Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Diagnostics (Basel) ; 14(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928694

RESUMO

OBJECTIVE: This study aimed to assess the impact of artificial intelligence (AI)-driven noise reduction algorithms on metal artifacts and image quality parameters in cone-beam computed tomography (CBCT) images of the oral cavity. MATERIALS AND METHODS: This retrospective study included 70 patients, 61 of whom were analyzed after excluding those with severe motion artifacts. CBCT scans, performed using a Hyperion X9 PRO 13 × 10 CBCT machine, included images with dental implants, amalgam fillings, orthodontic appliances, root canal fillings, and crowns. Images were processed with the ClariCT.AI deep learning model (DLM) for noise reduction. Objective image quality was assessed using metrics such as the differentiation between voxel values (ΔVVs), the artifact index (AIx), and the contrast-to-noise ratio (CNR). Subjective assessments were performed by two experienced readers, who rated overall image quality and artifact intensity on predefined scales. RESULTS: Compared with native images, DLM reconstructions significantly reduced the AIx and increased the CNR (p < 0.001), indicating improved image clarity and artifact reduction. Subjective assessments also favored DLM images, with higher ratings for overall image quality and lower artifact intensity (p < 0.001). However, the ΔVV values were similar between the native and DLM images, indicating that while the DLM reduced noise, it maintained the overall density distribution. Orthodontic appliances produced the most pronounced artifacts, while implants generated the least. CONCLUSIONS: AI-based noise reduction using ClariCT.AI significantly enhances CBCT image quality by reducing noise and metal artifacts, thereby improving diagnostic accuracy and treatment planning. Further research with larger, multicenter cohorts is recommended to validate these findings.

2.
J Nippon Med Sch ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38897951

RESUMO

Simple radiography is the most frequently and widely available technology to examine bone pathologies. Computed tomography (CT) can evaluate pathologies more accurately in multiple planes and three dimensions; however, radiation exposure is much higher than with simple radiography. In addition, diagnostic ability is decreased for both technologies when metal devices are present. Tomosynthesis is a radiographic technology used to evaluate tissues quasi-three-dimensionally with less radiation exposure. Tomosynthesis technology was recently upgraded to reduce the effects of metal artifacts. This case report compares examination time, medical expense, image resolution, and radiation exposure for upgraded tomosynthesis, simple radiography, CT, and standard tomosynthesis in three patients with metal devices in the affected knees. Examination times were similar for the imaging technologies. Diagnostic performance was better for upgraded tomosynthesis than for simple radiography and standard tomosynthesis, and similar to that for CT. Moreover, radiation exposure and expense were higher for tomosynthesis than for simple radiography but lower than for CT. These findings suggest that upgraded tomosynthesis is the best method for evaluating bone pathology when metal devices are present and radiation exposure must be limited.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38836185

RESUMO

In recent years, the importance of spectral CT scanners in clinical settings has significantly increased, necessitating the development of phantoms with spectral capabilities. This study introduces a dual-filament 3D printing technique for the fabrication of multi-material phantoms suitable for spectral CT, focusing particularly on creating realistic phantoms with orthopedic implants to mimic metal artifacts. Previously, we developed PixelPrint for creating patient-specific lung phantoms that accurately replicate lung properties through precise attenuation profiles and textures. This research extends PixelPrint's utility by incorporating a dual-filament printing approach, which merges materials such as calcium-doped Polylactic Acid (PLA) and metal-doped PLA, to emulate both soft tissue and bone, as well as orthopedic implants. The PixelPrint dual-filament technique utilizes an interleaved approach for material usage, whereby alternating lines of calcium-doped and metal-doped PLA are laid down. The development of specialized filament extruders and deposition mechanisms in this study allows for controlled layering of materials. The effectiveness of this technique was evaluated using various phantom types, including one with a dual filament orthopedic implant and another based on a human knee CT scan with a medical implant. Spectral CT scanner results demonstrated a high degree of similarity between the phantoms and the original patient scans in terms of texture, density, and the creation of realistic metal artifacts. The PixelPrint technology's ability to produce multi-material, lifelike phantoms present new opportunities for evaluating and developing metal artifact reduction (MAR) algorithms and strategies.

4.
Radiol Med ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743319

RESUMO

Dual-energy CT stands out as a robust and innovative imaging modality, which has shown impressive advancements and increasing applications in musculoskeletal imaging. It allows to obtain detailed images with novel insights that were once the exclusive prerogative of magnetic resonance imaging. Attenuation data obtained by using different energy spectra enable to provide unique information about tissue characterization in addition to the well-established strengths of CT in the evaluation of bony structures. To understand clearly the potential of this imaging modality, radiologists must be aware of the technical complexity of this imaging tool, the different ways to acquire images and the several algorithms that can be applied in daily clinical practice and for research. Concerning musculoskeletal imaging, dual-energy CT has gained more and more space for evaluating crystal arthropathy, bone marrow edema, and soft tissue structures, including tendons and ligaments. This article aims to analyze and discuss the role of dual-energy CT in musculoskeletal imaging, exploring technical aspects, applications and clinical implications and possible perspectives of this technique.

5.
Artigo em Japonês | MEDLINE | ID: mdl-38777768

RESUMO

PURPOSE: To validate the effects of subject position on single energy metal artifact reduction (SEMAR) of a reverse shoulder prosthesis using computed tomography (CT). METHODS: A water phantom with a reverse shoulder prosthesis was scanned at four positions on the XY plane of the CT gantry (on-center, 50 mm, 100 mm, and 150 mm from on-center in the negative direction of the X axis, respectively). We obtained images with and without SEMAR. The artifact index (AI) was measured via physical assessment. Scheffé's (Ura) paired comparison methods were performed with the amount of metal artifact by ten radiological technologists via visual assessment. RESULTS: The AI was significantly reduced when using SEMAR. As the phantom moved away from the on-center position, the AI increased, and metal artifacts increased in Scheffé's methods. CONCLUSION: SEMAR reduces metal artifacts of a reverse shoulder prosthesis, but metal artifacts may increase as the subject position moves away from the on-center position.

6.
J Appl Clin Med Phys ; : e14386, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739330

RESUMO

PURPOSE: Photon counting CT (PCCT) holds promise for mitigating metal artifacts and can produce virtual mono-energetic images (VMI), while maintaining temporal resolution, making it a valuable tool for characterizing the heart. This study aimed to evaluate and optimize PCCT for cardiac imaging in patients during left ventricular assistance device (LVAD) therapy by conducting an in-depth objective assessment of metal artifacts and visual grading. METHODS: Various scan and reconstruction settings were tested on a phantom and further evaluated on a patient acquisition to identify the optimal protocol settings. The phantom comprised an empty thoracic cavity, supplemented with heart and lungs from a cadaveric lamb. The heart was implanted with an LVAD (HeartMate 3) and iodine contrast. Scans were performed on a PCCT (NAEOTOM Alpha, Siemens Healthcare). Metal artifacts were assessed by three objective methods: Hounsfield units (HU)/SD measurements (DiffHU and SDARTIFACT), Fourier analysis (AmplitudeLowFreq), and depicted LVAD volume in the images (BloomVol). Radiologists graded metal artifacts and the diagnostic interpretability in the LVAD lumen, cardiac tissue, lung tissue, and spinal cord using a 5-point rating scale. Regression and correlation analysis were conducted to determine the assessment method most closely associated with acquisition and reconstruction parameters, as well as the objective method demonstrating the highest correlation with visual grading. RESULTS: Due to blooming artifacts, the LVAD volume fluctuated between 27.0 and 92.7 cm3. This variance was primarily influenced by kVp, kernel, keV, and iMAR (R2 = 0.989). Radiologists favored pacemaker iMAR, 3 mm slice thickness, and T3D keV and kernel Bv56f for minimal metal artifacts in cardiac tissue assessment, and 110 keV and Qr40f for lung tissue interpretation. The model adequacy for DiffHU SDARTIFACT, AmplitueLowFreq, and BloomVol was 0.28, 0.76, 0.29, and 0.99 respectively for phantom data, and 0.95, 0.98, 1.00, and 0.99 for in-vivo data. For in-vivo data, the correlation between visual grading (VGSUM) and DiffHU SDARTIFACT, AmplitueLowFreq, and BloomVol was -0.16, -0.01, -0.48, and -0.40 respectively. CONCLUSION: We found that optimal scan settings for LVAD imaging involved using 120 kVp and IQ level 80. Employing T3D with pacemaker iMAR, the sharpest allowed vascular kernel (Bv56f), and VMI at 110 keV with kernel Qr40 yields images suitable for cardiac imaging during LVAD-therapy. Volumetric measurements of the LVAD for determination of the extent of blooming artifacts was shown to be the best objective method to assess metal artifacts.

7.
Int J Comput Assist Radiol Surg ; 19(7): 1399-1407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780830

RESUMO

PURPOSE: Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality. In previous works, metal artifact avoidance (MAA) methods have been shown to reduce metal artifacts by adapting the scanning trajectory. Yet, these methods fail to translate to clinical practice due to remaining methodological constraints and missing workflow integration. METHODS: In this work, we propose a method to compute the spatial distribution and calibrated strengths of expected artifacts for a given tilted circular trajectory. By visualizing this as an overlay changing with the C-Arm's tilt, we enable the clinician to interactively choose an optimal trajectory while factoring in the procedural context and clinical task. We then evaluate this method in a realistic human cadaver study and compare the achieved image quality to acquisitions optimized using global metrics. RESULTS: We assess the effectiveness of the compared methods by evaluation of image quality gradings of depicted pedicle screws. We find that both global metrics as well as the proposed visualization of artifact distribution enable a drastic improvement compared to standard non-tilted scans. Furthermore, the novel interactive visualization yields a significant improvement in subjective image quality compared to the state-of-the-art global metrics. Additionally we show that by formulating an imaging task, the proposed method allows to selectively optimize image quality and avoid artifacts in the region of interest. CONCLUSION: We propose a method to spatially resolve predicted artifacts and provide a calibrated measure for artifact strength grading. This interactive MAA method proved practical and effective in reducing metal artifacts in the conducted cadaver study. We believe this study serves as a crucial step toward clinical application of an MAA system to improve image quality and enhance the clinical validation of implant placement.


Assuntos
Artefatos , Cadáver , Tomografia Computadorizada de Feixe Cônico , Metais , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Parafusos Pediculares
8.
Phys Med Biol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588680

RESUMO

OBJECTIVE: Metal artifacts in computed tomography (CT) images hinder diagnosis and treatment significantly. Specifically, dental cone-beam computed tomography (Dental CBCT) images are seriously contaminated by metal artifacts due to the widespread use of low tube voltages and the presence of various high-attenuation materials in dental structures. Existing supervised metal artifact reduction (MAR) methods mainly learn the mapping of artifact-affected images to clean images, while ignoring the modeling of the metal artifact generation process. Therefore, we propose the bidirectional artifact representations learning framework to adaptively encode metal artifacts caused by various dental implants and model the generation and elimination of metal artifacts, thereby improving MAR performance. Approach. we introduce an efficient artifact encoder to extract multi-scale representations of metal artifacts from artifact-affected images. These extracted metal artifact representations are then bidirectionally embedded into both the metal artifact generator and the metal artifact eliminator, which can simultaneously improve the performance of artifact removal and artifact generation. The artifact eliminator learns artifact removal in a supervised manner, while the artifact generator learns artifact generation in an adversarial manner. To further improve the performance of the bidirectional task networks, we propose artifact consistency loss to align the consistency of images generated by the eliminator and the generator with or without embedding artifact representations. Main results. To validate the effectiveness of our algorithm, experiments are conducted on simulated and clinical datasets containing various dental metal morphologies. Quantitative metrics are calculated to evaluate the results of the simulation tests,which demonstrate b-MAR improvements of > 1.4131 dB in PSNR, > 0.3473 HU decrements in RMSE, and > 0.0025 promotion in SSIM over the current state-of-the-art MAR methods. All results indicate that the proposed b-MAR method can remove artifacts caused by various metal morphologies and restore the structural integrity of dental tissues effectively. Significance. The proposed b-MAR method strengthens the joint learning of the artifact removal process and the artifact generation process by bidirectionally embedding artifact representations, thereby improving the model's artifact removal performance. Compared with other comparison methods, b-MAR can robustly and effectively correct metal artifacts in dental CBCT images caused by different dental metals.

9.
J Clin Med ; 13(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38673712

RESUMO

Background/Objectives: Advancements in oral imaging technology are continually shaping the landscape of dental diagnosis and treatment planning. Among these, photon-counting computed tomography (PCCT), introduced in 2021, has emerged as a promising, high-quality oral technology. Dental imaging typically requires a resolution beyond the standard CT systems achievable with the specialized cone-beam CT. PCCT can offer up to 100 µm resolution, improve soft-tissue contrast, and provide faster scanning times, which are crucial for detailed dental diagnosis and treatment planning. Using semiconductor detectors, PCCT produces sharper images and can potentially reduce the number of scans required, thereby decreasing patient radiation exposure. This review aimed to explore the potential benefits of PCCT in dental imaging. Methods: This review analyzed the literature on PCCT in dental imaging from January 2010 to February 2024, sourced from PubMed, Scopus, and Web of Science databases, focusing on high-resolution, patient safety, and diagnostic efficiency in dental structure assessment. We included English-language articles, case studies, letters, observational studies, and randomized controlled trials while excluding duplicates and studies unrelated to PCCT's application in dental imaging. Results: Studies have highlighted the superiority of PCCT in reducing artifacts, which are often problematic, compared to conventional CBCT and traditional CT scans, due to metallic dental implants, particularly when used with virtual monoenergetic imaging and iterative metal artifact reduction, thereby improving implant imaging. This review acknowledges limitations, such as the potential for overlooking other advanced imaging technologies, a narrow study timeframe, the lack of real-world clinical application data in this field, and costs. Conclusions: PCCT represents a promising advancement in dental imaging, offering high-resolution visuals, enhanced contrast, and rapid scanning with reduced radiation exposure.

10.
Phys Med Biol ; 69(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593826

RESUMO

Objective. Newer cone-beam computed tomography (CBCT) imaging systems offer reconstruction algorithms including metal artifact reduction (MAR) and extended field-of-view (eFoV) techniques to improve image quality. In this study a new CBCT imager, the new Varian HyperSight CBCT, is compared to fan-beam CT and two CBCT imagers installed in a ring-gantry and C-arm linear accelerator, respectively.Approach. The image quality was assessed for HyperSight CBCT which uses new hardware, including a large-size flat panel detector, and improved image reconstruction algorithms. The decrease of metal artifacts was quantified (structural similarity index measure (SSIM) and root-mean-squared error (RMSE)) when applying MAR reconstruction and iterative reconstruction for a dental and spine region using a head-and-neck phantom. The geometry and CT number accuracy of the eFoV reconstruction was evaluated outside the standard field-of-view (sFoV) on a large 3D-printed chest phantom. Phantom size dependency of CT numbers was evaluated on three cylindrical phantoms of increasing diameter. Signal-to-noise and contrast-to-noise were quantified on an abdominal phantom.Main results. In phantoms with streak artifacts, MAR showed comparable results for HyperSight CBCT and CT, with MAR increasing the SSIM (0.97-0.99) and decreasing the RMSE (62-55 HU) compared to iterative reconstruction without MAR. In addition, HyperSight CBCT showed better geometrical accuracy in the eFoV than CT (Jaccard Conformity Index increase of 0.02-0.03). However, the CT number accuracy outside the sFoV was lower than for CT. The maximum CT number variation between different phantom sizes was lower for the HyperSight CBCT imager (∼100 HU) compared to the two other CBCT imagers (∼200 HU), but not fully comparable to CT (∼50 HU).Significance. This study demonstrated the imaging performance of the new HyperSight CBCT imager and the potential of applying this CBCT system in more advanced scenarios by comparing the quality against fan-beam CT.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Artefatos , Controle de Qualidade
11.
Magn Reson Imaging ; 111: 256-264, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38621551

RESUMO

BACKGROUND: 3D multi-spectral imaging (MSI) of metal implants necessitates relatively long scan times. OBJECTIVE: We implemented a fast isotropic 3D MSI technique at 3 T and compared its image quality and clinical utility to non-isotropic MSI in the evaluation of hip implants. METHODS: Two musculoskeletal radiologists scored images from coronal proton density-weighted conventional MAVRIC-SL and an isotropic MAVRIC-SL sequence accelerated with robust-component-analysis on a 3-point scale (3: diagnostic, 2: moderately diagnostic, 1: non-diagnostic) for overall image quality, metal artifact, and visualization around femoral and acetabular components. Grades were compared using a signed Wilcoxon test. Images were evaluated for effusion, synovitis, osteolysis, loosening, pseudotumor, fracture, and gluteal tendon abnormalities. Reformatted axial and sagittal images for both sequences were subsequently generated and compared for image quality with the Wilcoxon test. Whether these reformats increased diagnostic confidence or revealed additional pathology, including findings unrelated to arthroplasty that may contribute to hip pain, was also compared using the McNemar test. Inter-rater agreement was measured by Cohen's kappa. RESULTS: 39 symptomatic patients with a total of 59 hip prostheses were imaged (mean age, 70 years ±9, 14 males, 25 females). Comparison scores between coronal images showed no significant difference in image quality, metal artifact, or visualization of the femur and acetabulum. Except for loosening, reviewers identified more positive cases of pathology on the original coronally-acquired isotropic sequence. In comparison of reformatted axial and sagittal images, the isotropic sequence scored significantly (p < 0.01) higher for overall image quality (3.0 vs 2.0) and produced significantly (p < 0.01) more cases of increased diagnostic confidence (42.4% vs 7.6%) or additional diagnoses (50.8% vs 22.9%). Inter-rater agreement was substantial (k = 0.798) for image quality. Mean scan times were 4.2 mins (isotropic) and 7.1 mins (non-isotropic). CONCLUSION: Compared to the non-isotropic sequence, isotropic 3D MSI was acquired in less time while maintaining diagnostically acceptable image quality. It identified more pathology, including postoperative complications and potential pain-generating pathology unrelated to arthroplasty. This fast isotropic 3D MSI sequence demonstrates promise for improving diagnostic evaluation of symptomatic hip prostheses at 3 T while simultaneously reducing scan time.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Idoso , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Imageamento Tridimensional/métodos , Artefatos , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/cirurgia , Idoso de 80 Anos ou mais , Reprodutibilidade dos Testes , Adulto
12.
Radiography (Lond) ; 30(3): 770-775, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460224

RESUMO

INTRODUCTION: Implanted pacemakers (PM) would decrease the detection of lung nodules in chest computed tomography (CT) due to the metal artifact. This study aimed to explore the computer-aided diagnosis (CAD) detectability of pulmonary nodules for the patients implanted with PMs in low- and ultra-low-dose chest CT screening. METHODS: Four different sizes of artificial nodules were placed in an anthropomorphic chest phantom with two alternative diameters utilized. A commercially available PM was placed on the surface of the left chest wall of the phantom. The image acquisitions were performed with 120 kV and 150 kV with a dedicated selective photon shield made of tin filter (Sn150 kV) at low- and ultra-low- radiation doses (1.0 and 0.5 mGy of volume CT dose index), and reconstructed with and without Iterative Metal Artifact Reduction (iMAR, Siemens Healthineers, Erlangen, Germany). The relative artifact index (AIr) was calculated as an index of metal artifacts, and the nodule detectability was evaluated with a CAD system. RESULTS: Sn150 kV reduced AIr in all acquisitions when comparing 120 kV and Sn150 kV. Although PM reduced the detectability of nodules, Sn150 kV showed higher detectability compared to 120 kV. The use of iMAR showed inconsistent results in nodule detectability. CONCLUSION: Sn150 kV reduced PM-induced metal artifacts and improved nodule detectability with CAD compared to 120 kV acquisition in many conditions including low and ultra-low doses and large phantoms, but iMAR did not improve the detectability. IMPLICATIONS FOR PRACTICE: Based on the results of the current phantom study, low and ultra-low dose with Sn150 kV acquisition reduced PM-induced metal artifacts and improved nodule detectability.


Assuntos
Artefatos , Marca-Passo Artificial , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Radiografia Torácica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
13.
Radiol Phys Technol ; 17(2): 402-411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546970

RESUMO

The projection data generated via the forward projection of a computed tomography (CT) image (FP-data) have useful potentials in cases where only image data are available. However, there is a question of whether the FP-data generated from an image severely corrupted by metal artifacts can be used for the metal artifact reduction (MAR). The aim of this study was to investigate the feasibility of a MAR technique using FP-data by comparing its performance with that of a conventional robust MAR using projection data normalization (NMARconv). The NMARconv was modified to make use of FP-data (FPNMAR). A graphics processing unit was used to reduce the time required to generate FP-data and subsequent processes. The performances of FPNMAR and NMARconv were quantitatively compared using a normalized artifact index (AIn) for two cases each of hip prosthesis and dental fillings. Several clinical CT images with metal artifacts were processed by FPNMAR. The AIn values of FPNMAR and NMARconv were not significantly different from each other, showing almost the same performance between these two techniques. For all the clinical cases tested, FPNMAR significantly reduced the metal artifacts; thereby, the images of the soft tissues and bones obscured by the artifacts were notably recovered. The computation time per image was ~ 56 ms. FPNMAR, which can be applied to CT images without accessing the projection data, exhibited almost the same performance as that of NMARconv, while consuming significantly shorter processing time. This capability testifies the potential of FPNMAR for wider use in clinical settings.


Assuntos
Artefatos , Metais , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Prótese de Quadril , Imagens de Fantasmas
14.
Phys Imaging Radiat Oncol ; 29: 100566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38487622

RESUMO

Background and purpose: Dose calculation on cone-beam computed tomography (CBCT) images has been less accurate than on computed tomography (CT) images due to lower image quality and discrepancies in CT numbers for CBCT. As increasing interest arises in offline and online re-planning, dose calculation accuracy was evaluated for a novel CBCT imager integrated into a ring gantry treatment machine. Materials and methods: The new CBCT system allowed fast image acquisition (5.9 s) by using new hardware, including a large-size flat panel detector, and incorporated image-processing algorithms with iterative reconstruction techniques, leading to accurate CT numbers allowing dose calculation. In this study, CBCT- and CT-based dose calculations were compared based on three anthropomorphic phantoms, after CBCT-to-mass-density calibration was performed. Six plans were created on the CT scans covering various target locations and complexities, followed by CBCT to CT registrations, copying of contours, and re-calculation of the plans on the CBCT scans. Dose-volume histogram metrics for target volumes and organs-at-risk (OARs) were evaluated, and global gamma analyses were performed. Results: Target coverage differences were consistently below 1.2 %, demonstrating the agreement between CT and re-calculated CBCT dose distributions. Differences in Dmean for OARs were below 0.5 Gy for all plans, except for three OARs, which were below 0.8 Gy (<1.1 %). All plans had a 3 %/1mm gamma pass rate > 97 %. Conclusions: This study demonstrated comparable results between dose calculations performed on CBCT and CT acquisitions. The new CBCT system with enhanced image quality and CT number accuracy opens possibilities for off-line and on-line re-planning.

15.
BMC Med Imaging ; 24(1): 34, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321390

RESUMO

BACKGROUND: Cone-beam computed tomography (CBCT) has been introduced for breast-specimen imaging to identify a free resection margin of abnormal tissues in breast conservation. As well-known, typical micro CT consumes long acquisition and computation times. One simple solution to reduce the acquisition scan time is to decrease of the number of projections, but this method generates streak artifacts on breast specimen images. Furthermore, the presence of a metallic-needle marker on a breast specimen causes metal artifacts that are prominently visible in the images. In this work, we propose a deep learning-based approach for suppressing both streak and metal artifacts in CBCT. METHODS: In this work, sinogram datasets acquired from CBCT and a small number of projections containing metal objects were used. The sinogram was first modified by removing metal objects and up sampling in the angular direction. Then, the modified sinogram was initialized by linear interpolation and synthesized by a modified neural network model based on a U-Net structure. To obtain the reconstructed images, the synthesized sinogram was reconstructed using the traditional filtered backprojection (FBP) approach. The remaining residual artifacts on the images were further handled by another neural network model, ResU-Net. The corresponding denoised image was combined with the extracted metal objects in the same data positions to produce the final results. RESULTS: The image quality of the reconstructed images from the proposed method was improved better than the images from the conventional FBP, iterative reconstruction (IR), sinogram with linear interpolation, denoise with ResU-Net, sinogram with U-Net. The proposed method yielded 3.6 times higher contrast-to-noise ratio, 1.3 times higher peak signal-to-noise ratio, and 1.4 times higher structural similarity index (SSIM) than the traditional technique. Soft tissues around the marker on the images showed good improvement, and the mainly severe artifacts on the images were significantly reduced and regulated by the proposed. CONCLUSIONS: Our proposed method performs well reducing streak and metal artifacts in the CBCT reconstructed images, thus improving the overall breast specimen images. This would be beneficial for clinical use.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico/métodos , Microtomografia por Raio-X , Algoritmos
16.
Med Phys ; 51(6): 4231-4242, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38353644

RESUMO

BACKGROUND: Computed tomography (CT) is routinely used to guide cryoablation procedures. Notably, CT-guidance provides 3D localization of cryoprobes and can be used to delineate frozen tissue during ablation. However, metal-induced artifacts from ablation probes can make accurate probe placement challenging and degrade the ice ball conspicuity, which in combination could lead to undertreatment of potentially curable lesions. PURPOSE: In this work, we propose an image-based neural network (CNN) model for metal artifact reduction for CT-guided interventional procedures. METHODS: An image domain metal artifact simulation framework was developed and validated for deep-learning-based metal artifact reduction for interventional oncology (MARIO). CT scans were acquired for 19 different cryoablation probe configurations. The probe configurations varied in the number of probes and the relative orientations. A combination of intensity thresholding and masking based on maximum intensity projections (MIPs) was used to segment both the probes only and probes + artifact in each phantom image. Each of the probe and probe + artifact images were then inserted into 19 unique patient exams, in the image domain, to simulate metal artifact appearance for CT-guided interventional oncology procedures. The resulting 361 pairs of simulated image volumes were partitioned into disjoint training and test datasets of 304 and 57 volumes, respectively. From the training partition, 116 600 image patches with a shape of 128 × 128 × 5 pixels were randomly extracted to be used for training data. The input images consisted of a superposition of the patient and probe + artifact images. The target images consisted of a superposition of the patient and probe only images. This dataset was used to optimize a U-Net type model. The trained model was then applied to 50 independent, previously unseen CT images obtained during renal cryoablations. Three board-certified radiologists with experience in CT-guided ablations performed a blinded review of the MARIO images. A total of 100 images (50 original, 50 MARIO processed) were assessed across different aspects of image quality on a 4-point likert-type item. Statistical analyses were performed using Wilcoxon signed-rank test for paired samples. RESULTS: Reader scores were significantly higher for MARIO processed images compared to the original images across all metrics (all p < 0.001). The average scores of the overall image quality, iceball conspicuity, overall metal artifact, needle tip visualization, target region confidence, and worst metal artifact, needle tip visualization, iceball conspicuity, and target region confidence improved by 34.91%, 36.29%, 39.94%, 34.17%, 35.13%, and 45.70%, respectively. CONCLUSIONS: The proposed method of image-based metal artifact simulation can be used to train a MARIO algorithm to effectively reduce probe-related metal artifacts in CT-guided cryoablation procedures.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Metais , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Humanos , Cirurgia Assistida por Computador/métodos , Aprendizado Profundo , Criocirurgia/métodos , Imagens de Fantasmas
17.
Diagnostics (Basel) ; 14(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396389

RESUMO

BACKGROUND: To compare the potential of various bone evaluations by considering photon-counting CT (PCCT) and multiple energy-integrating-detector CT (EIDCT), including three dual-energy CT (DECT) scanners with standardized various parameters in both standard resolution (STD) and ultra-high-resolution (UHR) modes. METHODS: Four cadaveric forearms were scanned using PCCT and five EIDCTs, by applying STD and UHR modes. Visibility of bone architecture, image quality, and a non-displaced fracture were subjectively scored against a reference EIDCT image by using a five-point scale. Image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also compared. To assess metal artifacts, a forearm with radial plate fixation was scanned by with and without Tin filter (Sn+ and Sn-), and virtual monoenergetic image (VMI) at 120 keV was created. Regarding Sn+ and VMI, images were only obtained from the technically available scanners. Subjective scores and the areas of streak artifacts were compared. RESULTS: PCCT demonstrated significantly lower noise (p < 0.001) and higher bone SNR and CNR (p < 0.001) than all EIDCTs in both resolution modes. However, there was no significant difference between PCCT and EIDCTs in almost all subjective scores, regardless of scan modes, except for image quality where a significant difference was observed, compared to several EIDCTs. Metal artifact analysis revealed PCCT had larger artifact in Sn- and Sn+ (p < 0.001), but fewer in VMIs than three DECTs (p < 0.001 or 0.001). CONCLUSIONS: Under standardized conditions, while PCCT had almost no subjective superiority in visualizing bone structures and fracture line when compared to EIDCTs, it outperformed in quantitative analysis related to image quality, especially in lower noise and higher tissue contrast. When using PCCT to assess cases with metal implants, it may be recommended to use VMIs to minimize the possible tendency for artifact to be pronounced.

18.
Diagnostics (Basel) ; 14(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248036

RESUMO

The presence of high-density and high-atomic number materials results in the generation of artifacts in cone beam computed tomographic (CBCT) images. To minimize artifacts in CBCT images, the metal artifact reduction (MAR) tool was developed. This study aims to quantitatively evaluate the effectiveness of the MAR algorithm in CBCT images of teeth with stainless steel orthodontic brackets with or without arch wires in buccal and lingual positions obtained using the Galileos Sirona CBCT scanner. In this in vitro study, 20 stainless steel brackets were attached to the maxillary dentition from the right second premolar to the left second premolar teeth of a human skull. In the first group, 10 brackets were bonded to the buccal surface, and in the second group, 10 brackets were bonded to the palatal surface of these teeth. CBCT scans were obtained for each group with or without orthodontic stainless steel wires using a Galileos Sirona CBCT scanner with exposure parameters of 85 kVp and 21 mAs. CBCT images were obtained two times with and two times without MAR activation. The DICOM format of the CBCT images was imported to ImageJ software (version 1.54), and the contrast-to-noise ratio (CNR) was calculated and compared for each bracket in 15 and 20 mm distances and 20, 40, and 90 degrees on each side. Statistical analysis was performed using the t test (α = 0.05). CNR values of different distances and different teeth were not significantly different between the two MAR modes (p > 0.05). MAR activation had a significant impact in increasing CNR and reducing artifacts only when brackets were in palatal (p = 0.03). In the other bracket and wire positions, the effect of the MAR algorithm on CNR was not significant (p > 0.05). In conclusion, MAR activation significantly increased CNR, but only when the brackets were in a palatal position. In the other bracket and wire positions, the effect of the MAR algorithm is not significant.

19.
Magn Reson Med Sci ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38233192

RESUMO

PURPOSE: To evaluate the significant findings of hip periprosthetic joint infection (PJI) using metal-artifact-reduction (MAR) MRI and to compare the MRI results to other clinical markers. METHODS: The results of MRI, including two-dimensional fast-spin echo sequences with increased bandwidth and multi-acquisition variable-resonance image combination selective for hips with orthopedic implants at 1.5T (from April 2014 to November 2021), were retrospectively assessed for imaging findings and diagnostic impressions by two radiologists. Clinical data and courses were also investigated. Univariate and multivariate analyses were performed to identify the significant MRI findings in patients with hip PJI and those who underwent surgical intervention. The MRI impressions were compared with other clinical markers in diagnosing hip PJI. RESULTS: Thirty-seven hip joints in 24 Asian patients (age = 73.9 ± 10.8 years; 18 females) were included. Twelve hip joints (32%) had PJI; seven underwent a surgical intervention. The significant findings for hip PJI included periosteal edema of the acetabulum, intermuscular edema, intramuscular fluid collection, and lymphadenopathy (P < 0.05). In the cases with surgical intervention, the significant findings included capsular distension, capsular thickening, an osteolysis-like pattern of the femur, subcutaneous fluid collection, and lymphadenopathy (P < 0.05). The MRI impressions had high diagnostic significance for both hip PJI cases and those with surgical intervention (P < 0.001). The MRI impression was more significant for hip PJI than the other clinical markers (P < 0.05), while the other clinical markers were more significant in the cases with surgical intervention (P < 0.05). CONCLUSION: The significant findings in the hip PJI cases included acetabular periosteal edema, intermuscular edema, intramuscular fluid collection, and lymphadenopathy. The significant findings in the cases with surgical intervention included capsular distention, capsular thickening, a femoral osteolysis-like pattern, subcutaneous fluid collection, and lymphadenopathy. The utilization of MAR MRI demonstrated great diagnostic significance for hip PJI.

20.
Skeletal Radiol ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236295

RESUMO

Metallosis is an unusual but consequential complication arising from orthopedic hardware implantation, characterized by the deposition of metallic particles in the periprosthetic soft tissues. The incidence of metallosis associated with shoulder arthroplasties is exceptionally rare since the shoulder is not a weight-bearing joint, making it less susceptible to mechanical wear and, consequently, to conditions like particle disease and metallosis. Nevertheless, anomalous metal-on-metal interactions can develop in total shoulder arthroplasties if the polyethylene component fails due to wear, fracture, or dissociation. If left unaddressed, metallosis can incite an adverse immune-mediated local tissue response, culminating in joint destruction and adjacent soft tissues and muscle necrosis. In this case report, the diagnosis of metallosis was made in a patient with an anatomic total shoulder arthroplasty using a state-of-the-art photon counting detector CT supplemented by post-processing metal artifact reduction algorithms. This advanced imaging approach was effective in discerning the source of implant failure and in identifying manifestations of severe metallosis including osteolysis and pseudotumor formation. Advanced imaging methods can accurately characterize the severity and extent of metallosis, thereby helping guide surgical planning to mitigate serious complications associated with this condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...