Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.588
Filtrar
1.
Anim Biotechnol ; 35(1): 2371519, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38990689

RESUMO

The present study aimed to evaluate the effect of dry turmeric rhizomes on in vitro biogas production and diet fermentability. Turmeric rhizomes were included at gradually increased levels: 0, 0.5, 1, 1.5 and 2% of a diet containing per kg dr matter (DM): 500 g concentrate feed mixture, 400 g berseem hay and 100 g rice straw, and incubated for 48 h. Gas chromatography-mass spectrometry analysis showed that ar-turmerone, α-turmerone and ß-turmerone were the major bioactive compounds in the rhizomes. Turmeric rhizomes increased (p < 0.01) asymptotic gas production (GP) and rate and lag of CH4 production and decreased (p < 0.01) rate of GP, lag of GP, asymptotic CH4 production and proportion of CH4 production. Turmeric rhizome administration linearly increased (p < 0.01) DM and fiber degradability and concentrations of total short-chain fatty acids, acetic and propionic acids and ammonia-N and quadratically (p < 0.05) decreased fermentation pH. It is concluded that including up to 2% turmeric rhizomes improved in vitro ruminal fermentation and decreased CH4 production.


Assuntos
Curcuma , Fermentação , Metano , Rizoma , Curcuma/química , Rizoma/química , Animais , Metano/metabolismo , Rúmen/metabolismo , Ração Animal/análise , Dieta/veterinária , Digestão/efeitos dos fármacos
2.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990962

RESUMO

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Assuntos
Biodiversidade , Carbono , Gases de Efeito Estufa , Plantas , Solo , Solo/química , Gases de Efeito Estufa/análise , Carbono/metabolismo , Carbono/análise , Plantas/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Ecossistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Metano/metabolismo , Efeito Estufa
3.
Sci Total Environ ; : 174656, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992367

RESUMO

Microorganisms are vital to the emission of greenhouse gases and transforming pollutants in paddy soils. However, the impact of microbial diversity loss on anaerobic methane (CH4) oxidation and arsenic (As) reduction under flooded conditions remains unclear. In this study, we inoculated microbial suspensions into natural As-contaminated paddy soils using a dilution approach (untreated, 10-2, 10-4, 10-6, 10-8 dilutions) to manipulate microbial diversity levels. The results revealed that the 10-4 and 10-6 dilutions resulted in the highest CH4 emissions (97.0 µmol and 102.3 µmol) compared to untreated groups (27.6 µmol). However, anaerobic CH4 oxidation was not observed in 10-4 dilution groups and higher dilutions, suggesting the loss of diversity inhibited the natural reduction of CH4. Moreover, the porewater As concentration in the dilution groups was 1.8-8.2 times greater than in the untreated groups. The loss of microbial diversity promoted the reductive dissolution of iron (Fe) minerals bearing As, leading to increased concentrations of Fe(II) and dissolved organic carbon (DOC), which further enhanced As release (Fe(II), R = 0.9, p < 0.001) (DOC, R = 0.8, p < 0.001) from soil to porewater. However, CH4-dependent As(V) reduction was almost entirely inhibited under diversity loss. The decline in microbial diversity increased the relative abundances of methanogens (e.g., Methanobacterium and Methanomassiliicoccus), Fe(III)/As(V)-reducing bacteria (e.g., Bacillus, Clostridium_sensu_stricto_10, and Geobacter), and the related functional genes (i.e., mcrA and Geo). These findings suggest that microbial diversity is critical for specialized soil processes, highlighting the detrimental effects of biodiversity loss on CH4 emissions and As release in As-contaminated paddies.

4.
J Environ Manage ; 365: 121592, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963959

RESUMO

Methane, either as natural gas or as a resource obtained from various bioprocesses (e.g., digestion, landfill) can be converted to carbon and hydrogen according to. CH4(g)→C(s)+2H2(g)ΔH298K=74.8kJ/mol. Previous research has stressed the growing importance of substituting the high-temperature Steam Methane Reforming (SMR) by a moderate temperature Catalytic Methane Decomposition (CMD). The carbon formed is moreover of nanotube nature, in high industrial demand. To avoid the use of an inert support for the active catalyst species, e.g., Al2O3 for Fe, leading to a progressive contamination of the catalyst by support debris and coking of the catalyst, the present research investigates the use of carbon nanotubes (CNTs) as Fe-support. Average CH4 conversions of 75-85% are obtained at 700 °C for a continuous operation of 40 h. The produced CNT from the methane conversion can be continuously removed from the catalyst bed by carry-over due to its bulk density difference (∼120 kg/m3) with the catalyst itself (∼1500 kg/m3). CNT properties are fully specified. No thermal regeneration of the catalyst is required. A tentative process layout and economic analysis demonstrate the scalability of the process and the very competitive production costs of H2 and CNT.

5.
Int J Environ Health Res ; : 1-19, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973230

RESUMO

In this study, CH4 production capacity of nitrification bacteria (NB) obtained from the submerged biofilter in the laboratory was investigated. Biochemical methane potential (BMP) test was carried out with the NB amount of zero (control, CR), 5% (R1), 10% (R2), and 15% (R3) at a temperature of about 37 ± 0.5°C. Compared to the CR, significantly higher cumulative CH4 volume of about 290, 490, and 715 mL were determined in the R1, R2, and R3, respectively. All the applied kinetic models gave good results (R2 ≥0.97), while the Transference Function and First-order models provided the better R2 values. The delay phase (λ) was not observed in the AD process, and CH4 production started immediately on the first day of operation. The predicted k value of 0.133 day-1 was high in CR, while it was approximately between 0.078 and 0.112 day-1 for the higher amount of NB containing BMP units, which indicated that the AD required long reaction time.

6.
J Breath Res ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968933

RESUMO

Although the association between Body Mass Index (BMI) level and metabolic diseases as well as the association between the breath test results and BMI level have been studied, their relationship between breath hydrogen/methane level and metabolic diseases need to be further clarified. This study aimed to investigate how the composition of exhaled breath gases relates to metabolic disorders and their key risk factors. An elevated BMI level significantly increases the risk of developing metabolic disease; it was included in this study to find their association. Diabetes mellitus, dyslipidemia, hypertension, and non-alcoholic fatty liver disease (NAFLD) are metabolic diseases included in this study. An analysis was performed on the medical records including the lactulose breath test (LBT) data of patients who visited the Ajou University Medical Center, Suwon, Republic of Korea, between January 2016 and December 2021. Subjects were grouped according to four different criteria of the LBT hydrogen and methane level: 1) Normal (N) (Hydrogen < 20 ppm and Methane < 3 ppm); 2) Hydrogen only (H+) (Hydrogen ≥ 20 ppm and Methane < 3 ppm); 3) Methane positive (M+) (Hydrogen < 20 ppm and Methane ≥ 3 ppm); and 4) Methane and hydrogen positive (M+/H+) (Hydrogen ≥ 20 ppm and Methane ≥ 3 ppm). Of 441 subjects, 325 (72.1%) had positive results for methane only (M+). BMI and prevalence of NAFLD were higher in subjects with M+ than in subjects with hydrogen and methane positivity (H+/M+). According to multivariate analysis, the odds ratio (OR) of M+ was 2.002 (with 95% CI: 1.244-3.221, P = 0.004) for NAFLD. Our results demonstrate that breath methane positivity is related to NAFLD and suggest that increased methane gas in breath tests has the potential to be an easily measurable biomarker for the diagnosis of NAFLD. .

7.
J Dairy Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969006

RESUMO

With the rapid development of animal phenomics and deep phenotyping, we can get thousands of traditional but also molecular phenotypes per individual. However, there is still a lack of exploration regarding how to handle this huge amount of data in the context of animal breeding, presenting a challenge that we are likely to encounter more and more in the future. This study aimed to (1) explore the use of the Mega-scale linear mixed model (MegaLMM), a factor model-based approach, able to simultaneously estimate (co)variance components and genetic parameters in the context of thousands of milk traits, hereafter called thousand-trait (TT) models; (2) compare the phenotype values and genomic breeding values (u) predictions for focal traits (i.e., traits that are targeted for prediction, compared with secondary traits that are helping to evaluate), from single-trait (ST) and TT models, respectively; (3) propose a new approximate method of estimated genomic breeding values (U) prediction with TT models and MegaLMM. 3,421 milk mid-infrared (MIR) spectra wavepoints (called secondary traits) and 3 focal traits [average fat percent (Fat), average methane (CH4), and average somatic cell score (SCS)] collected on 3,302 first-parity Holstein cows were used. The 3,421 milk MIR wavepoints traits were composed of 311 wavepoints in 11 classes (months in lactation). Genotyping information of 564,439 SNP was available for all animals and was used to calculate the genomic relationship matrix. The MegaLMM was implemented in the framework of the Bayesian sparse factor model and solved through Gibbs sampling (Markov chain Monte Carlo). The heritabilities of the studied 3,421 milk MIR wavepoints gradually increased and then decreased in units of 311 wavepoints throughout the lactation. The genetic and phenotypic correlations between the first 311 wavepoints and the other 3,110 wavepoints were low. The accuracies of phenotype predictions from the ST model were lower than those from the TT model for Fat (0.51 vs. 0.93), CH4 (0.30 vs. 0.86), and SCS (0.14 vs. 0.33). The same trend was observed for the accuracies of u predictions: Fat (0.59 vs. 0.86), CH4 (0.47 vs. 0.78), and SCS (0.39 vs. 0.59). The average correlation between U predicted from the TT model and the new approximate method was 0.90. The new approximate method used for estimating U in MegaLMM will enhance the suitability of MegaLMM for applications in animal breeding. This study conducted an initial investigation into the application of thousands of traits in animal breeding and showed that the TT model is beneficial for the prediction of focal traits (phenotype and breeding values), especially for difficult-to-measure traits (e.g., CH4).

8.
J Environ Sci (China) ; 146: 304-317, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969460

RESUMO

A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.


Assuntos
Reatores Biológicos , Carvão Vegetal , Eliminação de Resíduos Líquidos , Águas Residuárias , Animais , Águas Residuárias/química , Carvão Vegetal/química , Suínos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Membranas Artificiais , Metano/metabolismo
10.
Environ Res ; : 119537, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960362

RESUMO

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolution of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiy of electron transfer and the content of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.

11.
Sci Rep ; 14(1): 15420, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965345

RESUMO

Due to the low permeability characteristics of the deep gas-containing coal seam, the conventional prevention and control measures that cannot solve the problems of gas outbursts are unsatisfactory for the prevention and control of the coal and gas outbursts disaster. Therefore, in this study, a strain of methane-oxidizing bacteria M07 with high-pressure resistance, strong resistance, and high methane degradation rate was selected from coal mines. The growth and degradation abilities of M07 in chelating wetting agent solutions to assess its adaptability and find the optimal agent-to-M07 ratio. It provides a new method for integrating the reduction of impact tendency and gas pressure in deep coal mines. The experimental results show that M07 is a Gram-positive bacterium of the genus Bacillus, which has strong resistance and adaptability to high-pressure water injection. By degrading 70 mol of methane, M07 produces 1 mol of carbon dioxide, which can reduce gas pressure and reduce the risk of gas outbursts in coal mines. As the experiment proves, the best effect was achieved when the M07 concentration of the chelating wetting agent was 0.05%. The methane-oxidizing bacteria based on the chelating wetting agent as carriers prove a new prevention and control method for the integrated prevention and control of coal and gas outbursts in coal mines and also provide a new idea for microbial application in coal mine disaster control.


Assuntos
Biodegradação Ambiental , Quelantes , Metano , Metano/metabolismo , Metano/química , Quelantes/química , Quelantes/farmacologia , Quelantes/metabolismo , Bacillus/metabolismo , Carvão Mineral , Minas de Carvão
12.
J Environ Manage ; 366: 121725, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971070

RESUMO

Co-digestion of kitchen waste (KW) and black water (BW) can be considered as an attractive method to efficiently achieve the clean energy from waste. To find the optimal operation parameters for the co-digestion, the effects of different temperatures (35 and 55 °C) and BW:KW ratios on the reactor performances, microbial communities and metabolic pathways were studied. The results showed that the optimum BW:KW ratio was 1:3.6 and 1:4.5 for mesophilic and thermophilic optimal reactors, with methane production of 449.04 mL/g VS and 411.90 mL/g VS, respectively. Microbial communities showed significant differences between the reactors under different temperatures. For bacteria, increasing BW:KW ratio significantly promoted Defluviitoga enrichment (1.1%-9.5%) under thermophilic condition. For Archaea, the increase in BW:KW ratio promoted the enrichment of Methanosaeta (8.6%-56.4%) in the mesophilic reactor and Methanothermobacter (62.0%-89.2%) in the thermophilic reactor. The analysis of the key enzymes showed that, acetoclastic methanogenic pathway performed as the dominant under mesophilic condition, with high abundance of Acetate-CoA ligase (EC:6.2.1.1) and Pyruvate synthase (EC:1.2.7.1). Hydrogenotrophic methanogenic pathway was the main pathway in the thermophilic reactors, with high abundance of Formylmethanofuran dehydrogenase (EC:1.2.99.5).

13.
Artigo em Inglês | MEDLINE | ID: mdl-38971893

RESUMO

Biomass energy is a type of renewable energy and animal waste is one of the main resources for its production. The purpose of this study is to investigate the effect of raw material type (cow and chicken manure) and the type of reactor (digester) on the biogas produced by measuring the amount of methane in the product. Three types of digester (metal, simple PVC, and PVC with leachate rotation) with the same volume (10 L) were prepared. Equipment was installed on the digesters to measure the pH and volume of produced gas. The experiments were carried out in controlled temperature conditions (28-30 °C) and in two stages. The first experiment was to load the digesters with cow excrement, and the second experiment was to load the digesters with chicken excrement. In both experiments, the digesters were fed with 1.5 kg of animal manure and water with a ratio of 1:1. During a period of 60 days, the volume of biogas and methane produced was measured and recorded. The results showed that the amount of biogas produced from chicken waste is more than the amount obtained from cow waste. However, the amount of methane produced using cow excrement was more than that of chicken excrement. Also, the performance of PVC digester with leachate rotation was better than the other two digesters, which could be due to the mixing of raw materials in this type of digester.

14.
Environ Res ; 259: 119549, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964576

RESUMO

Methane (CH4) is the second most abundant greenhouse gas. China is the largest CH4 emitter in the world, with coal mine methane (CMM) being one of the main anthropogenic contributions. Thus, there is an urgent need for comprehensive estimates and strategies for reducing CMM emissions in China. However, the development of effective strategies is currently challenged by a lack of information on temporal variations in the contributions of different CMM sources and the absence of provincial spatial analysis. Here, considering five sources and utilization, we build a comprehensive inventory of China's CMM emissions from 1980 to 2022 and quantify the contributions of individual sources to the overall CMM emissions at the national and provincial levels. Our results highlight a significant shift in the source contributions of CMM emissions, with the largest contributor, underground mining, decreasing from 89% in 1980 to 69% in 2022. Underground abandoned coal mines, which were ignored or underestimated in past inventories, have become the second source of CMM emissions since 1999. From 2011 to 2022, we identified Shanxi, Guizhou, and Shaanxi as the three largest CMM-emitting provinces, while the Emissions Database for Global Atmospheric Research (EDGAR) v8 overestimated emissions from Inner Mongolia, ranking it third. Notably, we observed a substantial decrease (exceeding 1 Mt) in CMM emissions in Sichuan, Henan, Liaoning, and Hunan between 2011 and 2022, which was not captured by EDGAR v8. To develop targeted CMM emission reduction strategies at the provincial level, we classified 31 provinces into four groups based on their CMM emission structures. In 2022, the number of provinces with CMM emissions mainly from abandoned coal mines has exceeded that of provinces with mainly underground mines, which requires attention. This study reveals the characteristics of the source of CMM emissions in China and provides emission reduction directions for four groups of provinces.

15.
Angew Chem Int Ed Engl ; : e202411048, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946177

RESUMO

The production of acetic acid, an important industrial chemical traditionally obtained through the carbonylation of methanol using noble metal-based homogeneous catalysts, encounters challenges arising from high equipment costs and sustainability concerns. The direct liquid-phase oxidative carbonylation of methane emerges as a promising alternative, capitalizing on abundant natural gas resources and featuring a potentially mild and straightforward process. However, most catalysts proposed for this process suffer from low acetic acid yields due to the scarcity of active sites and the swift generation of C1 oxygenates, posing difficulties for subsequent carbonylation and impeding their industrial feasibility. Herein, we report a highly efficient 0.1Cu/Fe-HZ5-TF catalyst featuring exclusively mononuclear Fe and Cu anchored in the ZSM-5 channels. Under optimized conditions, the catalyst achieved an unprecedented acetic acid yield of 40.5 mmol gcat-1 h-1 at 50 °C, surpassing the previous maximum (12.0 mmol gcat-1h-1) by more than threefold. Comprehensive characterization, isotope-labeled experiments and DFT calculations reveal that the homogeneous mononuclear Fe sites are responsible for the activation and oxidation of methane, while the neighboring Cu sites play a key role in retarding the oxidation process. This synergistic action promotes C-C coupling, resulting in the efficient synthesis of acetic acid.

16.
Glob Chang Biol ; 30(7): e17388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967139

RESUMO

Permafrost thaw in northern peatlands causes collapse of permafrost peat plateaus and thermokarst bog development, with potential impacts on atmospheric greenhouse gas exchange. Here, we measured methane and carbon dioxide fluxes over 3 years (including winters) using static chambers along two permafrost thaw transects in northwestern Canada, spanning young (~30 years since thaw), intermediate and mature thermokarst bogs (~200 years since thaw). Young bogs were wetter, warmer and had more hydrophilic vegetation than mature bogs. Methane emissions increased with wetness and soil temperature (40 cm depth) and modelled annual estimates were greatest in the young bog during the warmest year and lowest in the mature bog during the coolest year (21 and 7 g C-CH4 m-2 year-1, respectively). The dominant control on net ecosystem exchange (NEE) in the mature bog (between +20 and -54 g C-CO2 m-2 year-1) was soil temperature (5 cm), causing net CO2 loss due to higher ecosystem respiration (ER) in warmer years. In contrast, wetness controlled NEE in the young and intermediate bogs (between +55 and -95 g C-CO2 m-2 year-1), where years with periodic inundation at the beginning of the growing season caused greater reduction in gross primary productivity than in ER leading to CO2 loss. Winter fluxes (November-April) represented 16% of annual ER and 38% of annual CH4 emissions. Our study found NEE of thermokarst bogs to be close to neutral and rules out large CO2 losses under current conditions. However, high CH4 emissions after thaw caused a positive net radiative forcing effect. While wet conditions favouring high CH4 emissions only persist for the initial young bog period, we showed that continued climate warming with increased ER, and thus, CO2 losses from the mature bog can cause net positive radiative forcing which would last for centuries after permafrost thaw.


Assuntos
Dióxido de Carbono , Mudança Climática , Gases de Efeito Estufa , Metano , Pergelissolo , Áreas Alagadas , Metano/análise , Metano/metabolismo , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Temperatura , Solo/química , Canadá , Estações do Ano
17.
Sci Rep ; 14(1): 15280, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961272

RESUMO

This study proposed a novel development mode combining boundary sealing and hot water injection to address the challenges of gas leakage, limited reservoir sensible heat, boundary water intrusion, and low productivity faced by challenging hydrate extraction, and the stimulation effect was numerically investigated with Shenhu hydrates as the geological background. The results showed that lower boundary permeability facilitated pressure propagation and achieved volumetric dissociation of hydrates, whereas insufficient formation energy resulted in substantial gas retention. Hot water injection was effective for stimulation, but open boundaries could not maintain the high injection pressure, leading to massive hot water losses and gas escapes. However, their combination achieved a synergistic stimulation like "1 + 1 > 2" because a piston water drive similar to secondary recovery in oil and gas development was formed. Relative to three-spot well patterns, the five-spot shortened the extraction cycle by 680 days and enhanced the gas-to-water ratio by 17%. Increasing injection pressure enhanced water yield more significantly while the improvement of gas yield was more significant by increasing hot water temperature. Overall, high-pressure and high-temperature injection was suggested for gas enhancement and water control. These findings provide important guidance for advancing the commercial development of challenging hydrates.

18.
mBio ; : e0078224, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953639

RESUMO

Copious amounts of methane, a major constituent of greenhouse gases currently driving climate change, are emitted by livestock, and efficient methods that curb such emissions are urgently needed to reduce global warming. When fed to cows, the red seaweed Asparagopsis taxiformis (AT) can reduce enteric methane emissions by up to 80%, but the achieved results can vary widely. Livestock produce methane as a byproduct of methanogenesis, which occurs during the breakdown of feed by microbes in the rumen. The ruminant microbiome is a diverse ecosystem comprising bacteria, protozoa, fungi, and archaea, and methanogenic archaea work synergistically with bacteria to produce methane. Here, we find that an effective reduction in methane emission by high-dose AT (0.5% dry matter intake) was associated with a reduction in methanol-utilizing Methanosphaera within the rumen, suggesting that they may play a greater role in methane formation than previously thought. However, a later spike in Methanosphaera suggested an acquired resistance, possibly via the reductive dehalogenation of bromoform. While we found that AT inhibition of methanogenesis indirectly impacted ruminal bacteria and fermentation pathways due to an increase in spared H2, we also found that an increase in butyrate synthesis was due to a direct effect of AT on butyrate-producing bacteria such as Butyrivibrio, Moryella, and Eubacterium. Together, our findings provide several novel insights into the impact of AT on both methane emissions and the microbiome, thereby elucidating additional pathways that may need to be targeted to maintain its inhibitory effects while preserving microbiome health and animal productivity. IMPORTANCE: Livestock emits copious quantities of methane, a major constituent of the greenhouse gases currently driving climate change. Methanogens within the bovine rumen produce methane during the breakdown of feed. While the red seaweed Asparagopsis taxiformis (AT) can significantly reduce methane emissions when fed to cows, its effects appear short-lived. This study revealed that the effective reduction of methane emissions by AT was accompanied by the near-total elimination of methane-generating Methanosphaera. However, Methanosphaera populations subsequently rebounded due to their ability to inactivate bromoform, a major inhibitor of methane formation found in AT. This study presents novel findings on the contribution of Methanosphaera to ruminal methanogenesis, the mode of action of AT, and the possibility for complementing different strategies to effectively curb methane emissions.

19.
Environ Technol ; : 1-17, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955503

RESUMO

The study investigated the spatial variation of potential methane (CH4) oxidation and residual carbon dioxide (CO2) sequestration in biogeochemical cover (BGCC) system designed to remove CH4, CO2, and hydrogen sulfide (H2S) from landfill gas (LFG) emissions. A 50 cm x 50 cm x 100 cm tank simulated BGCC system, comprising a biochar-amended soil (BAS) layer for CH4 oxidation, a basic oxygen furnace (BOF) slag layer for CO2 and H2S sequestration, and an upper topsoil layer. Synthetic LFG was flushed through the system in five phases, with each corresponding to different compositions and flow rates. Following monitoring, the system was dismantled, and samples were extracted from different depths and locations to analyze spatial variations, focusing on moisture content (MC), organic content (OC), pH, and electrical conductivity (EC). Additionally, batch tests on selected samples from BAS and BOF slag layers were performed to assess potential CH4 oxidation and residual carbonation capacity. The aim of study was to evaluate the BGCC's effectiveness in LFG mitigation, however this study focused on assessing spatial variations in physico-chemical properties, CH4 oxidation in the BAS layer, and residual carbonation in the BOF slag layer. Findings revealed CH4 oxidation in the BAS layer varied between 22.4 and 277.9 µg CH4/g-day, with higher rates in the upper part, and significant spatial variations at 50 cm below ground surface (bgs) compared to 85 cm bgs. The BOF slag layer showed a residual carbonation capacity of 40-49.3 g CO2/kg slag, indicating non-uniform carbonation. Overall, CH4 oxidation and CO2 sequestration capacities varied spatially and with depth in the BGCC system.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38980478

RESUMO

Anaerobic digestion of waste activated sludge (WAS) was one of the directions of sludge treatment, but how to effectively improve the production of methane as a resource product of anaerobic digestion of sludge still needs further research. The study examined how the combination of potassium ferrate (PF) and thermal hydrolysis (TH) pretreatment affected methane production from sludge. The results demonstrated a positive synergistic effect on methane production with PF-TH pretreatment. Specifically, by employing a 0.05 g/g TSS (total suspended solids) PF in conjunction with TH at 80 °C for 30 min, the methane yield increased from 170.66 ± 0.92 to 232.73 ± 2.21 mL/g VSS (volatile suspended solids). The co-pretreatment of PF and TH has been substantiated by mechanism studies to effectively enhance the disintegration and biodegradability of sludge. Additionally, the variation of microbial community revealed an enrichment of active microorganisms associated with anaerobic digestion after treated with PF + TH, resulting in a total abundance increase from 11.87 to 20.45% in the PF + TH group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...