Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.552
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124962, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39146628

RESUMO

Two isostructural, three-dimensional, interpenetrated amino-functionalized Metal-Organic Frameworks (Co-2AIN-MOF and Cd-2AIN-MOF) based on 2-aminoisonicotinic acid (2AIN) were synthesized, structurally characterized and determined. Based on the PXRD analysis, the solvent exchange hardly changed their framework structure, and the samples fully activated by methanol can be achieved and examined by infrared spectroscopy. Due to the presence of the carbonyl group and free amino groups in the pore of the framework, the NH3 uptakes of Co-2AIN-MOF and Cd-2AIN-MOF are 11.70 and 13.81 mmol/g and at 1 bar, respectively. In-situ Infrared spectroscopy and DFT calculations revealed the different adsorption sites and processes between Co-2AIN-MOF and Cd-2AIN-MOF.

2.
J Environ Sci (China) ; 149: 374-385, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181650

RESUMO

Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization. Bimetallic centers (Cu, Fe) with enhanced intrinsic activity demonstrated higher removal efficiency. Meanwhile, the 2D nanosheet reduced the mass transfer barrier between the catalyst and nitrate and increased the reaction kinetics. Therefore, the catalysts with a 2D structure showed much better removal efficiency than other structures (3D MOFs and Bulk MOFs). Under optimal conditions, Cu/Fe-2D MOF exhibited high nitrate removal efficiency (87.8%) and ammonium selectivity (89.3%) simultaneously. The ammonium yielded up to significantly 907.2 µg/(hr·mgcat) (7793.8 µg/(hr·mgmetal)) with Faradaic efficiency of 62.8% at an initial 100 mg N/L. The catalyst was proved to have good stability and was recycled 15 times with excellent effect. DFT simulations confirm the reduced Gibbs free energy of Cu/Fe-2D MOF. This study demonstrates the promising application of Cu/Fe-2D MOF in nitrate reduction to ammonia and provides new insights for the design of efficient electrode materials.


Assuntos
Amônia , Cobre , Ferro , Estruturas Metalorgânicas , Nitratos , Poluentes Químicos da Água , Amônia/química , Cobre/química , Nitratos/química , Estruturas Metalorgânicas/química , Ferro/química , Poluentes Químicos da Água/química , Catálise , Modelos Químicos , Oxirredução , Cinética
3.
Biomaterials ; 312: 122755, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39151270

RESUMO

Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile "mix-and-match synthetic strategy" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.


Assuntos
Materiais Biomiméticos , Cobre , Humanos , Cobre/química , Materiais Biomiméticos/química , Catálise , Estruturas Metalorgânicas/química , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Cério/química , Linhagem Celular Tumoral , Animais , Química Click/métodos , Biomimética/métodos , Camundongos
4.
Int J Nanomedicine ; 19: 9943-9959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355653

RESUMO

Introduction: Alzheimer's disease (AD), a neurodegenerative condition, stands as the most prevalent form of dementia. Its complex pathological mechanisms and the formidable blood-brain barrier (BBB) pose significant challenges to current treatment approaches. Oxidative stress is recognized as a central factor in AD, underscoring the importance of antioxidative strategies in its treatment. In this study, we developed a novel brain-targeted nanoparticle, Ce/Zr-MOF@Cur-Lf, for AD therapy. Methods: Layer-by-layer self-assembly technology was used to prepare Ce/Zr-MOF@Cur-Lf. In addition, the effect on the intracellular reactive oxygen species level, the uptake effect by PC12 and bEnd.3 cells and the in vitro BBB permeation effect were investigated. Finally, the mouse AD model was established by intrahippocampal injection of Aß1-42, and the in vivo biodistribution, AD therapeutic effect and biosafety of the nanoparticles were researched at the animal level. Results: As anticipated, Ce/Zr-MOF@Cur-Lf demonstrated efficient BBB penetration and uptake by PC12 cells, leading to attenuation of H2O2-induced oxidative damage. Moreover, intravenous administration of Ce/Zr-MOF@Cur-Lf resulted in rapid brain access and improvement of various pathological features of AD, including neuronal damage, amyloid-ß deposition, dysregulated central cholinergic system, oxidative stress, and neuroinflammation. Conclusion: Overall, Ce/Zr-MOF@Cur-Lf represents a promising approach for precise brain targeting and multi-target mechanisms in AD therapy, potentially serving as a viable option for future clinical treatment.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Cério , Curcumina , Estresse Oxidativo , Zircônio , Animais , Doença de Alzheimer/tratamento farmacológico , Células PC12 , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Zircônio/química , Zircônio/farmacocinética , Camundongos , Ratos , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Curcumina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Cério/química , Cério/farmacocinética , Cério/farmacologia , Cério/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Distribuição Tecidual , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/química , Modelos Animais de Doenças , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacocinética , Estruturas Metalorgânicas/farmacologia , Masculino , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
5.
Front Pharmacol ; 15: 1462368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359247

RESUMO

As a novel class of smart biomaterials with promising potentials, metal-organic frameworks (MOFs) are widely utilized in the field of biomedicine. Current researches indicate that the therapeutic strategies for osteoarthritis (OA) are highly limited to achieving symptom improvement and reducing both pain and inflammation. Together, the introduction of MOFs into the treatment of OA holds the potential to offer significant benefits. This is because MOFs not only have intrinsic biological activities, but also act as carriers to facilitate controlled drug delivery and prolong the duration in the management of OA. This paper presents a review of the recent studies that have explored the potential usage of MOFs as drugs or carriers in the treatment of OA, which also examines the progress of MOFs in tissue engineering for the treatment of OA. These studies are anticipated to not only enhance the comprehension of MOFs but also provide strong evidence in favor of their utilization in the treatment of OA.

6.
Angew Chem Int Ed Engl ; : e202414770, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39355946

RESUMO

Developing high-performance lithium-sulfur batteries is a promising way to attain higher energy density at lower cost beyond the state-of-the-art lithium-ion battery technology. However, the major issues blocking their practical application are the sluggish kinetics and parasitic shuttling reactions for sulfur and polysulfides. Here, pillaring multilayer graphene with the metal-organic framework (MOF) demonstrates the substantial impact of a versatile interlayer design in tackling those issues. Unlike regular composite separators reported so far, the participation of tri-metallic Ni-Co-Mn MOF (NCM-MOF) as pillars supports the construction of an ion-channel interconnected interlayer structure, unexpectedly balancing the interfacial concentration polarization, spatially confining the soluble polysulfides and vastly affording lithiophilic sites for highly efficient polysulfide sieving/conversion. As a demonstration, we show that the MOF-pillared interlayer structure enables outstanding capacity (1634 mAh g-1 at 0.1C) and longevity (average capacity decay of 0.034% per cycle in 2000 cycles) of lithium-sulfur batteries. Besides, the multilayer separator can be readily integrated into the high-nickel cathode (LiNi0.91Mn0.03Co0.06O2)-based lithium-ion batteries, which efficiently suppresses the undesired phase evolution upon cycling. These findings suggest the potential of "gap-filling" materials in fabricating multi-functional separators, bring forward the pillared interlayer structure for energy-storage applications.

7.
Small Methods ; : e2400968, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351807

RESUMO

Solid-state electrolytes (SSEs) based on metal-organic frameworks (MOFs) are an ideal material for constructing high-performance lithium metal batteries (LMBs). However, the low ion conductivity and poor interface contact (especially at low temperatures) still seriously hinder its further application. Herein, inspired by the Na+/K+ conduction in biology systems, a series (NH2, OH, NH-(CH2)3-SO3H)-modified MIL-53-X as SSEs is reported. These functional groups are similar to anions suspended in biological ion channels, partially repelling anions while allowing cations to be effectively transported through pore channels. Subsequently, MIL-53-X with hierarchical pore structure (H-MIL-53-X) is obtained by introducing lauric acid as a regulator, and then the effects of structural design and morphology control on its performance are explored. The conductivity of H-MIL-53-NH-SO3Li with multi-level pore structure and modified by sulfonic acid groups reached 2.2 × 10-3 S cm-1 at 25 °C, lithium-ion transference number of 0.78. Besides, the H-MIL-53-NH-SO3Li still has an excellent conductivity of 10-4 S cm-1 at -40 °C. Additionally, LiFePO4/Li batteries equipped with H-MIL-53-NH-SO3Li SSEs could operate stably for over 200 cycles at 0.1 C. The strategy of combining structural and morphological design of MOFs with biomimetic ion channels opens new avenues for the design of high-performance SSEs.

8.
Adv Sci (Weinh) ; : e2407297, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352306

RESUMO

Metal-organic frameworks (MOFs) deliver potential applications in electrochromism and energy storage. However, the poor intrinsic conductivity of MOFs in electrolytes seriously hampers the development of the above-mentioned electrochemical applications, especially in one MOF electrode. Herein, a new Ni-based MOF (denoted Ni-DPNDI) is proposed with enhanced conductivity by π-delocalized DPNDI connectors. Predictably, the obtained Ni-DPNDI MOF achieves a conductivity of up to 4.63 S∙m-1 at 300 K. Profiting from its unique electronic structure, the Ni-DPNDI MOF delivers excellent electrochromic and energy storage performance with a great optical modulation (60.8%), a fast switching speed (tc = 7.9 s and tb = 6.4 s), a moderate specific capacitance (25.3 mAh·g-1) and good cycle stability over 2000 times. Meanwhile, energy storage capacity is visual by the coloration states of Ni-DPNDI film. As a proof of the potential application, a large-area (100 cm2) electrochromic energy storage smart window is further designed and displayed. The strategy provides an interesting alternative to porous multifunctional materials for the new generation of electronic devices with diverse applications.

9.
Mikrochim Acta ; 191(11): 640, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356328

RESUMO

Chiral compounds are abundantly distributed in both the natural world and biological systems. It is crucial to identify and detect chiral compounds in living systems or to separate and determine them in the natural environment. Many researchers have developed a range of chiral materials with different functionalizations to separate and detect chiral substances. Chiral metal-organic frameworks (CMOFs) have the potential to be used in enantioselective separation and detection due to their large surface areas, regulated framework topologies, particular substrate interactions, and accessible chiral sites. CMOFs contribute significantly to the development of enantiomer separation and detection in medicine, agriculture, food, environment, and other fields. This review focuses on four synthesis methods of CMOFs and their applications in chiral separation and chiral sensing in the past five years, mainly including chromatographic separation, membrane separation, optical sensing, electrochemical sensing, and other sensing methods. Finally, the challenges and potential growth direction of CMOFs in enantiomer separation and detection are discussed and prospected.

10.
J Colloid Interface Sci ; 678(Pt A): 979-986, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39226838

RESUMO

Precise deposition of metal-organic framework (MOF) materials is important for fabricating high-performing MOF-based devices. Electric-field assisted drop-casting of poly(3,4-ethylenedioxythiophene)-functionalized (PEDOT) MIL-101(Cr) nanoparticles onto interdigitated electrodes allowed their precise spatioselective deposition as percolating nanoparticle chains in the interelectrode gaps. The resulting aligned materials were investigated for resistive and capacitive humidity sensing and compared with unaligned samples prepared via regular drop-casting. The spatioselective deposition of MOFs resulted in up to over 500 times improved conductivity and approximately 6 times increased responsivity during resistive humidity sensing. The aligned samples also showed good capacitive humidity sensing performance, with up to 310 times capacitance gain at 10 versus 90 % relative humidity. In contrast, the resistive behavior of the unaligned samples rendered them unsuitable for capacitive sensing. This work demonstrates that applying an alternating potential during drop-casting is a simple yet effective method to control MOF deposition for greater efficiency, conductivity, and enhanced humidity sensing performance.

11.
Heliyon ; 10(17): e36540, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263092

RESUMO

This study introduces a high-performance Ce-Co MOFs/Ti3C2Tx nanocomposite, synthesized via hydrothermal methods, designed to advance supercapacitor technology. The integration of Ce-Co metal-organic frameworks (MOFs) with Ti3C2Tx (Mxene) yields a composite that exhibits superior electrochemical properties. Structural analyses, including X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), confirm the successful formation of the composite, featuring well-defined rod-like Ce-Co MOFs and layered Ti3C2Tx sheets. Electrochemical evaluation highlights the exceptional performance of the Ce-Co MOFs/Ti3C2Tx nanocomposite, achieving a specific capacitance of 483.3 Fg⁻1 at 10 mVs⁻1, a notable enhancement over the 200 Fg⁻1 of Ce-Co MOFs. It also delivers a high energy density of 78.48 Whkg⁻1 compared to 19 Whkg⁻1 for Ce-Co MOFs. Remarkably, the nanocomposite shows outstanding cyclic stability with a capacitance retention of 109 % after 4000 cycles and electrochemical surface area (ECSA) of 845 cm2, coupled with a reduced charge transfer resistance (Rct) of 2.601 Ω and an equivalent series resistance (ESR) of 0.8 Ω. These findings demonstrate that the Ce-Co MOFs/Ti3C2Tx nanocomposite is a groundbreaking material, offering enhanced energy storage, conductivity, and durability, positioning it as a leading candidate for next-generation supercapacitors.

12.
Small ; : e2406171, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258347

RESUMO

Porphyrins, known for generating toxic singlet oxygen (1O2) to combat bacteria, face challenges such as hydrophilicity and limited lifespan and 1O2 yield. Conversely, triterpenoid compounds like ammonium glycyrrhizinate (AG) offer antioxidative and antibacterial properties but lack efficacy and stability. Combining them in Metal-Organic Frameworks (MOFs) yields dual-ligand zirconium (Zr)-basedMOFs (M-TG), capitalizing on porphyrins' membrane-disrupting ability and AG's inhibition of bacterial membrane synthesis for a synergistic antibacterial effect. M-TG resolves activity loss, enhances reactive oxygen species (ROS) yield, and extends stability, achieving a remarkable 99.999% sterilization rate. This innovative approach maximizes ligand properties through synergistic effects, promising significant advancements in antibacterial material design.

13.
J Nanobiotechnology ; 22(1): 546, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39237931

RESUMO

Lung cancer, predominantly non-small cell lung cancer (NSCLC), remains a significant global health challenge, with limited therapeutic options for patients with KRAS-mutated tumors. Herein, a copper-based metal-organic framework (Cu-MOF) was applied as a novel cuproptosis-mediated nanoplatform for lung cancer therapy. Cu-MOF would disassemble and liberate copper ions under the acidic microenvironment of lysosomes of cancer cells, initiating a cascade of cellular events. The released copper ions catalyzes the Fenton reaction, generating hydroxyl radicals that induce oxidative damage, leading to cytoskeletal disruption and activation of caspase-3, ultimately triggering apoptosis. Simultaneously, with the mediation of the key regulatory factor FDX1, we found that the copper ions binding to the mitochondrial protein DLAT could result in the loss of iron-sulfur cluster proteins and aggregation of lipoylated proteins, which culminated in proteotoxic stress-induced cuproptosis. The pronounced anti-tumor effects of Cu-MOF with apoptosis and cuproptosis were confirmed both in vitro and in vivo experiments. Such dual induction of apoptosis and cuproptosis by Cu-MOF presents a promising therapeutic strategy for NSCLC, particularly for KRAS-mutated tumors, and expands potential applications of Cu-based nanomateirals for other cancers.


Assuntos
Apoptose , Cobre , Neoplasias Pulmonares , Estruturas Metalorgânicas , Cobre/química , Cobre/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Apoptose/efeitos dos fármacos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Nus , Camundongos Endogâmicos BALB C
14.
Nanomaterials (Basel) ; 14(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39269041

RESUMO

The blood-brain barrier (BBB) plays a vital role in safeguarding the central nervous system by selectively controlling the movement of substances between the bloodstream and the brain, presenting a substantial obstacle for the administration of therapeutic agents to the brain. Recent breakthroughs in nanoparticle-based delivery systems, particularly metal-organic frameworks (MOFs), provide promising solutions for addressing the BBB. MOFs have become valuable tools in delivering medications to the brain with their ability to efficiently load drugs, release them over time, and modify their surface properties. This review focuses on the recent advancements in molecular-based approaches for treating brain disorders, such as glioblastoma multiforme, stroke, Parkinson's disease, and Alzheimer's disease. This paper highlights the significant impact of MOFs in overcoming the shortcomings of conventional brain drug delivery techniques and provides valuable insights for future research in the field of neurotherapeutics.

15.
Environ Res ; 262(Pt 2): 119985, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270955

RESUMO

Metal-organic frameworks (MOFs) are well-suited materials for CO2 removal and have robust capture capacity and selectivity. Although the adsorption of CO2 in MOFs has been studied, the implementation of ppm-level CO2 uptake in MOFs and the effects of the pore size and charge have not been fully explored. We performed grand canonical Monte Carlo (GCMC) simulations combined with the Density Functional Theory plus U (DFT + U) charge method to investigate MOF screening for ppm-level CO2 uptake and its application in a direct air capture (DAC) system. Three types of MOFs containing eight members were studied: i.e., ZIF-68, 69, 70; UiO-66, 67, 68; CAU-10; and MIL-125. The pore landscape characterization, electrostatic field-induced enhancement, and preferential binding sites of these MOFs were examined for CO2 capture. MOFs with pore limited diameters (PLD) 1.5 times the size of CO2 molecules and with large cavity diameters (LCD) smaller than 10 Å exhibit robust confinement capacity. Polar functional groups and metal ions dominate the electrostatic contributions and subsequently enhance the surface adhesion of CO2 molecules. For a given framework, favorable CO2 binding occurs in the following order: small pores/cages > polar functional group/metal ions > larger pores/cages. ZIF-69 which comprises smaller pores (7.5 Å) and robust polar functional groups (-Cl) collectively enhances CO2 capture; thus, ZIF-69 outperforms other MOFs; the performance of ZIF-69 is followed by that of CAU-10 which has an optimal pore size of 6 Å. These findings are of fundamental and practical importance for the application of MOFs in DAC technologies for CO2 removal.

16.
Angew Chem Int Ed Engl ; : e202416884, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39275956

RESUMO

Post-modification of porous materials with molecular modulators has emerged as a well-established strategy for improving gas adsorption and separation. However, a notable challenge lies in maintaining porosity and the limited applicability of the current method. In this study, we employed the mechanochemical "Cage-on-MOF" strategy, utilizing porous coordination cages (PCCs) with intrinsic pores and apertures as surface modulators to improve the gas adsorption and separation properties of the parent MOFs. We demonstrated the fast and facile preparation of 28 distinct MOF@PCC composites by combining 7 MOFs with 4 PCCs with varying aperture sizes and exposed functional groups through a mechanochemical reaction in 5 mins. Only the combinations of PCCs and MOFs with closely matched aperture sizes exhibited enhanced gas adsorption and separation performance. Specifically, MOF-808@PCC-4 exhibited a significantly increased C2H2 uptake (+64%) and a longer CO2/C2H2 separation retention time (+40%). MIL-101@PCC-4 achieved a substantial C2H2 adsorption capacity of 6.11 mmol/g. This work not only highlights the broad applicability of the mechanochemical "Cage-on-MOF" strategy for the functionalization of a wide range of MOFs but also establishes potential design principles for the development of hybrid porous materials with enhanced gas adsorption and separation capabilities, along with promising applications in catalysis and intracellular delivery.

17.
Biosens Bioelectron ; 267: 116797, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39307032

RESUMO

The development of more sensitive, stable, and portable biosensors is crucial for meeting the growing demands of diverse and complex detection environments. MOF-based nanozymes have emerged as excellent optical reporters, making them ideal signal donors for constructing multi-signal lateral flow immunoassays (LFIA). In this study, a ZrFe-MOF@PtNPs nanocomposite was synthesized by uniformly depositing platinum nanoparticles (PtNPs) onto the surface of ZrFe-MOFs using an impregnation-reduction method. The ZrFe-MOF@PtNPs exhibited broad absorption spectra, excellent peroxidase-like activity (SA = 21.77 U/mg), high solvent stability, and efficient antibody binding capability. A portable LFIA platform was developed based on ZrFe-MOF@PtNPs and a smartphone for the targeted detection of carcinogenic aflatoxins. This method enabled the readout of colorimetric, fluorescent, and catalytic signals, significantly enhancing detection sensitivity, ensuring result accuracy, and expanding the dynamic detection range. For aflatoxin M1, the calculation of the detection limit of the three signal modes reached as low as 0.0062 ng/mL, which is two orders of magnitude more sensitive than AuNPs-LFIA (0.1839 ng/mL). This study provides effective guidance for multifunctional modification of MOFs and serves as a reference for the application of MOF-based nanozymes in point-of-care biosensors.

18.
Philos Trans A Math Phys Eng Sci ; 382(2282): 20230269, 2024 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-39307161

RESUMO

Sustainable methanol formation from CO2/H2 is potentially a key process in the post-fossil chemical industry. In this study, Hf- and Zr-based metal-organic framework (MOF) materials with UiO-67 topology, functionalized with Pt nanoparticles, have been tested for CO2 hydrogenation at 30 bar and 170-240°C. The highest methanol formation rate, 14 molmethanol molPt-1 h-1, was obtained over a Hf-based catalyst, compared with the maximum of 6.2 molmethanol molPt-1 h-1 for the best Zr-based analogue. However, changing the node metal did not significantly affect product distribution or apparent activation energy for methanol formation (44-52 kJ mol-1), strongly indicating that the higher activity of the Hf-based analogues is associated with a higher number of active sites. Both catalysts showed stable catalytic performance during testing under kinetic conditions, but the addition of 2 vol% water to the feed induced catalyst deactivation, in particular the Hf-MOFs. Interestingly, mainly methanol and methane formation rates decreased, while CO formation rates were less affected by deactivation. No direct correlation was found between catalytic stability and framework stability (crystallinity, specific surface area). Experimental and computational studies suggest that water adsorption strength to the MOF node may affect the relative catalytic stability of Hf-UiO-67-Pt versus Zr-UiO-67-Pt methanol catalysts.This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.

19.
Adv Sci (Weinh) ; : e2407018, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308279

RESUMO

The rapid development of the electronics market necessitates energy storage devices characterized by high energy density and capacity, alongside the ability to maintain stable and safe operation under harsh conditions, particularly elevated temperatures. In this study, a semi-solid-state electrolyte (SSSE) for Li-metal batteries (LMB) is synthesized by integrating metal-organic frameworks (MOFs) as host materials featuring a hierarchical pore structure. A trace amount of liquid electrolyte (LE) is entrapped within these pores through electrochemical activation. These findings demonstrate that this structure exhibits outstanding properties, including remarkably high thermal stability, an extended electrochemical window (5.25 V vs Li/Li+), and robust lithium-ion conductivity (2.04 × 10-4 S cm-1), owing to the synergistic effect of the hierarchical MOF pores facilitating the storage and transport of Li ions. The Li//LiFePO4 cell incorporating prepared SSSE shows excellent capacity retention, retaining 97% (162.8 mAh g-1) of their initial capacity after 100 cycles at 1 C rate at an extremely high temperature of 95 °C. It is believed that this study not only advances the understanding of ion transport in MOF-based SSSE but also significantly contributes to the development of LMB capable of stable and safe operation even under extremely high temperatures.

20.
Small ; : e2406701, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308274

RESUMO

The development of electrically conductive membranes is essential for advancing future technologies like electronic devices, supercapacitors, and batteries. Newly synthesized doubly interpenetrated 3D-Cd-MOF (Metal-Organic-Framework) containing angular tetra-carboxylate is found to display very poor electrical conductivity (10-11 S cm-1). However, it exhibits an exceptional ability to adsorb I2 (I2@Cd-MOF) which shows increased electrical conductivity of the order of 10-8 S cm-1. Following these results, the Cd-MOF is integrated into the PVDF-PVP (Polyvinylidene fluoride-Polyvinylpyrrolidone) polymeric mixed matrix membrane (MMM) and explores their I2 adsorption capabilities and electrical conductivities before and after I2 adsorption. Four polymeric MMMs with the loading of Cd-MOF 0, 20, 40, and 50% are tested for their I2 adsorption ability and their respective electrical conductivities. The 50% Cd-MOF-loaded MMM is found to exhibit higher adsorption of I2 (685 mg g-1) and significant enhancement in conductivity from 10-11 to 10-4 S cm-1. The raise in the electrical conductivity by 10 million times is attributed to the synergistic interactions between I2, Cd-MOF, PVDF, and PVP polymers as well as the increase in the concentration of charge carriers (holes) within the frameworks. This work serves as blueprint for controlling charge transfer in MMM to tune their electrical conductivity which opens a large window for advanced device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA