Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.859
Filtrar
1.
Sci Total Environ ; 946: 174484, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969134

RESUMO

Micro- and nano-plastics (MPs/NPs) have emerged as a global pollutant, yet their impact on the root environment of plants remains scarcely explored. Given the widespread pollution of phthalate esters (PAEs) in the environment due to the application of plastic products, the co-occurrence of MPs/NPs and PAEs could potentially threaten the growth medium of plants. This study examined the combined effects of polystyrene (PS) MPs/NPs and PAEs, specifically dibutyl phthalate and di-(2-ethylhexyl) phthalate, on the chemical properties and microbial communities in a wheat growth medium. It was observed that the co-pollution with MPs/NPs and PAEs significantly increased the levels of oxalic acid, formic acid, and total organic carbon (TOC), enhanced microbial activity, and promoted the indigenous input and humification of dissolved organic matter, while slightly reducing the pH of the medium solution. Although changes in chemical indices were primarily attributed to the addition of PAEs, no interaction between PS MPs/NPs and PAEs was detected. High-throughput sequencing revealed no significant change in microbial diversity within the media containing both PS MPs/NPs and PAEs compared to the media with PS MPs/NPs alone. However, alterations in energy and carbohydrate metabolism were noted. Proteobacteria dominated the bacterial communities in the medium solution across all treatment groups, followed by Bacteroidetes and Verrucomicrobia. The composition and structure of these microbial communities varied with the particle size of the PS in both single and combined treatments. Moreover, variations in TOC, oxalic acid, and formic acid significantly influenced the bacterial community composition in the medium, suggesting they could modulate the abundance of dominant bacteria to counteract the stress from exogenous pollutants. This research provides new insights into the combined effects of different sizes of PS particles and another abiotic stressor in the wheat root environment, providing a critical foundation for understanding plant adaptation in complex environmental conditions.

2.
J Anim Sci ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980728

RESUMO

This study assessed the effects of ß-mannanase (BM) supplementation on growth performance, digestive enzyme activity, cecal microbial communities, and short-chain fatty acid (SCFA) production in broiler chickens fed diets with different metabolizable energy (ME) levels. A total of 1,296 male one-d-old Cobb 500 broilers were randomly distributed in a 3 × 2 factorial arrangement (three ME levels × 0 or 200 g/ton BM), with 6 replicates per treatment combination. The three ME levels were 3,000 (ME1), 2,930 (ME2), and 2,860 (ME3) kcal/kg, respectively, during the 0-3 w-old stages and 3,150 (ME1), 3,080 (ME2), and 3,010 (ME3) kcal/kg, respectively, during the 3-6 w-old stages. Reducing ME levels increased broiler feed intake (P = 0.036) and decreased average daily gain (ADG, P = 0.002) during the entire period. While BM supplementation increased ADG (P = 0.002) and improved the feed conversion ratio (P = 0.001) during the 0-3 w-old stages, with no effect during the 3-6 w-old stages. Overall, reducing ME levels increased pancreatic lipase (P = 0.045) and amylase (P = 0.013) activity and duodenal amylase activity (P = 0.047). Notably, BM supplementation significantly increased pancreatic lipase activity (P = 0.015) and increased lipase (P = 0.029) and amylase (P = 0.025) activities in the jejunal chyme. Although diet or enzyme supplementation did not affect microbial diversity, significant differences in microbial communities were observed. At the genus level, decreasing ME levels significantly affected the average abundances of Tyzzerella (P = 0.028), Candidatus_Bacilloplasma (P = 0.001), Vibrio (P = 0.005) and Anaerotruncus (P = 0.026) among groups, whereas BM supplementation reduced the average abundances of Escherichia-Shigella (P = 0.048) and increased the average abundances of Barnesiella (P = 0.047), Ruminococcus (P = 0.020), Alistipes (P = 0.050), and Lachnospiraceae_unclassified (P = 0.009). SCFA concentrations strongly depended on bacterial community composition, and BM supplementation increased acetic acid (P = 0.004), propionic acid (P = 0.016), and total SCFA concentrations. In conclusion, BM supplementation improved the performance of younger broilers, and both enzyme supplementation and reduced ME levels positively affected digestive enzyme activity and intestinal microflora.

3.
Sci Total Environ ; : 174646, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986696

RESUMO

Although anthropogenic activities are the primary drivers of increased greenhouse gas (GHG) emissions, it is crucial to acknowledge that wetlands are a significant source of these gases. Brazil's Pantanal, the largest tropical inland wetland, includes numerous lacustrine systems with freshwater and soda lakes. This study focuses on soda lakes to explore potential biogeochemical cycling and the contribution of biogenic GHG emissions from the water column, particularly methane. Both seasonal variations and the eutrophic status of each examined lake significantly influenced GHG emissions. Eutrophic turbid lakes (ET) showed remarkable methane emissions, likely due to cyanobacterial blooms. The decomposition of cyanobacterial cells, along with the influx of organic carbon through photosynthesis, accelerated the degradation of high organic matter content in the water column by the heterotrophic community. This process released byproducts that were subsequently metabolized in the sediment leading to methane production, more pronounced during periods of increased drought. In contrast, oligotrophic turbid lakes (OT) avoided methane emissions due to high sulfate levels in the water, though they did emit CO2 and N2O. Clear vegetated oligotrophic turbid lakes (CVO) also emitted methane, possibly from organic matter input during plant detritus decomposition, albeit at lower levels than ET. Over the years, a concerning trend has emerged in the Nhecolândia subregion of Brazil's Pantanal, where the prevalence of lakes with cyanobacterial blooms is increasing. This indicates the potential for these areas to become significant GHG emitters in the future. The study highlights the critical role of microbial communities in regulating GHG emissions in soda lakes, emphasizing their broader implications for global GHG inventories. Thus, it advocates for sustained research efforts and conservation initiatives in this environmentally critical habitat.

4.
Bioresour Technol ; : 131095, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986887

RESUMO

The efficiency of anaerobic digestion (AD) processes is intricately tied to mixing quality. This research investigates the influence of two impeller types, namely a helical ribbon impeller (HRI) and a pitched-blade impeller (PBI), on key aspects of AD. The investigation encompassed mixing dynamics, methane production, microbial communities, and the previously unexplored impact on digestate dewaterability. Results show that agitation with the PBI exhibited stratification, with bottom layer TS values of 3.1% for the PBI and 2.6% for the HRI. Nevertheless, methane yield remained unchanged, averaging 286 LN/kg VSadded. Slower mixing with the HRI achieved more uniform mixing and reduced energy requirements. Additionally, impeller type significantly affected digestate dewaterability, leading to a 3.8% increase in TS of the dewatered sludge when using the PBI. These findings highlight the importance of considering mixing not only for methane production and reduced maintenance but also for achieving optimal digestate dewaterability.

5.
Sci Total Environ ; 947: 174412, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977097

RESUMO

Hydraulic fracturing (HF) has substantially boosted global unconventional hydrocarbon production but has also introduced various environmental and operational challenges. Understanding the interactions between abundant and diverse microbial communities and chemicals, particularly polymers used for proppant delivery, thickening, and friction reduction, in HF water cycles is crucial for addressing these challenges. This review primarily examined the recent studies conducted in China, an emerging area for HF activities, and comparatively examined studies from other regions. In China, polyacrylamide (PAM) and its derivatives products became key components in hydraulic fracturing fluid (HFF) for unconventional hydrocarbon development. The microbial diversity of unconventional HF water cycles in China was higher compared to North America, with frequent detection of taxa such as Shewanella, Marinobacter, and Desulfobacter. While biodegradation, biocorrosion, and biofouling were common issues across regions, the mechanisms underlying these microbe-polymer interactions differed substantially. Notably, in HF sites in the Sichuan Basin, the use of biocides gradually decreased its efficiency to mitigate adverse microbial activities. High-throughput sequencing proved to be a robust tool that could identify key bioindicators and biodegradation pathways, and help select optimal polymers and biocides, leading to more efficient HFF systems. The primary aim of this study is to raise awareness about the interactions between microorganisms and polymers, providing fresh insights that can inform decisions related to enhanced chemical use and biological control measures at HF sites.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38985425

RESUMO

Antimicrobial resistance (AMR) is one of the main global health challenges. Anaerobic digestion (AD) can significantly reduce the burden of antibiotic resistance genes (ARGs) in animal manures. However, the reduction is often incomplete. The agronomic use of digestates requires assessments of their effects on soil ARGs. The objective of this study was to assess the effect of digestate on the abundance of ARGs and mobile genetic elements (MGEs) in the rhizosphere of ryegrass (Lolium perenne L.) and to determine whether half-dose replacement of digestate with urea (combined fertilizer) can be implemented as a safer approach while maintaining a similar biomass production. A greenhouse assay was conducted during 190 days under a completely randomized design with two experimental factors: fertilizer type (unfertilized control and fertilized treatments with equal N dose: digestate, urea and combined fertilizer) and sampling date (16 and 148 days after the last application). The results indicated that the digestate significantly increased the abundance of clinical class 1 integrons (intI1 gene) relative to the unfertilized control at both sampling dates (P < 0.05), while the combined fertilizer only increased them at the first sampling. Sixteen days after completing the fertilization scheme only the combined fertilizer and urea significantly increased the biomass production relative to the control (P < 0.05). Additionally, by the end of the assay, the combined fertilizer showed significantly lower levels of the macrolide-resistance gene ermB than digestate and a cumulative biomass similar to urea or digestate. Overall, the combined fertilizer can alleviate the burden of integrons and ermB while simultaneously improving biomass production.

7.
Sci Total Environ ; 947: 174559, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992373

RESUMO

The distinctive environmental attributes of the Southern Ocean underscore the indispensability of microorganisms in this region. We analyzed 208 samples obtained from four separate layers (Surface, Deep Chlorophyll Maximum, Middle, and Bottom) in the neighboring seas of the Antarctic Peninsula and the Cosmonaut Sea to explore variations in microbial composition, interactions and community assembly processes. The results demonstrated noteworthy distinctions in alpha and beta diversity across diverse communities, with the increase in water depth, a gradual rise in community diversity was observed. In particular, the co-occurrence network analysis exposed pronounced microbial interactions within the same water mass, which are notably stronger than those observed between different water masses. Co-occurrence network complexity was higher in the surface water mass than in the bottom water mass. Yet, the surface water mass exhibited greater network stability. Moreover, in the phylogenetic-based ß-nearest taxon distance analyses, deterministic processes were identified as the primary factors influencing community assembly in Antarctic microorganisms. This study contributes to exploring diversity and assembly processes under the complex hydrological conditions of Antarctica.

8.
Sci Rep ; 14(1): 16218, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003345

RESUMO

The Sundarbans mangrove, located at the mouth of the Ganges and Brahmaputra Rivers, is the world's largest tidal mangrove forest. These mangroves are also one of the most striking sources of microbial diversity, essential in productivity, conservation, nutrient cycling, and rehabilitation. Hence, the main objective of this study was to use metagenome analysis and provide detailed insight into microbial communities and their functional roles in the Sundarbans mangrove ecosystem. A comparative analysis was also done with a non-mangrove region of the Sundarbans ecosystem to assess the capability of the environmental parameters to explain the variation in microbial community composition. The study found several dominant bacteria, viz., Alphaproteobacteria, Actinomycetota, Bacilli, Clostridia, Desulfobacterota, Gammaproteobacteria, and Nitrospira, from the mangrove region. The mangrove sampling site reports several salt-tolerant bacteria like Alkalibacillus haloalkaliphilus, Halomonas anticariensis, and Salinivibrio socompensis. We found some probiotic species, viz., Bacillus clausii, Lactobacillus curvatus, Vibrio mediterranei and Vibrio fluvialis, from the Sundarbans mangrove. Nitrifying bacteria in Sundarbans soils were Nitrococcus mobilis, Nitrosococcus oceani, Nitrosomonas halophila, Nitrospirade fluvii, and others. Methanogenic archaea, viz., Methanoculleus marisnigri, Methanobrevibacter gottschalkii, and Methanolacinia petrolearia, were highly abundant in the mangroves as compared to the non-mangrove soils. The identified methanotrophic bacterial species, viz., Methylobacter tundripaludum, Methylococcus capsulatus, Methylophaga thiooxydans, and Methylosarcina lacus are expected to play a significant role in the degradation of methane in mangrove soil. Among the bioremediation bacterial species identified, Pseudomonas alcaligenes, Pseudomonas mendocina, Paracoccus denitrificans, and Shewanella putrefaciens play a significant role in the remediation of environmental pollution. Overall, our study shows for the first time that the Sundarbans, the largest mangrove ecosystem in the world, has a wide range of methanogenic archaea, methanotrophs, pathogenic, salt-tolerant, probiotic, nitrifying, and bioremediation bacteria.


Assuntos
Bactérias , Metagenômica , Microbiota , Metagenômica/métodos , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenoma , Áreas Alagadas , Ecossistema , Filogenia , Microbiologia do Solo , Índia
9.
Chemosphere ; : 142847, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009090

RESUMO

A combined process of coagulation pretreatment and three-stage membrane aeration biofilm reactor (MABR) system was successfully applied for the first time to treat actual municipal solid waste leachate (MSWL), which was characterized by high concentrations of toxic hard-to-degrade organics and salinity. The results showed that 9.8% - 21.3% of organics could be removed from actual MSWL by coagulation with polymeric aluminum chloride (PAC). Three-stage MABR contributed 95.6% of the chemical oxygen demand (COD) removal, with the influent COD concentration ranging from 6000 to 7000 mg/L. At the same time, the removal efficiencies of total nitrogen (TN) and ammonia (NH4+-N) could reach to 84.3% and 79.9% without the addition of external carbon source, respectively. The nitrifying/denitrifying bacteria were enriched in the biofilm including Thiobacillus, Azoarcus and Methyloversatilis, which supported the MABR with high nitrogen removal efficiency and significantly toxic tolerance. Principal component analysis (PCA) and the Pearson correlation coefficients (r) illustrated that aeration pressure is a crucial operational parameter, exhibiting a strong correlation between the MABR performance and microbial communities. This work demonstrates that MABR is an effective and low-energy option for simultaneous removal of carbon and nitrogen in the treatment of MSWL.

10.
Am J Bot ; : e16366, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010811

RESUMO

PREMISE: In the Amazon basin, seasonally flooded (SF) forests offer varying water constraints, providing an excellent way to investigate the role of habitat selection on microbial communities within plants. However, variations in the microbial community among host plants cannot solely be attributed to environmental factors, and how plant traits contribute to microbial assemblages remains an open question. METHODS: We described leaf- and root-associated microbial communities using ITS2 and 16 S high-throughput sequencing and investigated the stochastic-deterministic balance shaping these community assemblies using two null models. Plant ecophysiological functioning was evaluated by focusing on 10 leaf and root traits in 72 seedlings, belonging to seven tropical SF tree species in French Guiana. We then analyzed how root and leaf traits drove the assembly of endophytic communities. RESULTS: While both stochastic and deterministic processes governed the endophyte assembly in the leaves and roots, stochasticity prevailed. Discrepancies were found between fungi and bacteria, highlighting that these microorganisms have distinct ecological strategies within plants. Traits, especially leaf traits, host species and spatial predictors better explained diversity than composition, but they were modest predictors overall. CONCLUSIONS: This study widens our knowledge about tree species in SF forests, a habitat sensitive to climate change, through the combined analyses of their associated microbial communities with functional traits. We emphasize the need to investigate other plant traits to better disentangle the drivers of the relationship between seedlings and their associated microbiomes, ultimately enhancing their adaptive capacities to climate change.

11.
Sci Total Environ ; 947: 174696, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997032

RESUMO

Plastic pollution of the soil is a global issue of increasing concern, with far-reaching impact on the environment and human health. To fully understand the medium- and long-term impact of plastic dispersal in the environment, it is necessary to define its interaction with the residing microbial communities and the biochemical routes of its degradation and metabolization. However, despite recent attention on this problem, research has largely focussed on microbial functional potential, failing to clearly identify collective adaptation strategies of these communities. Our study combines genome-centric metagenomics and metatranscriptomics to characterise soil microbial communities adapting to high polyethylene and polyethylene terephthalate concentration. The microbiota were sampled from a landfill subject to decades-old plastic contamination and enriched through prolonged cultivation using these microplastics as the only carbon source. This approach aimed to select the microorganisms that best adapt to these specific substrates. As a result, we obtained simplified communities where multiple plastic metabolization pathways are widespread across abundant and rare microbial taxa. Major differences were found in terms of expression, which on average was higher in planktonic microbes than those firmly adhered to plastic, indicating complementary metabolic roles in potential microplastic assimilation. Moreover, metatranscriptomic patterns indicate a high transcriptional level of numerous genes in emerging taxa characterised by a marked accumulation of genomic variants, supporting the hypothesis that plastic metabolization requires an extensive rewiring in energy metabolism and thus provides a strong selective pressure. Altogether, our results provide an improved characterisation of the impact of microplastics derived from common plastics types on terrestrial microbial communities and suggest biotic responses investing contaminated sites as well as potential biotechnological targets for cooperative plastic upcycling.

12.
Appl Microbiol Biotechnol ; 108(1): 419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012392

RESUMO

Waste glycerol is produced in excess by several industries, such as during biodiesel production. In this work, the metabolic versatility of anaerobic sludge was explored towards waste glycerol valorization. By applying different environmental (methanogenic and sulfate-reducing) conditions, three distinct microbial cultures were obtained from the same inoculum (anaerobic granular sludge), with high microbial specialization, within three different phyla (Thermodesulfobacteriota, Euryarchaeota and Pseudomonadota). The cultures are capable of glycerol conversion through different pathways: (i) glycerol conversion to methane by a bacterium closely related to Solidesulfovibrio alcoholivorans (99.8% 16S rRNA gene identity), in syntrophic relationship with Methanofollis liminatans (98.8% identity), (ii) fermentation to propionate by Propionivibrio pelophilus strain asp66 (98.6% identity), with a propionate yield of 0.88 mmol mmol-1 (0.71 mg mg-1) and a propionate purity of 80-97% and (iii) acetate production coupled to sulfate reduction by Desulfolutivibrio sulfoxidireducens (98.3% identity). In conclusion, starting from the same inoculum, we could drive the metabolic and functional potential of the microbiota towards the formation of several valuable products that can be used in industrial applications or as energy carriers. KEY POINTS: Versatility of anaerobic cultures was explored for waste glycerol valorization Different environmental conditions lead to metabolic specialization Biocommodities such as propionate, acetate and methane were produced.


Assuntos
Fermentação , Glicerol , Metano , RNA Ribossômico 16S , Esgotos , Glicerol/metabolismo , Esgotos/microbiologia , Anaerobiose , RNA Ribossômico 16S/genética , Metano/metabolismo , Filogenia , Sulfatos/metabolismo , Propionatos/metabolismo , Biocombustíveis , Acetatos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética
13.
J Environ Manage ; 366: 121803, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002458

RESUMO

In this work, a novel polyurethane carrier modified with biochar and tourmaline/zeolite powder at ratio of 1:1 and 1:2 was developed to promote the formation of biofilms and the synergy of overall bacterial activity for Partial Denitrification/Anammox to treat low-nitrogen contaminated surface water. Based on the batch experiment, the modified biocarrier, BTP2 (biochar: tourmaline = 2: 1), exhibited the highest total nitrogen removal efficiency (83.63%) under influent total nitrogen of 15 mg/L and COD/NO3- of 3. The dense biofilm was formed in inner side of biocarrier owing to the increased surface roughness and various functional groups suggested by scanning electron microscopy and Fourier-transform infrared analysis. The EPS content increased from 200.15 to 220.26 mg/g VSS in BTP2 system. Besides, the rapid NH4+ capture and organics release of the modified carrier fueled the growth of anammox and denitrification bacteria, with the activity of 2.13 ± 0.52 mg N/gVSS/h and 6.70 ± 0.52 mg N/gVSS/h (BTP2). High-throughput sequencing unraveled the increased abundances of Candidatus_Competibacter (0.82%), Thauera (0.60%) and Candidatus_Brocadia (0.55%) which was responsible for the synergy of incomplete reduction of NO3- to NO2- and NH4+ oxidation. Overall, this study provided a valid and simple-control guide for biofilm formation towards rapid enrichment and great collaboration of Anammox and denitrification bacteria.

14.
Mol Syst Biol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961275

RESUMO

Microbial communities are ubiquitous in nature and play an important role in ecology and human health. Cross-feeding is thought to be core to microbial communities, though it remains unclear precisely why it emerges. Why have multi-species microbial communities evolved in many contexts and what protects microbial consortia from invasion? Here, we review recent insights into the emergence and stability of coexistence in microbial communities. A particular focus is the long-term evolutionary stability of coexistence, as observed for microbial communities that spontaneously evolved in the E. coli long-term evolution experiment (LTEE). We analyze these findings in the context of recent work on trade-offs between competing microbial objectives, which can constitute a mechanistic basis for the emergence of coexistence. Coexisting communities, rather than monocultures of the 'fittest' single strain, can form stable endpoints of evolutionary trajectories. Hence, the emergence of coexistence might be an obligatory outcome in the evolution of microbial communities. This implies that rather than embodying fragile metastable configurations, some microbial communities can constitute formidable ecosystems that are difficult to disrupt.

15.
Methods Mol Biol ; 2820: 89-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941017

RESUMO

Fishery products are one of the main human nutritional sources, and due to the consumption increase, the quality of the derived products may be modified, during catching, technological processing, and storage. Detection and identification of pathogenic and spoilage microorganisms in fishery products is needed because the first may be involved in human diseases, while the second is responsible of significant economic losses. In this sense, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method and computational analysis of MS data are useful tools for characterizing and identifying different microorganisms and to develop promising strategies for food science investigations. Moreover, in the past decade, metaproteomic methodologies have progressed for the study of microorganisms isolated from their natural samples and independently of the culture restrictions. Metaproteomics enables assessment of proteins and pathways from individual members of the consortium. Metaproteomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples.According to that, the sample preparation of the fishery product, the LC-ESI-MS/MS dedicated method, and the MS data analysis were described in the present chapter to obtain the metaproteomic analysis of the respective microbiomes or microbial communities.


Assuntos
Microbiota , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Pesqueiros , Humanos , Produtos Pesqueiros/microbiologia , Produtos Pesqueiros/análise , Animais , Microbiologia de Alimentos
16.
Front Cell Infect Microbiol ; 14: 1347345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828262

RESUMO

Background: To date, more than 770 million individuals have become coronavirus disease 2019 (COVID-19) convalescents worldwide. Emerging evidence highlights the influence of COVID-19 on the oral microbiome during both acute and convalescent disease phases. Front-line healthcare workers are at an elevated risk of exposure to viral infections, and the effects of COVID-19 on their oral microbiome remain relatively unexplored. Methods: Oropharyngeal swab specimens, collected one month after a negative COVID-19 test from a cohort comprising 55 healthcare workers, underwent 16S rRNA sequencing. We conducted a comparative analysis between this post-COVID-19 cohort and the pre-infection dataset from the same participants. Community composition analysis, indicator species analysis, alpha diversity assessment, beta diversity exploration, and functional prediction were evaluated. Results: The Shannon and Simpson indexes of the oral microbial community declined significantly in the post-COVID-19 group when compared with the pre-infection cohort. Moreover, there was clear intergroup clustering between the two groups. In the post-COVID-19 group, the phylum Firmicutes showed a significant increase. Further, there were clear differences in relative abundance of several bacterial genera in contrast with the pre-infection group, including Streptococcus, Gemella, Granulicatella, Capnocytophaga, Leptotrichia, Fusobacterium, and Prevotella. We identified Gemella enrichment in the post-COVID-19 group, potentially serving as a recovery period performance indicator. Functional prediction revealed lipopolysaccharide biosynthesis downregulation in the post-COVID-19 group, an outcome with host inflammatory response modulation and innate defence mechanism implications. Conclusion: During the recovery phase of COVID-19, the oral microbiome diversity of front-line healthcare workers failed to fully return to its pre-infection state. Despite the negative COVID-19 test result one month later, notable disparities persisted in the composition and functional attributes of the oral microbiota.


Assuntos
Bactérias , COVID-19 , Pessoal de Saúde , Microbiota , Orofaringe , RNA Ribossômico 16S , SARS-CoV-2 , Humanos , COVID-19/microbiologia , Orofaringe/microbiologia , Orofaringe/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Adulto , RNA Ribossômico 16S/genética , Masculino , Feminino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Pessoa de Meia-Idade , Estudos de Coortes
17.
Environ Microbiome ; 19(1): 36, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831353

RESUMO

BACKGROUND: Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging. RESULTS: Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia. CONCLUSIONS: By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.

18.
Chemosphere ; : 142698, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925523

RESUMO

The detrimental effects of microplastics (MPs) on soil microbial and elemental raise significant environmental concerns. The potential of remediation with biochar to mitigate these negative impacts remains an open question. The remediation effects of biochar derived from corn and cotton straw on MPs concerning soil microorganisms and element cycling were investigated. Specifically, biochar induced substantial remediations in microbial community structure following MP exposure, restoring and fortifying the symbiotic network while exerting dominance over microbial community changes. A combined treatment of biochar and MPs exhibited a noteworthy increase in the abundance of NH4+, NO3-, and available phosphorous by 0.46-2.1 times, reversing the declining trend of dissolved organic carbon, showing a remarkable increase by 0.36 times. This combined treatment also led to a reduction in the abundance of the nitrogen fixation gene nifH by 0.46 times, while significantly increasing the expression of nitrification genes (amoA and amoB) and denitrification genes (nirS and nirK) by 22.5 times and 1.7 times, respectively. Additionally, the carbon cycle cbbLG gene showed a 2.3-fold increase, and the phosphorus cycle gene phoD increased by 0.1-fold. The mixed treatment enriched element-cycling microorganisms by 4.8 to 9.6 times. In summary, the addition of biochar repaired the negative effects of MPs in terms of microbial community dynamics, element content, gene expression, and functional microbiota. These findings underscore the crucial role of biochar in alleviating the adverse effects of MPs on microbial communities and elemental cycling, providing valuable insights into sustainable environmental remediation strategies.

19.
Appl Environ Microbiol ; : e0025624, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920365

RESUMO

Heterotrophic marine bacteria utilize and recycle dissolved organic matter (DOM), impacting biogeochemical cycles. It is currently unclear to what extent distinct DOM components can be used by different heterotrophic clades. Here, we ask how a natural microbial community from the Eastern Mediterranean Sea (EMS) responds to different molecular classes of DOM (peptides, amino acids, amino sugars, disaccharides, monosaccharides, and organic acids) comprising much of the biomass of living organisms. Bulk bacterial activity increased after 24 h for all treatments relative to the control, while glucose and ATP uptake decreased or remained unchanged. Moreover, while the per-cell uptake rate of glucose and ATP decreased, that of Leucin significantly increased for amino acids, reflecting their importance as common metabolic currencies in the marine environment. Pseudoalteromonadaceae dominated the peptides treatment, while different Vibrionaceae strains became dominant in response to amino acids and amino sugars. Marinomonadaceae grew well on organic acids, and Alteromonadaseae on disaccharides. A comparison with a recent laboratory-based study reveals similar peptide preferences for Pseudoalteromonadaceae, while Alteromonadaceae, for example, grew well in the lab on many substrates but dominated in seawater samples only when disaccharides were added. We further demonstrate a potential correlation between the genetic capacity for degrading amino sugars and the dominance of specific clades in these treatments. These results highlight the diversity in DOM utilization among heterotrophic bacteria and complexities in the response of natural communities. IMPORTANCE: A major goal of microbial ecology is to predict the dynamics of natural communities based on the identity of the organisms, their physiological traits, and their genomes. Our results show that several clades of heterotrophic bacteria each grow in response to one or more specific classes of organic matter. For some clades, but not others, growth in a complex community is similar to that of isolated strains in laboratory monoculture. Additionally, by measuring how the entire community responds to various classes of organic matter, we show that these results are ecologically relevant, and propose that some of these resources are utilized through common uptake pathways. Tracing the path between different resources to the specific microbes that utilize them, and identifying commonalities and differences between different natural communities and between them and lab cultures, is an important step toward understanding microbial community dynamics and predicting how communities will respond to perturbations.

20.
ISME Commun ; 4(1): ycae074, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38863723

RESUMO

Microorganisms can improve plant resistance to drought through various mechanisms, such as the production of plant hormones, osmolytes, antioxidants, and exopolysaccharides. It is, however, unclear how previous exposure to water stress affects the functional capacity of the soil microbial community to help plants resist drought. We compared two soils that had either a continuous or intermittent water stress history (WSH) for almost 40 years. We grew wheat in these soils and subjected it to water stress, after which we collected the rhizosphere soil and shotgun sequenced its metagenome. Wheat growing in soil with an intermittent WSH maintained a higher biomass when subjected to water stress. Genes related to indole-acetic acid and osmolyte production were more abundant in the metagenome of the soil with an intermittent WSH as compared to the soil with a continuous WSH. We suggest that an intermittent WSH selects traits beneficial for life under water stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...