RESUMO
The interest in production of natural colorants by microbial fermentation has been currently increased. The effects of D-glucose concentration (3.18-36.82 g/L), inoculum size (12.5 × 10(9)-49.5 × 10(9) cfu cells/mL) and air-flow rate (1.95-12.05 L/L min) on the biomass, total carotenoid and canthaxanthin (CTX) accumulation of Dietzia natronolimnaea HS-1 in a batch bioreactor was scrutinized using a response surface methodology-central composite rotatable design (RSM-CCRD). Second-order polynomial models with high R (2) values ranging from 0.978 to 0.990 were developed for the studied responses using multiple linear regression analysis. The models showed the maximum cumulative amounts of biomass (7.85 g/L), total carotenoid (5.48 mg/L) and CTX (4.99 mg/L) could be achieved at 23.38 g/L of D-glucose, 31.2 × 10(9) cfu cells/mL of inoculation intensity and air-flow rate of 7.85 L/L min. The predicted values for optimum conditions were in good agreement with experimental data.
Assuntos
Actinobacteria/crescimento & desenvolvimento , Actinobacteria/metabolismo , Cantaxantina/biossíntese , Aerobiose , Ar , Carga Bacteriana , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos/microbiologia , Glucose/metabolismo , Modelos EstatísticosRESUMO
The interest in production of natural colorants by microbial fermentation has been currently increased. The effects of D-glucose concentration (3.18-36.82 g/L), inoculum size (12.5 x 10(9)-49.5 x 10(9) cfu cells/mL) and air-flow rate (1.95-12.05 L/L min) on the biomass, total carotenoid and canthaxanthin (CTX) accumulation of Dietzia natronolimnaea HS-1 in a batch bioreactor was scrutinized using a response surface methodology-central composite rotatable design (RSM-CCRD). Second-order polynomial models with high R² values ranging from 0.978 to 0.990 were developed for the studied responses using multiple linear regression analysis. The models showed the maximum cumulative amounts of biomass (7.85 g/L), total carotenoid (5.48 mg/L) and CTX (4.99 mg/L) could be achieved at 23.38 g/L of D-glucose, 31.2 x 10(9) cfu cells/mL of inoculation intensity and air-flow rate of 7.85 L/L min. The predicted values for optimum conditions were in good agreement with experimental data.
Assuntos
Actinobacteria/crescimento & desenvolvimento , Actinobacteria/metabolismo , Cantaxantina/biossíntese , Aerobiose , Ar , Carga Bacteriana , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos/microbiologia , Glucose/metabolismo , Modelos EstatísticosRESUMO
The interest in production of natural colorants by microbial fermentation has been currently increased. The effects of D-glucose concentration (3.18-36.82 g/L), inoculum size (12.5 x 10(9)-49.5 x 10(9) cfu cells/mL) and air-flow rate (1.95-12.05 L/L min) on the biomass, total carotenoid and canthaxanthin (CTX) accumulation of Dietzia natronolimnaea HS-1 in a batch bioreactor was scrutinized using a response surface methodology-central composite rotatable design (RSM-CCRD). Second-order polynomial models with high R² values ranging from 0.978 to 0.990 were developed for the studied responses using multiple linear regression analysis. The models showed the maximum cumulative amounts of biomass (7.85 g/L), total carotenoid (5.48 mg/L) and CTX (4.99 mg/L) could be achieved at 23.38 g/L of D-glucose, 31.2 x 10(9) cfu cells/mL of inoculation intensity and air-flow rate of 7.85 L/L min. The predicted values for optimum conditions were in good agreement with experimental data.