Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 238: 112033, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396525

RESUMO

Alzheimer's disease (AD) is related to the presence of extracellular aggregated amyloid-ß peptide (Aß), which binds copper(II) with high affinity in its N-terminal region. In this sense, two new 1-methylimidazole-containing N-acylhydrazonic metallophores, namely, X1TMP and X1Benz, were synthesized as hydrochlorides and characterized. The compound X1TMP contains the 3,4,5-trimethoxybenzoyl moiety present in the structure of mescaline, a natural hallucinogenic protoalkaloid that occurs in some species of cacti. Single crystals of X1Benz, the unsubstituted derivative of X1TMP, were obtained. The experimental partition coefficients of both compounds were determined, as well as their apparent affinity for Cu2+ in aqueous solution. Ascorbate consumption assays showed that these N-acylhydrazones are able to lessen the production of ROS by the Cu(Aß)-system, and a short-time scale aggregation study, measured through turbidity and confirmed by TEM images, revealed their capacity in preventing Aß fibrillation at equimolar conditions in the presence and absence of copper. 1H15N HSQC NMR experiments demonstrated a direct interaction between Aß and X1Benz, the most soluble of the compounds. The Cu2+ sequestering potential of this hydrazone towards Aß was explored by 1H NMR. Although increasing amounts of X1Benz were unexpectedly not efficient at removing the metal-induced perturbations in Aß backbone amides, the broadening effects observed on the compound's signals indicate the formation of a ternary Aß­copper-X1Benz species, which can be responsible for the observed ROS-lessening and aggregation-preventing activities. Overall, the N-acylhydrazones X1TMP and X1Benz have shown promising prospects as agents for the treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Cobre/química , Mescalina , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/química
3.
Arch Microbiol ; 204(3): 180, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175407

RESUMO

Environmental pollution as a result of heavy metals (HMs) is a worldwide problem and the implementation of eco-friendly remediation technologies is thus required. Metallophores, low molecular weight compounds, could have important biotechnological applications in the fields of agriculture, medicine, and bioremediation. This study aimed to isolate HM-resistant bacteria from soils and sediments of the Lerma-Chapala Basin and evaluated their abilities to produce metallophores and to promote plant growth. Bacteria from the Lerma-Chapala Basin produced metallophores for all the tested metal ions, presented a greater production of As3+ metallophores, and showed high HM resistance especially to Zn2+, As5+, and Ni2+. A total of 320 bacteria were isolated with 170 strains showing siderophores synthesis. Members of the Delftia and Pseudomonas genera showed above 92 percent siderophore units (psu) during siderophores production and hydroxamate proved to be the most common functional group among the analyzed siderophores. Our results provided evidence that Lerma-Chapala Basin bacteria and their metallophores could potentially be employed in bioremediation processes or may even have potential for applications in other biotechnological fields.


Assuntos
Metais Pesados , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise
4.
Arch Microbiol ; 204(1): 57, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34939131

RESUMO

Mexican maize landraces, produced for local consumption, are adapted to different environmental conditions, and their yield is affected by abiotic and biotic factors, including the use of agrochemicals. The search for sustainable alternatives to agrochemicals includes the study of the culturable microbial communities. In this study, the fungal communities associated with 2 Mexican maize landraces reddish and bluish "conical cobs" were found to be comprised of Ascomycota fungi, represented by 89 strains within 6 orders (Pleosporales, Hypocreales, Onygenales, Capnodiales, Helotiales, and Eurotiales) and 16 genera. Cellulases and metallophores production were the primary enzymatic products and plant growth-promoting activities were detected among the isolates. Penicillium, Didymella, and Fusarium strains had the most active enzymatic and plant growth promoting activities, however, Aspergillus sp. HES2-2.2, Talaromyces sp. RS1-7, and Penicillium sp. HFS3-3 showed antagonistic activity against the four phytopathogenic Fusarium strains Fusarium oxysporum, Fusarium sambucinum, Fusarium fujikuroi and Fusarium incarnatum-equiseti and also a high and diverse production of enzymatic and plant growth promoting activities; here we identified fungal strains as candidates to promote maize growth.


Assuntos
Ascomicetos , Fusarium , Microbiota , Penicillium , Aspergillus , Fungos , Zea mays
5.
Chemosphere ; 285: 131466, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34271468

RESUMO

Here, we explore effects of metallophore-producing rhizobacteria on the plant availability of germanium (Ge) and rare earth elements (REEs). Five isolates of the four species Rhodococcus erythropolis, Arthrobacter oxydans, Kocuria rosea and Chryseobacterium koreense were characterized regarding their production of element-chelators using genome-mining, LC-MS/MS analysis and solid CAS-assay. Additionally, a soil elution experiment was conducted in order to identify isolates that increase solubility of Ge and REEs in soil solution. A. oxydans ATW2 and K. rosea ATW4 released desferrioxamine-, bacillibactin- and surfactin-like compounds that mobilized Ge and REEs as well as P, Fe, Si and Ca in soil. Subsequently, oat, rapeseed and reed canary grass were cultivated on soil and sand and treated with cells and iron depleted culture supernatants of A. oxydans ATW2 and K. rosea ATW4. Inoculation increased plant yield and shoot phosphorus (P), manganese (Mn), Ge and REE concentrations. However, effects of the inoculation varied substantially between the growth substrates and plant species. On sand, A. oxydans ATW2 increased accumulation of REEs in all plant species and root-shoot translocation in rapeseed, while K. rosea ATW4 enhanced REE accumulation in rapeseed only, without effects on other plant species. Sand-cultured oat plants showed increased Ge accumulation and root-shoot translocation in presence of A. oxydans ATW2 cells and K. rosea ATW4 supernatant; however, there was no effect on other plant species, irrespective the growth substrate used. In contrast, soil-cultured rapeseed showed enhanced REE accumulation in presence of cells of A. oxydans ATW2 while there were no effects on other plant species and Ge. The processes involved are not yet fully understood. Nevertheless, we demonstrated that chemical microbe-soil-plant relationships influence plant availability of nutrients together with Ge and REEs, which has major implications on our understanding of biogeochemical element cycling and development of sustainable bioremediation and biomining technologies.


Assuntos
Germânio , Metais Terras Raras , Micrococcaceae , Poluentes do Solo , Cromatografia Líquida , Chryseobacterium , Metais Terras Raras/análise , Rizosfera , Rhodococcus , Solo , Poluentes do Solo/análise , Espectrometria de Massas em Tandem
6.
J Biol Chem ; 291(40): 20858-20868, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27462080

RESUMO

Among the biologically required first row, late d-block metals from MnII to ZnII, the catalytic and structural reach of ZnII ensures that this essential micronutrient touches nearly every major metabolic process or pathway in the cell. Zn is also toxic in excess, primarily because it is a highly competitive divalent metal and will displace more weakly bound transition metals in the active sites of metalloenzymes if left unregulated. The vertebrate innate immune system uses several strategies to exploit this "Achilles heel" of microbial physiology, but bacterial evolution has responded in kind. This review highlights recent insights into transcriptional, transport, and trafficking mechanisms that pathogens use to "win the fight" over zinc and thrive in an otherwise hostile environment.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno/fisiologia , Zinco/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA