Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(10): 264, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515608

RESUMO

Bacterial degradation of crude oil is a promising strategy for reducing the concentration of hydrocarbons in contaminated environments. In the first part of this study, we report the enrichment of two bacterial consortia from deep sediments of the Gulf of Mexico with crude oil as the sole carbon and energy source. We conducted a comparative analysis of the bacterial community in the original sediment, assessing its diversity, and compared it to the enrichment observed after exposure to crude oil in defined cultures. The consortium exhibiting the highest hydrocarbon degradation was predominantly enriched with Rhodococcus (75%). Bacterial community analysis revealed the presence of other hydrocarbonoclastic members in both consortia. In the second part, we report the isolation of the strain Rhodococcus sp. GOMB7 with crude oil as a unique carbon source under microaerobic conditions and its characterization. This strain demonstrated the ability to degrade long-chain alkanes, including eicosane, tetracosane, and octacosane. We named this new strain Rhodococcus qingshengii GOMB7. Genome analysis revealed the presence of several genes related to aromatic compound degradation, such as benA, benB, benC, catA, catB, and catC; and five alkB genes related to alkane degradation. Although members of the genus Rhodococcus are well known for their great metabolic versatility, including the aerobic degradation of recalcitrant organic compounds such as petroleum hydrocarbons, this is the first report of a novel strain of Rhodococcus capable of degrading long-chain alkanes under microaerobic conditions. The potential of R. qingshengii GOMB7 for applications in bioreactors or controlled systems with low oxygen levels offers an energy-efficient approach for treating crude oil-contaminated water and sediments.


Assuntos
Petróleo , Rhodococcus , Petróleo/metabolismo , Golfo do México , Alcanos/metabolismo , Hidrocarbonetos/metabolismo , Rhodococcus/metabolismo , Biodegradação Ambiental
2.
Microb Cell Fact ; 18(1): 78, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053124

RESUMO

BACKGROUND: Production of 2,3-butanediol from renewable resources is a promising measure to decrease the consumption of fossil resources in the chemical industry. One of the most influential parameters on biotechnological 2,3-butanediol production is the oxygen availability during the cultivation. As 2,3-butanediol is produced under microaerobic process conditions, a well-controlled oxygen supply is the key parameter to control biomass formation and 2,3-butanediol production. As biomass is on the one hand not the final product, but on the other hand the essential biocatalyst, the optimal compromise between biomass formation and 2,3-butanediol production has to be defined. RESULTS: A shake flask methodology is presented to evaluate the effects of oxygen availability on 2,3-butanediol production with Bacillus licheniformis DSM 8785 by variation of the filling volume. A defined two-stage cultivation strategy was developed to investigate the metabolic response to different defined maximum oxygen transfer capacities at equal initial growth conditions. The respiratory quotient was measured online to determine the point of glucose depletion, as 2,3-butanediol is consumed afterwards. Based on this strategy, comparable results to stirred tank reactors were achieved. The highest space-time yield (1.3 g/L/h) and a 2,3-butanediol concentration of 68 g/L combined with low acetoin concentrations and avoided glycerol formation were achieved at a maximum oxygen transfer capacity of 13 mmol/L/h. The highest overall 2,3-butanediol concentration of 78 g/L was observed at a maximum oxygen transfer capacity of 4 mmol/L/h. CONCLUSIONS: The presented shake flask approach reduces the experimental effort and costs providing a fast and reliable methodology to investigate the effects of oxygen availability. This can be applied especially on product and by-product formation under microaerobic conditions. Utilization of the maximum oxygen transfer capacity as measure for the oxygen availability allows for an easy adaption to other bioreactor setups and scales.


Assuntos
Bacillus licheniformis/crescimento & desenvolvimento , Bacillus licheniformis/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Butileno Glicóis/metabolismo , Oxigênio/metabolismo , Reatores Biológicos , Fermentação , Glucose/metabolismo
3.
J R Soc Interface ; 14(126)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123098

RESUMO

Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/fisiologia , Ecossistema , Halomonas/fisiologia , Salinidade , Farmacorresistência Bacteriana/efeitos dos fármacos , Exobiologia
5.
Braz. arch. biol. technol ; 53(3): 693-699, May-June 2010. graf
Artigo em Inglês | LILACS | ID: lil-548593

RESUMO

Soil fungi were evaluated regarding their ability to degrade lignin-related compounds by producing the ligninolytic enzymes. Lignosulfonic and tannic acids were used as sole carbon sources during 30 days under microaerobic and very-low-oxygen conditions. The fungi produced lignin-peroxidase, manganese-peroxidase and laccase . Expressive degradations was observed by C18 reversed-phase HPLC, indicating the biodegradation potential of these fungi, showing more advantages than obligate anaerobes to decontaminate the environment when present naturally.


Fungos isolados de solo foram avaliados quanto à habilidade em degradarem compostos derivados de lignina pela produção de enzimas ligninolíticas. Os ácidos lignosulfônicos e tânico foram usados separadamente como única fonte de carobono para cultivo dos fungos em 30 dias sob condições microaeróbias. Os fungos foram capazes de crescer e usar tais compostos como fonte de carbono e mostraram produção de lignina-peroxidase, manganês-peroxidase e lacase. Degradações expressivas dos ácidos lignosulfônico e tânico foram verificadas por Cromatografia Liquida de Alta Eficiência (CLAE), indicando grande potencial de uso em processos de biorremediação de macromoléculas aromáticas similares à lignina em ambientes naturais sob condições baixas de oxigenação.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...