Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
1.
J Biomed Mater Res A ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984391

RESUMO

The conventional treatment of osteomyelitis with antibiotic-loaded nondegradable polymethylmethacrylate (ATB-PMMA) beads has certain limitations, including impeded bone reconstruction and the need for secondary surgery. To overcome this challenge, this study aimed to develop and characterize an injectable vancomycin-loaded silk fibroin/methylcellulose containing calcium phosphate-based in situ thermosensitive hydrogel (VC-SF/MC-CAPs). The VC-SF/MC-CAPs solution can be easily administered at room temperature with a low injectability force of ≤30 N and a high vancomycin (VC) content of ~96%. Additionally, at physiological temperature (37 °C), the solution could transform into a rigid hydrogel within 7 minutes. In vitro drug release performed under both physiological (pH 7.4) and infection conditions (pH 4.5) revealed a prolonged release pattern of VC-SF/MC-CAPs following the Peppas-Sahlin kinetic model. In addition, the released VC from VC-SF/MC-CAPs hydrogels exhibited antibacterial activity against Staphylococcus aureus for a period exceeding 35 days, as characterized by the disk diffusion assay. Furthermore, at pH 7.4, the VC-SF/MC-CAPs demonstrated >60% degradation within 35 days. Importantly, when exposed to physiological pH conditions, CAPs are transformed into bioactive hydroxyapatite, which benefits bone formation. Therefore, VC-SF/MC-CAPs showed significant potential as a local drug delivery system for treating osteomyelitis.

2.
J Pharm Biomed Anal ; 248: 116330, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38981329

RESUMO

Due to their potential adverse health effects, some N-nitrosamines in drug products are strictly regulated with very low maximum daily intake limits. Nitrosamines can be formed from the reaction of nitrite and secondary or tertiary amines when both species co-exist in the drug synthesis or formulation process. One key strategy to mitigate nitrosamine risk in drugs is to select low-nitrite containing pharma excipients for formulation. It is necessary to develop a sensitive method for trace nitrite determination in pharma excipients as it enables drug producers to study nitrosamine formation kinetics and select excipient suppliers. This study details the development and validation of a two-dimensional ion chromatography mass spectrometry (2D-IC/MS) method for trace nitrite determination in hydroxypropyl methylcellulose (HPMC), one of the most important pharmaceutical excipients used in many drug formulations. The 2D-IC system was operated in heart-cutting mode with a concentrator column coupling the two dimensions. A standard bore anion-exchange column was used in the first dimension (1D) to enable a large volume injection for increased sensitivity and provide improved resolution between nitrite and the interfering chloride peak. A high efficiency microbore anion-exchange column with different selectivity was used in the second dimension (2D) to resolve nitrite from other interfering species. The use of 2D-IC resulted in significantly improved resolution, solving the sensitivity loss issue due to ion suppression from an otherwise 1D separation. MS detection with selective ion monitoring and isotope labeled nitrite internal standard further improve the method specificity, accuracy, and ruggedness, as compared with conductivity detection. For trace determination, it is also extremely important to have a clean blank. For this purpose, a novel cleaning procedure using a strong anion wash was developed to remove nitrite contamination from labware. The optimized method was validated with linearity of nitrite in the concentration range of 18.5-5005.8 ng/g having a regression coefficient of >0.9999, precision with RSD at 3.5-10.1 % and recovery of 90.5-102.4 %. The limit of detection and limit of quantitation were 8.9 and 29.6 ng/g relative to the HPMC sample, or equivalent to 89 and 296 pg/g in the sample solution, respectively.

3.
Int J Biol Macromol ; 275(Pt 1): 133626, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964691

RESUMO

Low-viscosity hydroxypropyl methylcellulose (HPMC) was obtained by electron beam irradiation, and its use as an excipient for improving the properties of spray dried pharmaceutical powders was investigated. The minimum molecular weight of HPMC which could maintain the capacity of encapsulation and powder modification was explored. As the irradiation dose was increased from 10 to 200 kGy, the molecular weight and viscosity of HPMC decreased linearly. However, its main structure and degrees of methoxy and hydroxypropyl substitution were not significantly affected. The irradiated HPMC could encapsulate particles during spray drying and, thus, modify powder properties. Furthermore, the water content of spray-dried powders with irradiated HPMC was lower than that with parent HPMC. After the spray-dried powder with irradiated HPMC was prepared into granules, their dissolution rate was also faster. However, in order to achieve high encapsulation, the molecular weight of HPMC should be ensured to be above 7.5 kDa. The designated low-viscosity HPMC obtained by electron beam irradiation is a suitable powder-modification material for use in spray drying, and it shows promise as a superior excipient in medicine, food, paint industries, among others.

4.
Materials (Basel) ; 17(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893951

RESUMO

In this work, a chemical grafting polymerization method was employed to synthesize EHPMC-g-PANI self-supporting films. Polyaniline (PANI) was grafted onto hydroxypropyl methylcellulose (HPMC) modified with epichlorohydrin (EPHMC) to obtain an EHPMC-g-PANI aqueous dispersion, which was subsequently dried to form the self-supporting films. The introduction of HPMC, with its excellent film-forming ability and mechanical strength, successfully addressed the poor film-forming ability and mechanical properties intrinsic to PANI. Compared to in situ polymerized HPMC/PANI, the EHPMC-g-PANI exhibited significantly improved storage stability. Moreover, the fabricated EHPMC-g-PANI films displayed a more uniform and smoother morphology. The conductivity of all the films ranged from 10-2 to 10-1 S/cm, and their tensile strength reached up to 36.1 MPa. These results demonstrate that the prepared EHPMC-g-PANI holds promising potential for applications in various fields, including conductive paper, sensors, and conductive inks.

5.
Foods ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38890919

RESUMO

The demand for gluten-free products has increased due to improved diagnoses and awareness of gluten-related issues. This study investigated the effect of HPMC, psyllium, and xanthan gum in gluten-free bread formulations. Three tests were conducted, varying the amount of these ingredients: in the first formulation, the amount of HPMC was increased to 4.4 g/100 g of flour and starch; in the second, psyllium husk fiber was increased to 13.2 g/100 g of flour and starch; and in the third formulation, xanthan gum was removed. Differences were observed among the formulations: increasing HPMC reduced extrusion force without affecting bread quality; adding psyllium increased dough elasticity but also crumb gumminess and crust hardness. Eliminating xanthan gum altered dough rheology, resulting in a softer and less gummy crumb, and a less reddish color in the final bread.

6.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891551

RESUMO

This study aimed to examine the characteristics of H-K4M hydroxypropyl methylcellulose (HPMC) films containing nanostructured lipid carriers (NLCs) loaded with furosemide. A hot homogenization technique and an ultrasonic probe were used to prepare and reduce the size of the NLCs. Films were made using the casting technique. This study used a Box-Behnken design to evaluate the influence of three key independent variables, specifically H-K4M concentration (X1), surfactant Cremophor RH40 concentration (X2), and mixing speed (X3), on the physicochemical properties of furosemide-loaded NLCs and films. The furosemide-loaded NLCs had a particle size ranging from 54.67 to 99.13 nm, and a polydispersity index (PDI) ranging from 0.246 to 0.670. All formulations exhibited a negative zeta potential, ranging from -7.05 to -5.61 mV. The prepared films had thicknesses and weights ranging from 0.1240 to 0.2034 mm and 0.0283 to 0.0450 g, respectively. The drug content was over 85%. Film surface wettability was assessed based on the contact angle, ranging from 32.27 to 68.94°. Film tensile strength varied from 1.38 to 7.77 MPa, and their elongation at break varied from 124.19 to 170.72%. The ATR-FTIR analysis confirmed the complete incorporation of the drug in the film matrix. Therefore, the appropriate selection of values for key parameters in the synthesis of HPMC films containing drug-loaded NLCs is important in the effective development of films for medical applications.

7.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930327

RESUMO

As a new type of backfill material, Self-compacting solidified soil (SCSS) takes the abandoned slurry of cast-in-place piles after dewatering and reduction as the main raw material, which brings a problem of coordinating the working performance with the mechanical property under the condition of high mobility. In this paper, hydroxypropyl methyl cellulose (HPMC) and metakaolin were introduced as additives to solve this problem. First, the workability and mechanical properties of SCSS were regulated and optimized by means of the water seepage rate test, the flowability test, and the unconfined compressive strength test. Second, this study also used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to investigate the effects of HPMC and metakaolin on the physical phase and microstructure of SCSS. In this way, the results showed that there was a significant impact on the flowability of SCSS, that is, when the dosage reached 0.3%, the water seepage rate of SCSS was reduced to less than 1%, and the compressive strength at 7 days reached its peak. At the same time, HPMC weakened the strength growth of SCSS in the age period of 7 days to 14 days. However, the addition of metakaolin promoted its compressive strength. XRD analysis showed that the additives had no significant effects on the physical phases. And, from the SEM results, it can be seen that although the water-retaining effect of HPMC makes hydration of cement more exhaustive, more ettringite (AFt) can be observed in the microstructure. In addition, it can be observed that the addition of metakaolin can generate more hydrated calcium silicate (C-S-H) due to the strong surface energy possessed by metakaolin. As a result of the above factors, SCSS filled the voids between particles and improved the interface structure between particles, thus enhanced the compressive strength.

8.
Pharmaceutics ; 16(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931909

RESUMO

Propranolol hydrochloride, a non-cardio-selective beta blocker, is used to treat several conditions in children, including hypertension, arrhythmias, hyperthyroidism, hemangiomas, etc. Commercial liquid formulations are available in Europe and the US, but they have disadvantages, such as limited stability, bitter taste, and the need for multiple daily doses due to the drug's short half-life. Considering these limitations, controlled-release solid formulations, such as microparticles, may offer a better solution for pediatric administration. The main objective of this study was to formulate an encapsulation system for propranolol hydrochloride, based on sodium alginate and other polysaccharide polymers, to control and prolong its release. Microparticles were prepared using the ionotropic gelation method, which involves instilling a polymer solution into a solution of gelling ions via the extrusion technique. Physicochemical characterization was conducted by assessing the entrapment efficiency, drug loading, swelling index, microparticle size, rheological properties, and surface tension. In order to improve the characteristics of the tested microparticles, selected formulations were coated with chitosan. Further experimental work included differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) analysis, and SEM imaging. This in vitro release study showed that chitosan-coated microparticles demonstrate favorable properties, suggesting a novel approach to formulating pediatric dosage forms, although further optimization is necessary.

9.
Int J Biol Macromol ; 273(Pt 1): 132960, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852720

RESUMO

Collagen (COL)-hydroxypropyl methylcellulose (HPMC) blended films with apple polyphenol (AP) as cross-linking agent and antioxidant compound were developed to produce biodegradable active packaging film. The effects of AP content on the rheological behavior of the blended solution, the structure, physicochemical and functional properties of the blended film were systematically investigated. The incorporation of AP increased the viscosity and reduced the fluidity of COL-HPMC solution. The results of rheological tests and FTIR analysis manifested the formation of hydrogen bonding interactions between collagen, HPMC and AP, which made the structures of COL-HP-AP films more compact. The mechanical strength, UV-blocking ability, water-resistance performance and thermostability were gradually enhanced as increasing AP content. DPPH free radical scavenging experiment showed that a small amount of AP could efficiently improve the antioxidant activity of COL-HP film, and with increasing AP content to 5 wt%, the scavenging rate was as high as 94.23 %. Active film containing 5 wt% AP showed obvious antibacterial effect on E. coli and S. aureus, and it could effectively prevent the oxidation of vitamin C and reduce the accumulation of MDA on green pepper during the storage. COL-HP-AP films have great potential in food packaging field for extending the shelf life of food.


Assuntos
Antioxidantes , Colágeno , Embalagem de Alimentos , Derivados da Hipromelose , Malus , Polifenóis , Embalagem de Alimentos/métodos , Polifenóis/química , Malus/química , Colágeno/química , Antioxidantes/química , Antioxidantes/farmacologia , Derivados da Hipromelose/química , Antibacterianos/química , Antibacterianos/farmacologia , Reologia , Viscosidade , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
10.
Heliyon ; 10(11): e31653, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841456

RESUMO

Obtaining high-quality adult human primary cardiomyocytes (hPCM) have been technically challenging due to isolation-induced biochemical and mechanical stress. Building upon a previous tissue slicing-assisted digestion method, we introduced polymers into the digestion solution to reduce mechanical damage to cells. We found that low-viscosity methylcellulose (MC) significantly improved hPCM viability and yield. Mechanistically, it protected cells from membrane damage, which led to decreased apoptosis and mitochondrial reactive oxygen species production. MC also improved the electrophysiological properties of hPCMs by maintaining the density of sodium channels. The effects on cell viability and cell yield effects were not recapitulated by MC of larger viscosities, other cellulose derivatives, nor shear protectants polyethylene glycol and polyvinyl alcohol. Finally, MC also enhanced the isolation efficiency and the culture quality of hPCMs from diseased ventricular myocardium, expanding its potential applications. Our findings showed that the isolation quality of hPCMs can be further improved through the addition of a polymer, rendering hPCMs a more reliable cellular model for cardiac research.

11.
Int J Pharm ; 660: 124298, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825172

RESUMO

One of the most common forms of controlled release technology for oral drug delivery comprises an active ingredient dispersed in a hydrophilic matrix forming polymer such as hydroxypropyl methylcellulose (HPMC), which is tableted via direct compression. However, HPMC may pose problems in direct compression due to its poor flowability. Hence, mannitol syrup was spray-coated over fluidized HPMC particles to produce co-processed HPMC-mannitol at ratios of 20:80, 50:50, and 70:30. Particles of pure HPMC, co-processed HPMC-mannitol, and their respective physical mixtures were evaluated for powder flowability, compression profiles, and controlled release performance. It was found that co-processed HPMC-mannitol consisted of particles with improved flow compared to pure HPMC particles. Sufficiently strong tablets of >2 MPa could be produced at moderate to high compression forces of 150-200 MPa. The dissolution profile could be tuned to obtain desired release profiles by altering HPMC-mannitol ratios. Co-processed HPMC-mannitol offers an interesting addition to the formulator's toolbox in the design of controlled release formulations for direct compression.

12.
J Colloid Interface Sci ; 674: 315-325, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38936088

RESUMO

HYPOTHESIS: Elucidation of the micro-mechanisms of sol-gel transition of gelling glucans with different glycosidic linkages is crucial for understanding their structure-property relationship and for various applications. Glucans with distinct molecular chain structures exhibit unique gelation behaviors. The disparate gelation phenomena observed in two methylated glucans, methylated (1,3)-ß-d-glucan of curdlan (MECD) and methylated (1,4)-ß-d-glucan of cellulose (MC), notwithstanding their equivalent degrees of substitution, are intricately linked to their unique molecular architectures and interactions between glucan and water. EXPERIMENTS: Density functional theory and molecular dynamics simulations focused on the electronic property distinctions between MECD and MC, alongside conformational variations during thermal gelation. Inline attenuated total reflection Fourier transform infrared spectroscopy tracked secondary structure alterations in MECD and MC. To corroborate the simulation results, additional analyses including circular dichroism, rheology, and micro-differential scanning calorimetry were performed. FINDINGS: Despite having similar thermally induced gel networks, MECD and MC display distinct physical gelation patterns and molecular-level conformational changes during gelation. The network of MC gel was formed via a "coil-to-ring" transition, followed by ring stacking. In contrast, the MECD gel comprised compact irregular helices accompanied by notable volume shrinkage. These variations in gelation behavior are ascribed to heightened hydrophobic interactions and diminished hydrogen bonding in both systems upon heating, resulting in gelation. These findings provide valuable insights into the microstructural changes during gelation and the thermo-gelation mechanisms of structurally similar polysaccharides.

13.
Carbohydr Polym ; 337: 122163, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710557

RESUMO

Prion diseases are fatal transmissible neurodegenerative disorders. Among known anti-prions, hydroxypropyl methylcellulose compounds (HPMCs) are unique in their chemical structure and action. They have several excellent anti-prion properties but the effectiveness depends on the prion-infected mouse model. In the present study, we investigated the effects of stearoxy-modified HPMCs on prion-infected cells and mice. Stearoxy modification improved the anti-prion efficacy of HPMCs in prion-infected cells and significantly prolonged the incubation period in a lower HPMC-responding mouse model. However, stearoxy modification showed no improvement over nonmodified HPMCs in an HPMC-responding mouse model. These results offer a new line of inquiry for use with prion-infected mice that do not respond well to HPMCs.


Assuntos
Derivados da Hipromelose , Doenças Priônicas , Animais , Derivados da Hipromelose/química , Camundongos , Doenças Priônicas/tratamento farmacológico , Modelos Animais de Doenças
14.
Food Chem ; 453: 139683, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788649

RESUMO

Methylcellulose (MC)/grape pomace (GP) films, plasticized with either glycerol (GLY) or cinnamon essential oil (CEO), were prepared by thermo-compression molding and characterized. Compared to the GLY-plasticized MC50/GP50 films, a considerable increase in TS and YM values of CEO-plasticized films was observed, rising from 9.66 to 30.05 MPa, 762 to 1631 MPa, respectively. Moreover, the water vapor barrier, surface hydrophobic properties, and antioxidant/antibacterial activities of CEO-plasticized films remarkedly improved with increasing CEO content from 5 to 15% w/w. From scanning electron microscopy, phase separation between GP and the MC/GLY mixture were evident for GLY-plasticized MC/GP films. On the other hand, the CEO-plasticized films showed compact morphologies, attributable to the formation of hydrogen bonding and π-π stacking interaction. Preliminary shelf-life study on showed that fresh chicken wrapped with the CEO-plasticized MC/GP films exhibited lower TVB-N, TBARS, and TVC values than the unwrapped control samples, during 7 d storage at 4 °C.


Assuntos
Antibacterianos , Antioxidantes , Embalagem de Alimentos , Metilcelulose , Vitis , Antioxidantes/química , Antioxidantes/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Vitis/química , Embalagem de Alimentos/instrumentação , Metilcelulose/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Animais , Galinhas , Cinnamomum zeylanicum/química
15.
Cell Rep Methods ; 4(5): 100777, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38744289

RESUMO

Human brain tissue models and organoids are vital for studying and modeling human neurological disease. However, the high cost of long-term cultured organoids inhibits their wide-ranging application. It is therefore urgent to develop methods for the cryopreservation of brain tissue and organoids. Here, we establish a method using methylcellulose, ethylene glycol, DMSO, and Y27632 (termed MEDY) for the cryopreservation of cortical organoids without disrupting the neural cytoarchitecture or functional activity. MEDY can be applied to multiple brain-region-specific organoids, including the dorsal/ventral forebrain, spinal cord, optic vesicle brain, and epilepsy patient-derived brain organoids. Additionally, MEDY enables the cryopreservation of human brain tissue samples, and pathological features are retained after thawing. Transcriptomic analysis shows that MEDY can protect synaptic function and inhibit the endoplasmic reticulum-mediated apoptosis pathway. MEDY will enable the large-scale and reliable storage of diverse neural organoids and living brain tissue and will facilitate wide-ranging research, medical applications, and drug screening.


Assuntos
Encéfalo , Criopreservação , Organoides , Humanos , Organoides/efeitos dos fármacos , Criopreservação/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Etilenoglicol/farmacologia , Metilcelulose/química , Metilcelulose/farmacologia , Dimetil Sulfóxido/farmacologia
16.
Int J Pharm ; 658: 124180, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38705246

RESUMO

During the past several decades, nanostructures have played their increasing influences on the developments of novel nano drug delivery systems, among which, double-chamber Janus nanostructure is a popular one. In this study, a new tri-channel spinneret was developed, in which two parallel metal capillaries were nested into another metal capillary in a core-shell manner. A tri-fluid electrospinning was conducted with a solvent mixture as the shell working fluid for ensuring the formation of an integrated Janus nanostructure. The scanning electronic microscopic results demonstrated that the resultant nanofibers had a linear morphology and two distinct compartments within them, as indicated by the image of a cross-section. Fourier Transformation Infra-Red spectra and X-Ray Diffraction patterns verified that the loaded poorly water-soluble drug, i.e. icariin, presented in the Janus medicated nanofibers in an amorphous state, which should be attributed to the favorable secondary interactions between icariin and the two soluble polymeric matrices, i.e. hydroxypropyl methyl cellulose (HPMC) and polyvinylpyrrolidone (PVP). The in vitro dissolution tests revealed that icariin, when encapsulated within the Janus nanofibers, exhibited complete release within a duration of 5 min, which was over 11 times faster compared to the raw drug particles. Furthermore, the ex vivo permeation tests demonstrated that the permeation rate of icariin was 16.2 times higher than that of the drug powders. This improvement was attributed to both the rapid dissolution of the drug and the pre-release of the trans-membrane enhancer sodium lauryl sulfate from the PVP side of the nanofibers. Mechanisms for microformation, drug release, and permeation were proposed. Based on the methodologies outlined in this study, numerous novel Janus nanostructure-based nano drug delivery systems can be developed for poorly water-soluble drugs in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Flavonoides , Derivados da Hipromelose , Nanofibras , Povidona , Solventes , Nanofibras/química , Animais , Solventes/química , Povidona/química , Flavonoides/química , Flavonoides/administração & dosagem , Flavonoides/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Derivados da Hipromelose/química , Solubilidade , Absorção Cutânea , Masculino , Ratos
17.
Foods ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731756

RESUMO

The aim of this research was to optimize the production process of fermented gluten-free quinoa bread. To this end, the effect of different hydrocolloids on the technological, fermentative, and nutritional properties of quinoa-based gluten-free doughs and breads was evaluated. For this purpose, 3% of four different hydrocolloids (sodium alginate, k-carrageenan, xanthan gum, and hydroxypropyl methylcellulose (HPMC)) were used in gluten-free doughs composed of 50% quinoa flour, 20% rice flour, and 30% potato starch. The rheological and fermentative properties of the doughs were evaluated, as well as the chemical composition, specific volume, crust and crumb color, and alveolar structure profile of gluten-free breads. The results highlighted the differences in dough rheology during mixing and fermentation of the doughs. In particular, HPMC showed a good gas retention (93%) during the fermentation of quinoa dough by registering the highest maximum dough development height (Hm). The gluten-free quinoa breads obtained were characterized by significantly different quality parameters (p < 0.05). The use of 3% HPMC resulted in breads with the lowest baking loss, the highest volume, and the most open crumb structure.

18.
J Colloid Interface Sci ; 669: 975-983, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38759596

RESUMO

HYPOTHESIS: Hydroxypropyl methylcellulose phthalate (HPMCP) is an enteric polymer that has been employed in drug delivery systems to delay the release of the encapsulated active pharmaceutical ingredients through its pH-responsive solubility change. This has been recently demonstrated as an effective means for delaying the drug release from gelatin/HPMCP hydrogels at gastric pH values. However, structural characteristics of HPMCP agglomeration in gelatin/HPMCP hydrogels is not well understood thus limiting further tailoring of their material properties. EXPERIMENTS: We investigated the multiscale structure of a gelatin/HPMCP hydrogel (1:1 by weight) between pH 2 and 6 at 37 °C, i.e. above the upper critical solution transition temperature of gelatin, using small-angle X-ray scattering and contrast-variation small-angle neutron scattering to understand the pH-responsive structure of HPMCP and the cross-correlation between gelatin and HPMCP. FINDINGS: Agglomeration of HPMCP between pH 2 and 4 was evidenced by the formation of mass fractal structures, with a fractal dimension ranging from 1.5 to 2.7, comprising primary particles with a radius of gyration ranging from 70 to 140 Å. Blending with gelatin influenced the fractal structure of HPMCP and the primary particle size. Gelatin and HPMCP exhibited negative cross-correlation in all probed length scales and pH values, which was attributed to volume-exclusion interaction in a double-network-like solution architecture.


Assuntos
Gelatina , Metilcelulose , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Gelatina/química , Concentração de Íons de Hidrogênio , Metilcelulose/química , Metilcelulose/análogos & derivados , Hidrogéis/química , Estrutura Molecular
19.
Heliyon ; 10(6): e28317, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560682

RESUMO

This is the first study to apply intelligent packaging to coconut water. The purpose of this study was to determine the best color indicator solution for making freshness indicator labels based on methylcellulose along with the color change profile of coconut water during storage at room temperature. Three color indicator solutions were used, namely phenol red, bromothymol blue, and methyl red, which were then continued with the fabrication of freshness indicator labels based on methylcellulose from each of these color indicator solutions and applied to coconut water at 25 °C room temperature storage for 24 h with observations every 4 h in the form of pH, total dissolved solids, total acid, turbidity, total microbes, CO2 gas, O2 gas, and freshness indicator label color changes. The values of pH, total soluble solids, and O2 gas decreased with storage time, whereas the values of total acid, turbidity, total microbes, and CO2 gas continued to increase. The methylcellulose-based phenol red freshness indicator label provides the best color change profile that matches the freshness condition of coconut water, namely purplish red (fresh), orange (immediately consumed), and yellow (damaged) so that it can be used as intelligent packaging to monitor the quality of coconut water.

20.
J Pharm Sci ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608727

RESUMO

The preparation of amorphous solid dispersions (ASDs) represents a promising strategy for addressing the solubility limitations of poorly soluble drugs, facilitating enhanced oral absorption. Acidic polymers such as cellulose acetate phthalate (CAP) and hydroxypropyl methylcellulose phthalate (HPMCP) have emerged as effective carriers for ASDs. Although the hydrolytic degradation of these polymers has been documented, its impact on the stability of ASDs has not been systematically investigated. This research aimed to explore the potential hydrolysis of CAP and HPMCP and how it influences the stability of ASDs containing ketoconazole (KTZ), at drug loadings of 10 % and 50 %. Our study utilized thermal analysis, infrared spectroscopy, and evaluations of physical and chemical stability. The results revealed that although KTZ remained physically stable in all ASDs over 60 days under various stability conditions, the emergence of crystalline phthalic acid (PA), a byproduct of polymer hydrolysis, was observed at elevated temperatures and relative humidity levels. The acidic microenvironment fostered by the release of PA further catalyzed drug chemical degradation. This study underscores the susceptibility of CAP and HPMCP to hydrolytic degradation, highlighting the inherent risk of PA-induced drug degradation, particularly for acid-labile compounds. These insights into the understanding of polymer hydrolysis in ASDs pave the way for the development of targeted approaches to safeguard drug stability and optimize pharmaceutical formulations for enhanced bioavailability, efficacy, and safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...