Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
MethodsX ; 13: 102811, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022177

RESUMO

The time-consuming nature of culturing methods has urged the exploration of rapid modern technologies. One promising alternative utilizes redox potential, which describes the oxidative changes within complex media, indicating oxygen and nutrient consumption, as well as the production of reduced substances in the investigated biological system. Redox potential measurement can detect microbial activity within 16 h, what is significantly faster than the minimum 24 h incubation time of the reference plate counting technique. The redox potential based method can be specific with selective media, but bacterial strains have unique kinetic pattern as well. The proposed method suggests evaluation of the curve shape for the differentiation of environmental contaminant and pathogenic microbial strains. Six bacterial species were used in validation (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Listeria innocua, Listeria monocytogenes, and Listeria ivanovii). Descriptive parameters reached 98.2 % accuracy and Gompertz model achieved 91.6 % accuracy in classification of the selected 6 bacteria species.•Mathematical model (Gompertz function) and first order descriptive parameters are suggested to describe the specific shape of redox potential curves, while Support Vector Machine (SVM) is recommended for classification.•Due to the concentration dependent time to detection (TTD), pre-processing applies standardization according to the inflection point time.

2.
J Environ Manage ; 366: 121792, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002459

RESUMO

Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.

3.
Math Biosci Eng ; 21(5): 5972-5995, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38872566

RESUMO

We developed a mathematical model to simulate dynamics associated with the proliferation of Geobacter and ultimately optimize cellular operation by analyzing the interaction of its components. The model comprises two segments: an initial part comprising a logistic form and a subsequent segment that incorporates acetate oxidation as a saturation term for the microbial nutrient medium. Given that four parameters can be obtained by minimizing the square root of the mean square error between experimental Geobacter growth and the mathematical model, the model underscores the importance of incorporating nonlinear terms. The determined parameter values closely align with experimental data, providing insights into the mechanisms that govern Geobacter proliferation. Furthermore, the model has been transformed into a scaleless equation with only two parameters to simplify the exploration of qualitative properties. This allowed us to conduct stability analysis of the fixed point and construct a co-dimension two bifurcation diagram.


Assuntos
Acetatos , Simulação por Computador , Geobacter , Modelos Biológicos , Oxirredução , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Acetatos/metabolismo , Algoritmos
4.
Microorganisms ; 12(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930495

RESUMO

The quality of poultry meat offered to the consumer depends mainly on the level of hygiene during all stages of its production, storage time, and temperature. This study investigated the effect of refrigerated storage on the microbiological contamination, color, and pH of turkey thigh muscles stored at 1 °C over six days. Microbial growth, including total mesophilic aerobes, presumptive lactic acid bacteria, and Enterobacteriaceae, significantly increased, impacting the meat's sensory attributes and safety. On the 6th day of meat storage, the content of total mesophilic aerobes, presumptive lactic acid bacteria, and Enterobacteriaceae was 1.82 × 107 CFU/g, 1.00 × 104 CFU/g, and 1.87 × 105 CFU/g, respectively. The stability of color was assessed by quantifying the total heme pigments, comparing myoglobin, oxymyoglobin, and metmyoglobin concentrations, analyzing color parameters L*, a*, b*, and the sensory assessment of surface color, showing a decline in total heme pigments, three myoglobin forms, redness (a*) and lightness (L*). In contrast, yellowness (b*) increased. These changes were correlated with the growth of spoilage microorganisms that influenced the meat's pigmentation and pH, with a notable rise in pH associated with microbial metabolization. Based on the conducted research, it was found that the maximum storage time of turkey thigh muscles at a temperature of 1 °C is 4 days. On the 4th day of storage, the total mesophilic aerobe content was 3.5 × 105 CFU/g. This study underscores the critical need for maintaining controlled refrigeration conditions to mitigate spoilage, ensuring food safety, and preserving turkey meat's sensory and nutritional qualities. There is a need for further research to improve turkey meat storage techniques under specific temperature conditions by studying the impact of using varying packaging materials (with different barrier properties) or the application of natural preservatives. Additionally, future studies could focus on evaluating the effectiveness of cold chain management practices to ensure the quality and safety of turkey products during storage. By addressing these research gaps, practitioners and researchers can contribute to developing more efficient and sustainable turkey meat supply chains, which may help mitigate food wastage by safeguarding the quality and safety of the meat.

5.
Microbiol Spectr ; 12(5): e0365023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501820

RESUMO

Anaerobic microbes play crucial roles in environmental processes, industry, and human health. Traditional methods for monitoring the growth of anaerobes, including plate counts or subsampling broth cultures for optical density measurements, are time and resource-intensive. The advent of microplate readers revolutionized bacterial growth studies by enabling high-throughput and real-time monitoring of microbial growth kinetics. Yet, their use in anaerobic microbiology has remained limited. Here, we present a workflow for using small-footprint microplate readers and the Growthcurver R package to analyze the kinetic growth metrics of anaerobic bacteria. We benchmarked the small-footprint Cerillo Stratus microplate reader against a BioTek Synergy HTX microplate reader in aerobic conditions using Escherichia coli DSM 28618 cultures. The growth rates and carrying capacities obtained from the two readers were statistically indistinguishable. However, the area under the logistic curve was significantly higher in cultures monitored by the Stratus reader. We used the Stratus to quantify the growth responses of anaerobically grown E. coli and Clostridium bolteae DSM 29485 to different doses of the toxin sodium arsenite. The growth of E. coli and C. bolteae was sensitive to arsenite doses of 1.3 µM and 0.4 µM, respectively. Complete inhibition of growth was achieved at 38 µM arsenite for C. bolteae and 338 µM in E. coli. These results show that the Stratus performs similarly to a leading brand of microplate reader and can be reliably used in anaerobic conditions. We discuss the advantages of the small format microplate readers and our experiences with the Stratus. IMPORTANCE: We present a workflow that facilitates the production and analysis of growth curves for anaerobic microbes using small-footprint microplate readers and an R script. This workflow is a cost and space-effective solution to most high-throughput solutions for collecting growth data from anaerobic microbes. This technology can be used for applications where high throughput would advance discovery, including microbial isolation, bioprospecting, co-culturing, host-microbe interactions, and drug/toxin-microbial interactions.


Assuntos
Bactérias Anaeróbias , Escherichia coli , Ensaios de Triagem em Larga Escala , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Anaerobiose , Cinética
6.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472816

RESUMO

Plasma-activated water (PAW) treatment is an effective technique for the quality retention of fresh vegetables with cold atmospheric plasma using controllable parameters. This study investigated the effect of PAW on the postharvest quality of shepherd's purse (Capsella bursa-pastoris). The results displayed that PAW treatment with an activation time of 5, 10, 15, and 20 min reduced the yellowing rate and weight loss of the shepherd's purse during 9 days of storage. Compared with untreated samples, PAW treatment at different times reduced the number of total bacteria, coliform, yeast, and mold by 0.18-0.94, 0.59-0.97, 0.90-1.18, and 1.03-1.17 Log CFU/g after 9 days of storage, respectively. Additionally, the treatments with PAW-5 and PAW-10 better preserved ascorbic acid, chlorophyll, total phenol, and total flavonoid contents. They also maintained the higher antioxidant and CAT activity and inhibited the formation of terpenes, alcohols, and nitrogen oxide compounds of the shepherd's purse at the end of storage. The microstructural result illustrated that the cells of the shepherd's purse treated with PAW-5 and PAW-10 were relatively intact, with a small intercellular space after storage. This study demonstrated that PAW treatment effectively improved the postharvest quality of shepherd's purse.

7.
Biotechnol Adv ; 72: 108335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417562

RESUMO

The Gompertz model, initially proposed for human mortality rates, has found various applications in growth analysis across the biotechnological field. This paper presents a comprehensive review of the Gompertz model's applications in the biotechnological field, examining its past, present, and future. The past of the Gompertz model was examined by tracing its origins to 1825, and then it underwent various modifications throughout the 20th century to increase its applicability in biotechnological fields. The Zwietering-modified version has proven to be a versatile tool for calculating the lag-time and maximum growth rate/quantity in microbial growth. In addition, the present applications of the Gompertz model to microbial growth kinetics and bioproduction (e.g., hydrogen, methane, caproate, butanol, and hexanol production) kinetics have been comprehensively summarized and discussed. We highlighted the importance of standardized citations and guidance on model selection. The Zwietering-modified Gompertz model and the Lay-modified Gompertz model are recommended for describing microbial growth kinetics and bioproduction kinetics, recognized for their widespread use and provision of valuable kinetics information. Finally, in response to the current Gompertz models' focus on internal mortality, the modified Makeham-Gompertz models that consider both internal/external mortality were introduced and validated for microbial growth and bioproduction kinetics with good fitting performance. This paper provides a perspective of the Gompertz model and offers valuable insights that facilitate the diverse applications of this model in microbial growth and bioproduction kinetics.


Assuntos
Biotecnologia , Metano , Humanos , Cinética
8.
Heliyon ; 10(3): e24927, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317962

RESUMO

Understanding the effects of electromagnetic fields is crucial in the fermentation of cocoa beans, since through precise control of fermentation conditions the sensory and nutritional properties of cocoa beans could be improved. This study aimed to evaluate the effect of oscillating magnetic fields (OMF) on the kinetic growth of the core microbial communities of the Collections Castro Naranjal (CCN 51) cocoa bean. The data was obtained by three different models: Gompertz, Baranyi, and Logistic. The cocoa beans were subjected to different OMF strengths ranging from 0 mT to 80 mT for 1 h using the Helmholtz coil electromagnetic device. The viable microbial populations of lactic acid bacteria (LAB), acetic acid bacteria (AAB), and yeast (Y) were quantified using the colony-forming unit (CFU) counting method. The logistic model appropriately described the growth of LAB and Y under magnetic field exposure. Whereas the Baranyi model was suitable for describing AAB growth. The microbial populations in cocoa beans exposed to magnetic fields showed lower (maximum specific growth rate (µmax), values than untreated controls, with AAB exhibiting the highest average growth rate value at 5 mT and Y having the lowest average maximum growth rate value at 80 mT. The lower maximum specific growth rates and longer lag phases when exposed to magnetic fields compared to controls demonstrate the influence of magnetic fields on microbial growth kinetics.

9.
Food Chem X ; 21: 101209, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38384684

RESUMO

Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.

10.
Glob Chang Biol ; 30(2): e17184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375609

RESUMO

Energy is the driver of all microbial processes in soil. The changes in Gibbs energy are equal to the enthalpy changes during all processes in soil because these processes are ongoing under constant pressure and volume-without work generation. The enthalpy change by transformation of individual organic compounds or of complex organic matter in soil can be exactly quantified by the nominal oxidation state of carbon changes. Consequently, microbial energy use efficiency can be assessed by the complete combustion enthalpy of organic compounds when microorganisms use O2 as the terminal electron acceptor for microbial processes under aerobic conditions.


Assuntos
Compostos Orgânicos , Solo , Oxirredução , Termodinâmica , Microbiologia do Solo , Carbono
11.
Glob Chang Biol ; 30(1): e17040, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273522

RESUMO

Climate change is predicted to cause milder winters and thus exacerbate soil freeze-thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested. Here, we conducted an in situ field experiment in a subarctic birch forest, where winter warming resulted in a substantial increase in the number and intensity of freeze-thaw events. After one season of winter warming, which raised mean surface and soil (-8 cm) temperatures by 2.9 and 1.4°C, respectively, we investigated whether the in situ warming-induced increase in frost cycles improved soil microbial resilience to an experimental freeze-thaw perturbation. We found that the resilience of microbial growth was enhanced in the winter warmed soil, which was associated with community differences across treatments. We also found that winter warming enhanced the resilience of bacteria more than fungi. In contrast, the respiration response to freeze-thaw was not affected by a legacy of winter warming. This translated into an enhanced microbial carbon-use efficiency in the winter warming treatments, which could promote the stabilization of soil carbon during such perturbations. Together, these findings highlight the importance of climate history in shaping current and future dynamics of soil microbial functioning to perturbations associated with climate change, with important implications for understanding the potential consequences on microbial-mediated biogeochemical cycles.


Assuntos
Resiliência Psicológica , Microbiologia do Solo , Estações do Ano , Solo/química , Carbono , Mudança Climática
12.
Int J Biol Macromol ; 254(Pt 1): 127677, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287565

RESUMO

Post-harvest losses of fruits and vegetables pose a significant challenge to the agriculture industry worldwide. To address this issue, researchers have turned to natural and eco-friendly solutions such as chitosan coatings. Chitosan, a biopolymer derived from chitin, has gained considerable attention due to its unique properties such as non-toxicity, biodegradability, biocompatibility and potential applications in post-harvest preservation. This review article provides an in-depth analysis of the current state of research on chitosan coatings for the preservation of fruits and vegetables. Moreover, it highlights the advantages of using chitosan coatings, including its antimicrobial, antifungal, and antioxidant properties, as well as its ability to enhance shelf-life and maintain the quality attributes of fresh product. Furthermore, the review discusses the mechanisms by which chitosan interacts with fruits and vegetables, elucidating its antimicrobial activity, modified gas permeability, enhanced physical barrier and induction of host defense responses. It also examines the factors influencing the effectiveness of chitosan coatings, such as concentration, molecular weight, deacetylation degree, pH, temperature, and application methods.


Assuntos
Anti-Infecciosos , Quitosana , Verduras , Frutas , Conservação de Alimentos/métodos , Quitosana/farmacologia , Quitosana/química , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia
13.
Meat Sci ; 210: 109421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237258

RESUMO

Shiga toxin-producing Escherichia coli (STEC) can be life-threatening and lead to major outbreaks. The prevention of STEC-related infections can be provided by control measures at all stages of the food chain. The growth performance of E. coli O157:H7 at different temperatures in raw ground beef spiked with cocktail inoculum was investigated using machine learning (ML) models to address this problem. After spiking, ground beef samples were stored at 4, 10, 20, 30 and 37 °C. Repeated E. coli O157 enumeration was performed at 0-96 h with 21 times repeated counting. The obtained microbiological data were evaluated with ML methods (Artificial Neural Network (ANN), Random Forest (RF), Support Vector Regression (SVR), and Multiple Linear Regression (MLR)) and statistically compared for valid prediction. The coefficient of determination (R2) and mean squared error (MSE) are two essential criteria used to evaluate the model performance regarding the comparison between the observed value and the prediction made by the model. RF model showed superior performance with 0.98 R2 and 0.08 MSE values for predicting the growth performance of E. coli O157 at different temperatures. MLR model predictions were obtained further from the observed values with 0.66 R2 and 2.7 MSE values. Our results indicate that ML methods can predict of E. coli O157:H7 growth in ground beef at different temperatures to strengthen food safety professionals and legal authorities to assess contamination risks and determine legal limits and criteria proactively.


Assuntos
Escherichia coli O157 , Produtos da Carne , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Temperatura , Produtos da Carne/microbiologia , Contagem de Colônia Microbiana , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Microbiologia de Alimentos
14.
J Food Sci ; 89(1): 370-389, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983872

RESUMO

High-temperature (15-37°C) aging can shorten the tenderizing time of beef; however, the use of constant temperature heating can lead to microbial spoilage. This study tested radiofrequency (RF) tenderization (RF-T) to find the appropriate conditions for the aging-like effect of beef without microbial spoilage. After subjecting beef to 22 h RF-T with four different cooling temperatures (15, 5, -10, and -20°C), the proliferated aerobic bacteria on the surface showed a concentration of 6-6.2 log CFU/g at -10 and -20°C, lower than 7-7.5 log CFU/g at 15 and 5°C. When beef was treated with 25 W/kg RF heating power for 48 h RF-T, the estimated reduction rate of the sliced shear force (SSF) and the increase rate of glutamic acid based on the weight before RF-T were 22.6% and 1.51-fold, which were greater than 19.6% and 1.37-fold with 20 W/kg, and 11.0% and 1.11-fold with 15 W/kg. The optimal specific RF heating power was calculated as 30 W/kg from the results' extrapolation. When processed for 48 h under optimal conditions (30 W/kg specific RF heating power, -20°C cooling air), the tenderization rate and the increased rates of free amino acids based on the weight before RF-T of beef reached over 20% and 1.5-fold with 5.22 log CFU/g aerobic bacteria, which was lesser than the Korean regulation value of 6.7 log CFU/g (5 × 106  CFU/g). Therefore, RF-T could be proposed as a promising high-temperature tenderization method with lowered risk of microbial spoilage. PRACTICAL APPLICATION: We showed that lowering the chamber temperature during RF-T was effective in surface drying and inhibiting aerobic bacteria. RF-T for 24-48 h with 30 W/kg specific RF heating power had an aging-like effect given tenderization and increase in FAAs. Moreover, by providing the matching circuit and impedance during RF-T, this method could be industrially reproducible.


Assuntos
Microbiologia de Alimentos , Calefação , Animais , Bovinos , Contagem de Colônia Microbiana , Fatores de Tempo , Qualidade de Produtos para o Consumidor
15.
Glob Chang Biol ; 30(1): e17032, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997641

RESUMO

Climate change predictions suggest that arctic and subarctic ecosystems will be particularly affected by rising temperatures and extreme weather events, including severe heat waves. Temperature is one of the most important environmental factors controlling and regulating microbial decomposition in soils; therefore, it is critical to understand its impact on soil microorganisms and their feedback to climate warming. We conducted a warming experiment in a subarctic birch forest in North Sweden to test the effects of summer heat waves on the thermal trait distributions that define the temperature dependences for microbial growth and respiration. We also determined the microbial temperature dependences 10 and 12 months after the heat wave simulation had ended to investigate the persistence of the thermal trait shifts. As a result of warming, the bacterial growth temperature dependence shifted to become warm-adapted, with a similar trend for fungal growth. For respiration, there was no shift in the temperature dependence. The shifts in thermal traits were not accompanied by changes in α- or ß-diversity of the microbial community. Warming increased the fungal-to-bacterial growth ratio by 33% and decreased the microbial carbon use efficiency by 35%, and both these effects were caused by the reduction in moisture the warming treatments caused, while there was no evidence that substrate depletion had altered microbial processes. The warm-shifted bacterial thermal traits were partially restored within one winter but only fully recovered to match ambient conditions after 1 year. To conclude, a summer heat wave in the Subarctic resulted in (i) shifts in microbial thermal trait distributions; (ii) lower microbial process rates caused by decreased moisture, not substrate depletion; and (iii) no detectable link between the microbial thermal trait shifts and community composition changes.


Assuntos
Ecossistema , Temperatura Alta , Microbiologia do Solo , Mudança Climática , Temperatura , Solo/química , Carbono
16.
Ecology ; 105(1): e4210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989722

RESUMO

The microbial use of resources to sustain life and reproduce influences for example, decomposition and plant nutrient provisioning. The study of "limiting factors" has shed light on the interaction between plants and their environment. Here, we investigated whether carbon (C), nitrogen (N), or phosphorus (P) was limiting for soil microorganisms in a subarctic tundra heath, and how changes in resource availability associated with climate change affected this. We studied samples in which changes in resource availability due to climate warming were simulated by the addition of birch litter and/or inorganic N. To these soils, we supplied factorial C (as glucose), N (as NH4 NO3 ), and P (as KH2 PO4 /K2 HPO4 ) additions ("limiting factor assays," LFA), to determine the limiting factors. The combination of C and P induced large growth responses in all soils and, combined with a systematic tendency for growth increases by C, this suggested that total microbial growth was primarily limited by C and secondarily by P. The C limitation was alleviated by the field litter treatment and strengthened by N fertilization. The microbial growth response to the LFA-C and LFA-P addition was strongest in the field-treatment that combined litter and N addition. We also found that bacteria were closer to P limitation than fungi. Our results suggest that, under a climate change scenario, increased C availability resulting from Arctic greening, treeline advance, and shrubification will reduce the microbial C limitation, while increased N availability resulting from warming will intensify the microbial C limitation. Our results also suggest that the synchronous increase of both C and N availability might lead to a progressive P limitation of microbial growth, primarily driven by bacteria being closer to P limitation. These shifts in microbial resource limitation might lead to a microbial targeting of the limiting element from organic matter, and also trigger competition for nutrients between plants and microorganisms, thus modulating the productivity of the ecosystem.


Assuntos
Mudança Climática , Ecossistema , Solo , Microbiologia do Solo , Tundra , Regiões Árticas , Plantas , Carbono , Nitrogênio , Bactérias
17.
J Environ Manage ; 351: 119823, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109822

RESUMO

Soil microorganisms are the drivers of soil organic carbon (SOC) mineralization, and the activities of these microorganisms are considered to play a key role in SOC dynamics. However, studies of the relationship between soil microbial carbon metabolism and SOC stocks are rare, especially in different physical fractions (e.g., particulate organic carbon (POC) fraction and mineral-associated organic carbon (MAOC) fraction). In this study, we investigated the changing patterns of SOC stocks, POC stocks, MAOC stocks and microbial carbon metabolism (e.g., microbial growth, carbon use efficiency and biomass turnover time) at 0-20 cm along an elevational gradient in a subtropical mountain forest ecosystem. Our results showed that SOC and POC stocks increased but MAOC stocks remained stable along the elevational gradient. Soil microbial growth increased while microbial turnover time decreased with elevation. Using structural equation modeling, we found that heightened microbial growth is associated with elevated POC stocks. Moreover, MAOC stocks positively correlate with microbial growth but show negative associations with both POC stocks and soil pH. Overall, the increase in SOC stocks along the elevational gradient is primarily driven by changes in POC stocks rather than MAOC stocks. These findings underscore the importance of considering diverse soil carbon fractions and microbial activities in predicting SOC responses to elevation, offering insights into potential climate change feedbacks.


Assuntos
Ecossistema , Solo , Solo/química , Carbono , Florestas , Biomassa , Minerais
18.
J Sci Food Agric ; 104(2): 1143-1153, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37737475

RESUMO

BACKGROUND: The global beef market demands the meat industry to ensure product quality and safety in markets that are often very distant. The present study aimed to evaluate the effects of chilled (CH, 120 d) and chilled-then-frozen (CHF, 28 d + 92 d) storage conditions of beef vacuum packaged (VP) and vacuum packaged with antimicrobial (VPAM) on meat quality, oxidative status and microbial loads. Treatments resulted from the combination of storage condition and packaging type: VP + CH, VP + CHF, VPAM + CH and VPAM + CHF. RESULTS: Warner-Bratzler shear force values decreased in all treatments after 28 d of chilling. Except for VP + CH, L* values (lightness) of meat color did not differ in each treatment as the storage time increased. Meat from VP + CH had greater a* values than CHF treatments on day 120 of storage. A consumer panel did not detect differences in tenderness, flavor and overall liking between VP and VPAM beef, but they preferred CHF steaks rather than CH beef. TBARS values did not differ between VP and VPAM and between CH and CHF at any time during the storage period. At the end of storage time, all treatments except VP + CHF presented a greater concentration of thiols than at 48 h post-mortem. On day 120 of storage, VP + CH had greater catalase enzyme activity than CHF treatments while VP + CH and VP + CHF showed a greater superoxide dismutase activity than VPAM + CHF. Storage condition (CH or CHF) had a greater impact on microbial counts than the type of packaging. CONCLUSION: Freezing meat after an ageing period represents a suitable strategy to extend beef storage life without a detrimental impact on its quality. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Embalagem de Alimentos , Carne , Animais , Bovinos , Embalagem de Alimentos/métodos , Vácuo , Temperatura , Carne/análise , Fatores de Tempo
19.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107998

RESUMO

Shake flask cultivation is a routine technique in microbiology and biotechnology laboratories where cell growth can be affected by the hydrodynamic conditions, which depend on the agitation velocity, shaking diameter, and shake flask size. Liquid agitation is implemented inherently to increase aeration, substrate transfer to the cells, and prevent sedimentation, disregarding the role of hydrodynamics in microbial growth and metabolism. Here, we present a simple approach to help standardize the hydrodynamic forces in orbital shakers to increase the experimental accuracy and reproducibility and give students a better knowledge of the significance of the agitation process in microbial growth.

20.
Foods ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137265

RESUMO

Microbial shelf life refers to the duration of time during which a food product remains safe for consumption in terms of its microbiological quality. Predictive microbiology is a field of science that focuses on using mathematical models and computational techniques to predict the growth, survival, and behaviour of microorganisms in food and other environments. This approach allows researchers, food producers, and regulatory bodies to assess the potential risks associated with microbial contamination and spoilage, enabling informed decisions to be made regarding food safety, quality, and shelf life. Two-step and one-step modelling approaches are modelling techniques with primary and secondary models being used, while the machine learning approach does not require using primary and secondary models for describing the quantitative behaviour of microorganisms, leading to the spoilage of food products. This comprehensive review delves into the various modelling techniques that have found applications in predictive food microbiology for estimating the shelf life of food products. By examining the strengths, limitations, and implications of the different approaches, this review provides an invaluable resource for researchers and practitioners seeking to enhance the accuracy and reliability of microbial shelf life predictions. Ultimately, a deeper understanding of these techniques promises to advance the domain of predictive food microbiology, fostering improved food safety practices, reduced waste, and heightened consumer confidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...