Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.123
Filtrar
1.
J Environ Sci (China) ; 148: 468-475, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095181

RESUMO

Arsenic (As) methylation in soils affects the environmental behavior of As, excessive accumulation of dimethylarsenate (DMA) in rice plants leads to straighthead disease and a serious drop in crop yield. Understanding the mobility and transformation of methylated arsenic in redox-changing paddy fields is crucial for food security. Here, soils including un-arsenic contaminated (N-As), low-arsenic (L-As), medium-arsenic (M-As), and high-arsenic (H-As) soils were incubated under continuous anoxic, continuous oxic, and consecutive anoxic/oxic treatments respectively, to profile arsenic methylating process and microbial species involved in the As cycle. Under anoxic-oxic (A-O) treatment, methylated arsenic was significantly increased once oxygen was introduced into the incubation system. The methylated arsenic concentrations were up to 2-24 times higher than those in anoxic (A), oxic (O), and oxic-anoxic (O-A) treatments, under which arsenic was methylated slightly and then decreased in all four As concentration soils. In fact, the most plentiful arsenite S-adenosylmethionine methyltransferase genes (arsM) contributed to the increase in As methylation. Proteobacteria (40.8%-62.4%), Firmicutes (3.5%-15.7%), and Desulfobacterota (5.3%-13.3%) were the major microorganisms related to this process. These microbial increased markedly and played more important roles after oxygen was introduced, indicating that they were potential keystone microbial groups for As methylation in the alternating anoxic (flooding) and oxic (drainage) environment. The novel findings provided new insights into the reoxidation-driven arsenic methylation processes and the model could be used for further risk estimation in periodically flooded paddy fields.


Assuntos
Arsênio , Oryza , Microbiologia do Solo , Poluentes do Solo , Solo , Arsênio/análise , Poluentes do Solo/análise , Metilação , Solo/química , Microbiota , Oxirredução , Bactérias/metabolismo
2.
J Environ Sci (China) ; 148: 567-578, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095189

RESUMO

Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.


Assuntos
Eritromicina , Fermentação , Metagenômica , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética
3.
J Environ Sci (China) ; 147: 179-188, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003038

RESUMO

Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil. Phytoremediation of contaminated soil is an environmental and sustainable technology, and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals. However, the effects of high concentrations of multiple heavy metals (HCMHMs) on plants and native soil microorganisms remain uncertain. Thus, further clarification of the mechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required. Using the plant Sedum alfredii (S. alfredii) to restore HCMHM-contaminated soil, we further explored the mechanism of S. alfredii and native soil microorganisms in the remediation of HCMHM soils. The results showed that (i) S. alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil, which is conducive to the effect of plants on heavy metals. In addition, it can also enrich the absorbed heavy metals in its roots and leaves; (ii) native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes, such as trpE, trpG, bjaI, rpfF, ACSL, and yidC, and promote the expression of the pathway that converts serine to cysteine, then synthesize substances to chelate heavy metals. In addition, we speculated that genes such as K19703, K07891, K09711, K19703, K07891, and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals. The results provide scientific basis for S. alfredii to remediate heavy metals contaminated soils, and confirm the potential of phytoremediation of HCMHM contaminated soil.


Assuntos
Biodegradação Ambiental , Metais Pesados , Sedum , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Sedum/metabolismo , Metais Pesados/análise , Rizosfera , Solo/química
4.
J Environ Sci (China) ; 147: 310-321, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003049

RESUMO

In this study, the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities, sludge characteristics and microbial communities were investigated. The increase in salinity resulted in a decrease in particle size of the granular sludge, which was concentrated in the range of 0.5-1.0 mm. The content of EPS (extracellular polymeric substances) in the granular sludge gradually increased with increasing salinity and the addition of betaine (a typical compatible solute). Meanwhile, the microbial community structure was significantly affected by salinity, with high salinity reducing the diversity of bacteria. At higher salinity, Patescibacteria and Proteobacteria gradually became the dominant phylum, with relative abundance increasing to 13.53% and 12.16% at 20 g/L salinity. Desulfobacterota and its subordinate Desulfovibrio, which secrete EPS in large quantities, dominated significantly after betaine addition.Their relative abundance reached 13.65% and 7.86% at phylum level and genus level. The effect of these changes on the treated effluent was shown as the average chemical oxygen demand (COD) removal rate decreased from 82.10% to 79.71%, 78.01%, 68.51% and 64.55% when the salinity gradually increased from 2 g/L to 6, 10, 16 and 20 g/L. At the salinity of 20 g/L, average COD removal increased to 71.65% by the addition of 2 mmol/L betaine. The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment, which provided a feasible strategy for anaerobic treatment of organic saline wastewater.


Assuntos
Betaína , Salinidade , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Betaína/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose , Microbiota/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
5.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003058

RESUMO

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Assuntos
Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Fósforo/metabolismo , Salinidade , Cloreto de Sódio , Bactérias/metabolismo , Microbiota , Análise da Demanda Biológica de Oxigênio
6.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003069

RESUMO

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Nitrificação , Nitrogênio/metabolismo , Solo/química , Desnitrificação , Águas Residuárias/química , Esgotos/microbiologia , Microbiologia do Solo , Zeolitas/química , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo
7.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003065

RESUMO

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Assuntos
Antibacterianos , Gado , Esterco , Microbiologia do Solo , Animais , Solo/química , Sequestro de Carbono , Carbono/metabolismo , Fósforo , Reciclagem , Poluentes do Solo/metabolismo , Bovinos , Suínos , Nitrogênio/análise , Oxitetraciclina
8.
Methods Mol Biol ; 2852: 123-134, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235740

RESUMO

Properly using controllable atmospheric containers can facilitate investigations of the survival abilities and physiological states of key and emerging-foodborne pathogens under recreated applicable food processing environmental conditions. Notably, saturated salt solutions can efficiently control relative humidity in airtight containers. This chapter describes a practical experimental setup, with necessary prerequisites for exposing foodborne pathogens to simulated and relevant food processing environmental conditions. Subsequent analyses for studying cell physiology will also be suggested.


Assuntos
Manipulação de Alimentos , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Viabilidade Microbiana , Bactérias/crescimento & desenvolvimento , Humanos
9.
Methods Mol Biol ; 2852: 289-309, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235751

RESUMO

Next-generation sequencing revolutionized food safety management these last years providing access to a huge quantity of valuable data to identify, characterize, and monitor bacterial pathogens on the food chain. Shotgun metagenomics emerged as a particularly promising approach as it enables in-depth taxonomic profiling and functional investigation of food microbial communities. In this chapter, we provide a comprehensive step-by-step bioinformatical workflow to characterize bacterial ecology and resistome composition from metagenomic short-reads obtained by shotgun sequencing.


Assuntos
Bactérias , Biologia Computacional , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Metagenômica/métodos , Biologia Computacional/métodos , Microbiologia de Alimentos/métodos , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma , Microbiota/genética
10.
Euro Surveill ; 29(36)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239731

RESUMO

BackgroundThe number of cholera cases reported to the World Health Organization (WHO) in 2022 was more than double that of 2021. Nine countries of the WHO European Region reported 51 cases of cholera in 2022 vs five reported cases in 2021.AimWe aimed to confirm that the Vibrio cholerae O1 isolates reported by WHO European Region countries in 2022 belonged to the seventh pandemic El Tor lineage (7PET). We also studied their virulence, antimicrobial resistance (AMR) determinants and phylogenetic relationships.MethodsWe used microbial genomics to study the 49 V. cholerae O1 isolates recovered from the 51 European cases. We also used > 1,450 publicly available 7PET genomes to provide a global phylogenetic context for these 49 isolates.ResultsAll 46 good-quality genomes obtained belonged to the 7PET lineage. All but two isolates belonged to genomic Wave 3 and were grouped within three sub-lineages, one of which, Pre-AFR15, predominated (34/44). This sub-lineage, corresponding to isolates from several countries in Southern Asia, the Middle East and Eastern or Southern Africa, was probably a major contributor to the global upsurge of cholera cases in 2022. No unusual AMR profiles were inferred from analysis of the AMR gene content of the 46 genomes.ConclusionReference laboratories in high-income countries should use whole genome sequencing to assign V. cholerae O1 isolates formally to the 7PET or non-epidemic lineages. Periodic collaborative genomic studies based on isolates from travellers can provide useful information on the circulating strains and their evolution, particularly as concerns AMR.


Assuntos
Antibacterianos , Cólera , Filogenia , Vibrio cholerae O1 , Vibrio cholerae O1/genética , Vibrio cholerae O1/isolamento & purificação , Vibrio cholerae O1/classificação , Cólera/microbiologia , Cólera/epidemiologia , Humanos , Europa (Continente)/epidemiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Genoma Bacteriano , Genômica , Virulência/genética , Farmacorresistência Bacteriana/genética
11.
Food Microbiol ; 124: 104620, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244356

RESUMO

The spoilage of irradiated ready-to-eat chicken feet (RTECF) seriously affects the food's quality, resulting in package swelling and off-flavors, both of which are highly undesirable to stakeholders and consumers. To investigate the spoilage characteristics of irradiated RTECF and the microorganisms responsible for the spoilage and swelling, the changes in physicochemical properties, microbial community, and volatile organic compounds (VOCs) between normal and spoiled RTECF were evaluated. Compared with normal samples, the spoiled RTECF showed a higher pH value and total volatile basic nitrogen (TVB-N) value, lower color value, and texture features (P < 0.05). Acinetobacter, Pseudomonas, Lactobacillus, and Candida were the dominant genera responsible for RTECF spoilage as confirmed through both culture-dependent methods and high-throughput sequencing (HTS). The results of the verification for gas-producing strains showed that Lactobacillus brevis could cause RTECF packaging to swell. A total of 20 key VOCs were identified using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results of Pearson correlation analysis (|r|>0.8, P < 0.05) showed that 12 dominant core microbial genera had a significant effect on the flavor of RTECF before and after spoilage. This study provides a theoretical reference for solving the problem of RTECF spoilage and improving the overall quality of RTECF products.


Assuntos
Bactérias , Galinhas , Irradiação de Alimentos , Microbiologia de Alimentos , Compostos Orgânicos Voláteis , Galinhas/microbiologia , Animais , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Bactérias/classificação , Bactérias/efeitos da radiação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Irradiação de Alimentos/métodos , Microbiota/efeitos da radiação , Embalagem de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Fast Foods/microbiologia , Fast Foods/análise
12.
Food Microbiol ; 124: 104617, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244369

RESUMO

This study aimed to assess the bacterial microbiota involved in the spoilage of pacu (Piaractus mesopotamics), patinga (female Piaractus mesopotamics x male Piaractus brachypomus), and tambacu (female Colossoma macropomum × male Piaractus mesopotamics) during ice and frozen storage. Changes in the microbiota of three fish species (N = 22) during storage were studied through 16S rRNA amplicon-based sequencing and correlated with volatile organic compounds (VOCs) and metabolites assessed by nuclear magnetic resonance (NMR). Storage conditions (time and temperature) affected the microbiota diversity in all fish samples. Fish microbiota comprised mainly of Pseudomonas sp., Brochothrix sp., Acinetobacter sp., Bacillus sp., Lactiplantibacillus sp., Kocuria sp., and Enterococcus sp. The relative abundance of Kocuria, P. fragi, L. plantarum, Enterococcus, and Acinetobacter was positively correlated with the metabolic pathways of ether lipid metabolism while B. thermosphacta and P. fragi were correlated with metabolic pathways involved in amino acid metabolism. P. fragi was the most prevalent spoilage bacteria in both storage conditions (ice and frozen), followed by B. thermosphacta. Moreover, the relative abundance of identified Bacillus strains in fish samples stored in ice was positively correlated with the production of VOCs (1-hexanol, nonanal, octenol, and 2-ethyl-1-hexanol) associated with off-flavors. 1H NMR analysis confirmed that amino acids, acetic acid, and ATP degradation products increase over (ice) storage, and therefore considered chemical spoilage index of fish fillets.


Assuntos
Bactérias , Peixes , Armazenamento de Alimentos , Congelamento , Microbiota , RNA Ribossômico 16S , Alimentos Marinhos , Compostos Orgânicos Voláteis , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Peixes/microbiologia , Brasil , Alimentos Marinhos/microbiologia , Alimentos Marinhos/análise , RNA Ribossômico 16S/genética , Gelo , Microbiologia de Alimentos , Biodiversidade , Feminino
13.
Food Microbiol ; 124: 104618, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244370

RESUMO

Sour bamboo shoots are a traditional fermented delicacy that has garnered appreciation both domestically and internationally. This study investigates the intricate dynamics of microbial communities and volatile flavor compounds primarily derived from salted and pickled bamboo shoots during the fermentation process of Phyllostachys purpurea (PP). The dynamics of microorganisms and volatile flavor compounds were thoroughly examined initially using conventional isolation and cultivation methods in conjunction with high-throughput sequencing (HTS), headspace solid-phase microextraction (HS-SPME), and gas chromatography-mass spectrometry (GC-MS). In addition, we analyzed the core microorganisms responsible for modulating the volatile flavor profile. Our findings revealed 60 volatile compounds, 14 of which were the predominant contributors to the aroma of fermented PP. This group primarily comprised alcohols, aldehydes, and olefins. Notably, our investigation identified Lactobacillus and Candida as the dominant microbial genera during the middle and late stages of fermentation. These two genera exert a significant influence on the formation of characteristic aromas. Furthermore, we discovered that acids, sugars, and proteins pivotally influence the succession of microorganisms. Specifically, acids and soluble sugars drove the transition of Lactococcus to Lactobacillus and Pediococcus, whereas soluble proteins facilitated fungal succession from Candida to Kazachstania and Issatchenkia. These insights shed light on the community structure and succession patterns of flavor compounds throughout the PP fermentation process. Ultimately, they provide a foundation for optimizing the fermentation process and ensuring quality control in the production of sour bamboo shoots.


Assuntos
Bactérias , Fermentação , Microbiota , Brotos de Planta , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Brotos de Planta/química , Brotos de Planta/microbiologia , Brotos de Planta/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Fungos/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Aromatizantes/metabolismo , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Odorantes/análise , Bambusa/microbiologia , Bambusa/metabolismo , Bambusa/química , Microextração em Fase Sólida
14.
BMC Ophthalmol ; 24(1): 392, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227827

RESUMO

PURPOSE: This study aimed to verify that aerosolization ocular surface microorganisms (AOSMs) accumulated during non-contact tonometry (NCT) measurements. METHODS: A total of 508 participants (740 eyes) were enrolled in the study. In Experiment 1, before NCT was performed on each eye, the air was disinfected, and environment air control samples were collected via Air ideal® 3P (Bio Merieux). During NCT measurements, microbial aerosol samples were collected once from each eye. In Experiment 2, we collected initial blank control samples and then repeated Experiment 1. Finally, in Experiment 3, after the background microbial aerosol investigation, we cumulatively sampled AOSMs from each 10 participants then culture once, without any interventions to interrupt the accumulation. The collected samples were incubated and identified using matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS). RESULTS: Pathogenic Aerococcus viridans and other microorganisms from human eyes can spread and accumulate in the air during NCT measurements. The species and quantity of AOSMs produced by NCT measurements can demonstrate an accumulation effect. CONCLUSION: AOSMs generated during NCT measurements are highly likely to spread and accumulate in the air, thereby may increase the risk of exposure to and transmission of bio-aerosols.


Pathogenic Aerococcus viridans and other species of aerosolization ocular surface microorganisms (AOSMs) can spread and accumulate with the increase of NCT measurement person times, demonstrating an accumulation effect.


Assuntos
Aerossóis , Tonometria Ocular , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto Jovem , Infecções Oculares Bacterianas/microbiologia , Bactérias/isolamento & purificação , Microbiologia do Ar , Idoso , Pressão Intraocular/fisiologia
15.
Front Microbiol ; 15: 1453162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228385

RESUMO

The surge in global energy demand mandates a significant expansion of electric power substations. Nevertheless, the ecological consequences of electric power substation operation, particularly concerning the electromagnetic field, on soil microbial communities and nitrogen enrichment remain unexplored. In this study, we collected soil samples from six distinct sites at varying distances from an electric power substation in Xintang village, southeastern China, and investigated the impacts of electromagnetic field on the microbial diversity and community structures employing metagenomic sequencing technique. Our results showed discernible dissimilarities in the fungal community across the six distinct sites, each characterized by unique magnetic and electric intensities, whereas comparable variations were not evident within bacterial communities. Correlation analysis revealed a diminished nitrogen fixation capacity at the site nearest to the substation, characterized by low moisture content, elevated pH, and robust magnetic induction intensity and electric field intensity. Conversely, heightened nitrification processes were observed at this location compared to others. These findings were substantiated by the relative abundance of key genes associated with ammonium nitrogen and nitrate nitrogen production. This study provides insights into the relationships between soil microbial communities and the enduring operation of electric power substations, thereby contributing fundamental information essential for the rigorous environmental impact assessments of these facilities.

16.
ISME J ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236233

RESUMO

Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.

17.
Water Res ; 266: 122365, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236502

RESUMO

Faecal contamination of freshwater and marine environments represents a significant risk for public health, recreational activity and food safety, and tools for evaluating complex multi-source contamination remain largely in the development phase. We evaluated the efficacy of the Fast Expectation Maximization (FEAST) microbial source tracking (MST) algorithm to apportion sources of faecal contamination among four mammalian species of interest in coastal waters in New Zealand. Using 16S ribosomal DNA metabarcoding of faecal samples from cows, fur seals, and sheep, as well as human wastewater, we aimed to differentiate and quantify the contribution of these sources in mixed faecal samples. Multivariate analysis confirmed significant differences in the microbial communities associated with each mammalian source, with specific bacterial classes indicative of different sources. The FEAST algorithm was tested using mixed DNA and mixed faecal samples, and we found that the algorithm correctly assigned the dominant source from all samples, but underestimated the dominant source's proportional contribution. This underestimation suggests the need for further refinement and validation to ensure accurate source apportionment in environmental samples where the faecal signal is likely to be a minor component. Despite these limitations, the findings of our study, in combination with the evidence from others who have tested the FEAST algorithm in environmental settings, indicates that it represents an advance on existing tools for microbial source tracking and may become a useful addition to the toolbox for environmental management.

18.
Water Res ; 266: 122360, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39236504

RESUMO

Freeze-thaw (FT) events profoundly perturb the biochemical processes of soil and water in mid- and high-latitude regions, especially the riparian zones that are often recognized as the hotspots of soil-water interactions and thus one of the most sensitive ecosystems to future climate change. However, it remains largely unknown how the heterogeneously composed and progressively discharged meltwater affect the biochemical cycling of the neighbor soil. In this study, stream water from a valley in the Chinese Loess Plateau was frozen at -10°C for 12 hours, and the meltwater (at +10°C) progressively discharged at three stages (T1 ∼ T3) was respectively added to rewet the soil collected from the same stream bed (Soil+T1 ∼ Soil+T3). Our results show that: (1) Approximately 65% of the total dissolved organic carbon and 53% of the total NO3--N were preferentially discharged at the first stage T1, with enrichment ratios of 1.60 ∼ 1.94. (2) The dissolved organic matter discharged at T1 was noticeably more biodegradable with significantly lower SUVA254 but higher HIX, and also predominated with humic-like, dissolved microbial metabolite-like, and fulvic acid-like components. (3) After added to the soil, the meltwater discharged at T1 (e.g., Soil+T1) significantly accelerated the mineralization of soil organic carbon with 2.4 ∼ 8.07-folded k factor after fitted into the first-order kinetics equation, triggering 125 ∼ 152% more total CO2 emissions. Adding T1 also promoted significantly more accumulation of soil microbial biomass carbon after 15 days of incubation, especially on the FT soil. Overall, the preferential discharge of the nutrient-enriched meltwater with more biodegradable DOM components at the initial melting stage significantly promoted the microbial growth and respiratory activities in the recipient soil, and triggered sizable CO2 emission pulses. This reveals a common but long-ignored phenomenon in cold riparian zones, where progressive freeze-thaw can partition and thus shift the DOM compositions in stream water over melting time, and in turn profoundly perturb the biochemical cycles of the neighbor soil body.

19.
J Environ Manage ; 369: 122412, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236608

RESUMO

Perfluorooctanoic acid (PFOA) as emerging pollutants was largely produced and stable in nature environment. Its fate and effect to the wasted sludge digestion process and corresponding microbial mechanism was rarely reported. This study investigated the different dose of PFOA to the wasted sludge digestion process, where the methane yield and microbial mechanism was illustrated. The PFOA added before digestion were 0-10000 µg/L, no significant variation in daily and accumulated methane production between each group. The 9th day methane yield was significantly higher than other days (p < 0.05). The soluble protein was significantly decreased after 76 days digestion (p < 0.001). The total PFOA in sludge (R2 = 0.8817) and liquid (R2 = 0.9083) phase after digestion was exponentially correlated with PFOA dosed. The PFOA in liquid phase was occupied 54.10 ± 18.38% of the total PFOA in all reactors. The dewatering rate was keep decreasing with the increase of PFOA added (R2 = 0.7748, p < 0.001). The mcrA abundance was significantly correlated with the pH value and organic matter concentration in the reactors. Chloroflexi was the predominant phyla, Aminicenantales, Bellilinea and Candidatus_Cloacimonas were predominant genera in all reactors. Candidatus_Methanofastidiosum and Methanolinea were predominant archaea in all reactors. The function prediction by FAPROTAX and Tax4fun implied that various PFOA dosage resulted in significant function variation. The fermentation and anaerobic chemoheterotrophy function were improved with the PFOA dose. Co-occurrence network implied the potent cooperation among the organic matter degradation and methanogenic microbe in the digestion system. PFOA has little impact to the methane generation while affect the microbe function significantly, its remaining in the digested sludge should be concerned to reduce its potential environmental risks.

20.
J Environ Manage ; 369: 122347, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236606

RESUMO

Landfill is a significant source of atmospheric CH4 and CO2 emissions. In this study, four landfill reactor systems were constructed to investigate the effects of different ventilation methods, including continuous aeration (20 h d-1) and intermittent aeration (continuous aeration for 4 h d-1 and 2 h of aeration every 12 h, twice a day), on properties of landfilled waste and emissions of CH4 and CO2, in comparison to a traditional landfill. Compared with continuous aeration, intermittent aeration could reduce the potential global warming effect of the CH4 and CO2 emissions, especially multiple intermittent aeration. The CH4 and CO2 emissions could be predicted by the multiple linear regression model based on the contents of carbon, sulfur and/or pH during landfill stabilization. Both intermittent and continuous aeration could enhance the methane oxidation activity of landfilled waste. The aerobic methane oxidation activity of landfilled waste reached the maximums of 50.77-73.78 µg g-1 h-1 after aeration for 5 or 15 d, which was higher than the anaerobic methane oxidation activity (0.45-1.27 µg g-1 h-1). CO2 was the predominant form of organic carbon loss in the bioreactor landfills. Candidatus Methylomirabilis, Methylobacter, Methylomonas and Crenothrix were the main methane-oxidating microorganisms (MOM) in the landfills. Total, NO2--N, pH and Fe3+ were the main environmental variables influencing the MOM community, among which NO2--N and pH had the significant impact on the MOM community. Partial least squares path modelling indicated that aeration modes mainly influenced the emissions of CH4 and CO2 by affecting the degradation of landfilled waste, environmental variables and microbial activities. The results would be helpful for designing aeration systems to reduce the emissions of CH4 and CO2, and the cost during landfill stabilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA