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928861

RESUMO

In this study, the influence of the distillation system, geographical origin, and aging time on the volatiles of brandy was investigated. An untargeted metabolomics approach was used to classify the volatile profiles of brandies based on the presence of different distillation systems and geographical origins. Through the predictive ability of PLS-DA models, it was found that higher alcohols, C13-norisopenoids, and furans could serve as key markers to discriminate between continuous stills and pot stills, and the contents of C6/C9 compounds, C13-norisoprenoids, and sesquiterpenoids were significantly affected by brandy origin. A network analysis illustrated that straight-chain fatty acid ethyl esters gradually accumulated during aging, and several higher alcohols, furfural, 5-methylfurfural, 4-ethylphenol, TDN, ß-damascenone, naphthalene, styrene, and decanal were also positively correlated with aging time. This study provides effective methods for distinguishing brandies collected from different distillation systems and geographical origins and summarizes an overview of the changes in volatile compounds during the aging process.

15.
J Ethnopharmacol ; 332: 118291, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705427

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana radix (GR) and wine-processed Gentiana radix (WGR) have been commonly used in folk medicine for the treatment of bile or liver disorders, including jaundice, hepatitis, swelling and inflammation for thousands of years. However, the therapeutic effects of gentian root (GR) and wine-made gentian root (WGR) treatment on damp-heat jaundice syndrome (DHJS) have not been studied in animal experiments. AIM OF THE STUDY: This study aimed to investigate the protective effects and mechanisms of GR and WGR on DHJS in rats. MATERIALS AND METHODS: In a high-fat and high-sugar diet in a humidified hot environment, hepatic injury induced by giving alpha-naphthalene isothiocyanate (ANIT) in rats were used as a DHJS model. Histological analysis, enzyme-linked immunosorbent assay (ELISA), PCR analysis, and metabolomics were used to elucidate the mechanism of GR and WGR for DHJS. RESULTS: The results indicated that GR and WGR affected DHJS by inhibiting the release of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (D-BIL), total bilirubin (TBIL), total bile acid (TBA), malondialdehyde (MDA), glutathione S-transferase (GST) (P < 0.05). In addition, they significantly reduced the gene expression levels of Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BESP), multidrug resistance-associated protein 2 (MRP2) and multidrug resistance-associated protein 3 (MRP3) (P < 0.05). The WGR group improved the above function indicators better than the GR group. GR and WGR could restore 11 potential biomarkers in rats with DHJS tended to return to normal levels, these biomarkers were involved in arachidonic acid metabolism, steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, porphyrin and chlorophyll metabolism, retinol metabolism, arginine biosynthesis. The results of the metabolic pathway showed that WGR was significantly better than GR in the improvement of porphyrin and chlorophyll metabolism. CONCLUSIONS: These findings suggest that treatment with GR and WGR has a beneficial effect on DHJS in rats, the major mechanisms may be involved in improving functional indicators of the body and endogenous metabolism, and WGR is more effective than GR. It provides important evidence for the clinical application of GR and WGR in the treatment of DHJS.


Assuntos
Gentiana , Metabolômica , Ratos Sprague-Dawley , Animais , Gentiana/química , Masculino , Ratos , Raízes de Plantas , Icterícia/tratamento farmacológico , Vinho , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Modelos Animais de Doenças
16.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1932-1946, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812206

RESUMO

This study investigated the anti-aging mechanism of Xiyangshen Sanqi Danshen Granules based on metabonomics, network pharmacology, and molecular docking. The aging mice model was induced by intraperitoneal injection of D-galactose(D-gal). Mice were randomly divided into a control group, model group, melatonin group(MT group), and low, medium, and high dose groups of Xiyangshen Sanqi Danshen Granules(XSD-L, XSD-M, and XSD-H). An open-field experiment was conducted, and the expression of cell cycle arrest proteins(p16) and phosphorylated histone family 2A variant(γH2AX) in the brain tissue was detected by immunofluorescence. The expression of interleukin-1ß(IL-1ß) and interleukin-6(IL-6) in the brain tissue was detected by enzyme-linked immunosorbent assay(ELISA). Metabolomics analysis was performed on the serum of mice in control, model, and XSD-H groups to obtain metabolic processes and metabolites. The effective chemical components and potential targets of Xiyangshen Sanqi Danshen Granules were predicted through network pharmacology, and the network diagram of "drug-effective chemical components-key targets" was constructed. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis were carried out, and a protein-protein interaction(PPI) network was constructed to clarify the anti-aging mechanism of Xiyangshen Sanqi Danshen Granules. The results showed that the Xiyangshen Sanqi Danshen Granules could significantly improve the aging degree of D-gal mice, significantly improve the total motion distance and the mean motion speed of D-gal mice, and reduce the rest time. In addition, Xiyangshen Sanqi Danshen Granules could significantly reduce the protein levels of IL-6 and IL-1ß and the expression of p16 and γH2AX in D-gal mice. Compared with the model group, 66 differential metabolites(DMs) were significantly up-regulated, and 91 DMs were down-regulated in the XSD-H group. Moreover, four key metabolic pathways(tryptophan metabolism, glycerophospholipid metabolism, pyrimidine metabolism, and lysine degradation) and 16 biomarkers(lysine, tryptophan, indoleacetaldehyde, PCs, LysoPCs, 3-hydroxyanthranilic acid, melatonin, etc) were screened out. 58 main active components and 62 key targets of Xiyangshen Sanqi Danshen Granules were screened by network pharmacology. The GO functional enrichment analysis found the positive regulation of gene expression, drug response, etc. KEGG pathway enrichment screening involved diabetic complications-related AGE-RAGE signaling pathway, hypoxia inducible factor-1 signaling pathway, etc. Through the PPI network and molecular docking, six potential core targets of STAT3, MAPK1, MAPK14, EGFR, FOS, and STAT1 were screened.


Assuntos
Envelhecimento , Biologia Computacional , Medicamentos de Ervas Chinesas , Metabolômica , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Masculino , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Salvia miltiorrhiza/química , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
17.
Phytomedicine ; 130: 155774, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820659

RESUMO

BACKGROUND: Metabolic and alcohol-associated liver disease (MetALD) shows a high prevalence rate in liver patients, but there is currently no effective treatment for MetALD. As a typical edible traditional Chinese medicinal herb, the anti-inflammatory, antioxidant, and hepatoprotective properties of water extract of Chrysanthemum morifolium Ramat. (WECM) has been demonstrated. However, its therapeutic effect on MetALD and the associated mechanisms remain unclear. PURPOSE: To investigate the underlying mechanisms of WECM against MetALD. METHODS: We constructed a MetALD rat model following a high-fat & high-sucrose plus alcohol diet (HFHSAD). MetALD rats were treated with WECM at 2.1, 4.2, and 8.4 g/kg/d for six weeks. Efficacy was determined, and pathways associated with WECM against MetALD were predicted through serum and hepatic biochemical marker measurement, histopathological section analysis, 16S rDNA sequencing of the gut microbiota and untargeted serum metabolomics analyses. Changes in genes and proteins in the peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ) signaling pathways were detected by RT‒PCR and Western blotting. RESULTS: WECM treatment significantly attenuated hepatic steatosis, hyperlipidemia and markers of liver injury in MetALD rats. Moreover, WECM improved vascular endothelial function, hypertension, and systematic oxidative stress. Mechanistically, WECM treatment altered the overall structure of the gut microbiota through maintaining Firmicutes/Bacteroidota ratio and reducing harmful bacterial abundances such as Clostridium, Faecalibaculum, and Herminiimonas. Notably, WECM promoted 15-deoxy-△12, 14-prostaglandin J2 (15d-PGJ2) release and further activated the PPARγ to reduce serum TNF-α, IL-1ß, and IL-6 levels. Additionally, WECM upregulated PPARα and downregulated the levels of CD36 and FABP4 to improve lipid metabolism. CONCLUSION: Our findings provide the first evidence that WECM treatment significantly improved hepatic steatosis, oxidative stress and inflammation in MetALD rats by regulating the gut microbiota and activating the 15d-PGJ2/PPARγ and PPARα signaling pathway.


Assuntos
Chrysanthemum , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , PPAR alfa , PPAR gama , Ratos Sprague-Dawley , Chrysanthemum/química , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , PPAR gama/metabolismo , PPAR alfa/metabolismo , Masculino , Hepatopatias Alcoólicas/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Extratos Vegetais/farmacologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Estresse Oxidativo/efeitos dos fármacos
18.
Food Chem Toxicol ; 189: 114759, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796086

RESUMO

T-2 toxin is a highly cardiotoxic environmental contaminant. Selenium can uphold the cardiovascular system's functionality. Selenium insufficiency is common. The aim of this study was to elucidate the effects of low selenium diet alone or in combination with T-2 toxin on myocardial tissue damage. Thirty-two Sprague-Dawley rats of 3 weeks of age were randomized into control, low selenium diet, low selenium diet combined with T-2 toxin groups (at doses of 10 ng/g and 100 ng/g body weight) for 12-weeks intervention. Pathohistology and ultrastructural changes in cardiac tissue were observed. Changes in cardiac metabolites were analyzed using untargeted metabolomics. The findings demonstrated that cardiac tissue abnormalities, interstitial bleeding, inflammatory cell infiltration, and mitochondrial damage can be brought on by low selenium diet alone or in combination with the T-2 toxin. A low selenium diet alone or in combination with the T-2 toxin affected cardiac metabolic profiles and resulted in aberrant modifications in many metabolic pathways, including the metabolism of amino acids, cholesterol, and thiamine. Accordingly, low selenium diet and T-2 toxin may have a synergistic effect. Our findings provide fresh insights into the processes of cardiac injury by revealing the effects of low selenium diet and T-2 toxin on cardiac metabolism.


Assuntos
Metabolômica , Miocárdio , Ratos Sprague-Dawley , Selênio , Toxina T-2 , Animais , Toxina T-2/toxicidade , Selênio/farmacologia , Selênio/administração & dosagem , Masculino , Ratos , Miocárdio/metabolismo , Miocárdio/patologia , Dieta , Coração/efeitos dos fármacos
19.
Curr Pharm Des ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38798215

RESUMO

BACKGROUND: Wenjing Huoxue Decoction (WJHXD) is a traditional treatment for primary dysmenorrhea (PD) that can quickly relieve various symptoms caused by PD. Previous clinical studies have shown that WJHXD has better long-term efficacy than ibuprofen in the treatment of PD and can reverse the disorder of T cell subsets. OBJECTIVE: To investigate the effect of WJHXD on serum-related factors in the treatment of PD, including the identification of key targets, pathways, and active ingredients. METHODS: In order to study the effects of the WJHXD intervention in Parkinson's Disease (PD) rats, we used transcriptomics and metabolomics methods to examine the differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs). We also utilized network pharmacology to predict the target and effective route of WJHXD in treating PD. Finally, we employed molecular docking (MD) technology to confirm the placement of important targets and metabolites. RESULTS: WJHXD has been found to be effective in prolonging the onset time and decreasing the number of writhing episodes in PD rats after oxytocin injection. It has also been observed to reduce the levels of PGF2, COX-2, AVP, and PGE2 in the serum of PD rats to different degrees. Transcriptomics analysis has revealed that the core targets of WJHXD include KRT1, KRT16, CCL5, F2, NOS2, RAC2, and others, while the core pathways are Calcium signaling and cAMP signaling. The Estrogen signaling pathway was found to be downregulated in PD rats compared to normal uterine tissue, but WJHXD was able to up-regulate the pathway. A combined transcriptomics and metabolomics analysis suggested that WJHXD may be involved in eight metabolism-related pathways, with the most reliable ones being mucin-type O-glycan biosynthesis and glycolysis or gluconeogenesis. MD has shown that Hydroxyisocaproic acid may bind to important targets such as SLC6A4, PTGER3, IGFBP3, and IGF2. CONCLUSION: In WJHXD, the most targeted herbs were Corydalis rhizoma, licorice, and Myrrha. The most targeted active ingredients include quercetin, 3'-Hydroxy-4'-O-methylglabridin, shinpterocarpin, and isorhamnetin. Potential targets include PTGS2, NOS2, AR, SCN5A, and GAS6. Analysis revealed 72 highly reliable relationships between group A and B DEGs and DEMs, with 23 positive correlations and 49 negative correlations among them. A combined analysis of transcriptomics, metabolomics, and network pharmacology was used to identify possible targets, pathways, and active ingredients of WJHXD in PD treatment, and the correlation between DEGs and DEMs was investigated. However, further research is required to confirm the relationship between active ingredients, targets, and metabolites.

20.
Heliyon ; 10(8): e29598, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655340

RESUMO

Background: Intestinal bacteria significantly contribute to the metabolism of intestinal epithelial tissues. As the occurrence and development of radiation enteritis (RE) depend on the "co-metabolism" microenvironment formed by the host and intestinal microbiota, which involves complex influencing factors and strong correlations, ordinary techniques struggle to fully explain the underlying mechanisms. However, given that it is based on systems biology, metabolomics analysis is well-suited to address these issues. This study aimed to analyze the metabolomic changes in urine, serum, and fecal samples during volumetric modulated arc therapy (VMAT) for cervical cancer and screen for characteristic metabolites of severe acute radiation enteritis (SARE) and RE. Methods: We enrolled 50 patients who received radiotherapy for cervical cancer. Urine, serum, and fecal samples of patients were collected at one day before radiotherapy and the second week, fourth week, and sixth week after the start of radiotherapy. Control group samples were collected during the baseline period. Differential metabolites were identified by metabolomics analysis; co-metabolic pathways were clarified. We used the mini-SOM library for incorporating characteristic metabolites, and established metabolite classification models for predicting SARE and RE. Results: Urine and serum sample data showed remarkable clustering effect; metabolomics data of the fecal supernatant were evidently disturbed. Patient sample analyses during VMAT revealed the following. Urine samples: Downregulation of the pyrimidine and riboflavin metabolism pathways as well as initial upregulation followed by downregulation of arginine and proline metabolism pathways and the arginine biosynthesis pathway. Fecal samples: Upregulation of linoleic acid and phenylalanine metabolic pathways and initial downregulation followed by upregulation of arachidonic acid (AA) metabolic pathways. Serum samples: Initial upregulation followed by downregulation of the arginine biosynthesis pathway and downregulation of glutathione, AA, and arginine and proline metabolic pathways. Conclusion: Patients with cervical cancer exhibited characteristic metabolic pathways and characteristic metabolites predicting RE and SARE were screened out. An effective RE mini-SOM classification model was successfully established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...