Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Front Plant Sci ; 15: 1398083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962246

RESUMO

Utilizing agricultural and industrial wastes, potent reservoirs of nutrients, for nourishing the soil and crops through composting embodies a sustainable approach to waste management and organic agriculture. To investigate this, a 2-year field experiment was conducted at ICAR-IARI, New Delhi, focusing on a pigeon pea-vegetable mustard-okra cropping system. Seven nutrient sources were tested, including a control (T1), 100% recommended dose of nitrogen (RDN) through farmyard manure (T2), 100% RDN through improved rice residue compost (T3), 100% RDN through a paddy husk ash (PHA)-based formulation (T4), 75% RDN through PHA-based formulation (T5), 100% RDN through a potato peel compost (PPC)-based formulation (T6), and 75% RDN through PPC-based formulation (T7). Employing a randomized block design with three replications, the results revealed that treatment T4 exhibited the significantly highest seed (1.89 ± 0.09 and 1.97 ± 0.12 t ha-1) and stover (7.83 ± 0.41 and 8.03 ± 0.58 t ha-1) yield of pigeon pea, leaf yield (81.57 ± 4.69 and 82.97 ± 4.17 t ha-1) of vegetable mustard, and fruit (13.54 ± 0.82 and 13.78 ± 0.81 t ha-1) and stover (21.64 ± 1.31 and 22.03 ± 1.30 t ha-1) yield of okra during both study years compared to the control (T1). Treatment T4 was on par with T2 and T6 for seed and stover yield in pigeon pea, as well as okra, and leaf yield in vegetable mustard over both years. Moreover, T4 demonstrated notable increase of 124.1% and 158.2% in NH4-N and NO3-N levels in the soil, respectively, over the control. The enhanced status of available nitrogen (N) and phosphorus (P) in the soil, coupled with increased soil organic carbon (0.41%), total bacteria population (21.1%), fungi (37.2%), actinomycetes (44.6%), and microbial biomass carbon (28.5%), further emphasized the positive impact of T4 compared to the control. Treatments T2 and T6 exhibited comparable outcomes to T4 concerning changes in available N, P, soil organic carbon, total bacteria population, fungi, actinomycetes, and microbial biomass carbon. In conclusion, treatments T4 and T6 emerge as viable sources of organic fertilizer, particularly in regions confronting farmyard manure shortages. These formulations offer substantial advantages, including enhanced yield, soil quality improvement, and efficient fertilizer utilization, thus contributing significantly to sustainable agricultural practices.

2.
Microbiome ; 12(1): 122, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970126

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) is a therapeutic intervention used to treat diseases associated with the gut microbiome. In the human gut microbiome, phages have been implicated in influencing human health, with successful engraftment of donor phages correlated with FMT treatment efficacy. The impact that gastrointestinal phages exert on human health has primarily been connected to their ability to modulate the bacterial communities in the gut. Nonetheless, how FMT affects recipients' phage populations, and in turn, how this influences the gut environment, is not yet fully understood. In this study, we investigated the effects of FMT on the phageome composition of participants within the Gut Bugs Trial (GBT), a double-blind, randomized, placebo-controlled trial that investigated the efficacy of FMT in treating obesity and comorbidities in adolescents. Stool samples collected from donors at the time of treatment and recipients at four time points (i.e., baseline and 6 weeks, 12 weeks, and 26 weeks post-intervention), underwent shotgun metagenomic sequencing. Phage sequences were identified and characterized in silico to examine evidence of phage engraftment and to assess the extent of FMT-induced alterations in the recipients' phageome composition. RESULTS: Donor phages engrafted stably in recipients following FMT, composing a significant proportion of their phageome for the entire course of the study (33.8 ± 1.2% in females and 33.9 ± 3.7% in males). Phage engraftment varied between donors and donor engraftment efficacy was positively correlated with their phageome alpha diversity. FMT caused a shift in recipients' phageome toward the donors' composition and increased phageome alpha diversity and variability over time. CONCLUSIONS: FMT significantly altered recipients' phage and, overall, microbial populations. The increase in microbial diversity and variability is consistent with a shift in microbial population dynamics. This proposes that phages play a critical role in modulating the gut environment and suggests novel approaches to understanding the efficacy of FMT in altering the recipient's microbiome. TRIAL REGISTRATION: The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTR N12615001351505). Trial protocol: the trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.


Assuntos
Bacteriófagos , Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Obesidade , Humanos , Transplante de Microbiota Fecal/métodos , Bacteriófagos/fisiologia , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/genética , Fezes/microbiologia , Fezes/virologia , Obesidade/terapia , Obesidade/microbiologia , Método Duplo-Cego , Feminino , Adolescente , Masculino , Bactérias/classificação , Bactérias/virologia , Bactérias/genética , Metagenômica/métodos , Resultado do Tratamento
3.
Nutrients ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931211

RESUMO

Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.


Assuntos
Galinhas , Microbioma Gastrointestinal , Ferro , Pisum sativum , Prebióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/metabolismo , Extratos Vegetais/farmacologia , Intestinos/microbiologia , Sementes , Bifidobacterium/metabolismo , Cotilédone , Lactobacillus/metabolismo , Proteínas de Transporte de Cátions
4.
Sci Total Environ ; 946: 174319, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936728

RESUMO

Parabens are largely concentrated in food waste (FW) due to their large consumption as the widely used preservative. To date, whether and how they affect FW resource recovery via anaerobic fermentation is still largely unknown. This work unveiled the hormesis-like effects of two typical parabens (i.e., methylparaben and n-butylparaben) on VFAs production during FW anaerobic fermentation (i.e., parabens increased VFAs by 6.73-14.49 % at low dose but caused 82.51-87.74 % reduction at high dose). Mechanistic exploration revealed that the parabens facilitated the FW solubilization and enhanced the associated substrates' biodegradability. The low parabens enriched the functional microorganisms (e.g., Firmicutes and Actinobacteria) and upregulated those critical genes involved in VFAs biosynthesis (e.g., GCK and PK) by activating the microbial adaptive capacity (i.e., quorum sensing and two-component system). Consequently, the metabolism rates of fermentation substrates and subsequent VFAs production were accelerated. However, due to increased biotoxicity of high parabens, the functional microorganisms and relevant metabolic activities were depressed, resulting in the significant reduction of VFAs biosynthesis. Structural equation modeling clarified that microbial community was the predominant factor affecting VFAs generation, followed by metabolic pathways. This work elucidated the dose-dependent effects and underlying mechanisms of parabens on FW anaerobic fermentation, providing insights for the effective management of FW resource recovery.

5.
Waste Manag ; 186: 119-129, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875913

RESUMO

The removal of volatile methyl siloxanes (VMS) from landfill biogas is crucial for clean energy utilization. VMS are usually found together with aromatic compounds in landfill biogas of which toluene is the major representative. In the present study, two biofilters (BFs) packed with either woodchips and compost (WC) or perlite (PER) were used to study the (co-) removal of octamethyltrisiloxane (L3) and octamethylcyclotetrasiloxane (D4) from gas in presence and absence of toluene, used as a representative aromatic compound. The presence of low inlet toluene concentrations (315 ± 19 - 635 ± 80 mg toluene m-3) enhanced the VMS elimination capacity (EC) in both BFs by a factor of 1.8 to 12.6. The highest removal efficiencies for D4 (57.1 ± 1.1 %; EC = 0.12 ± 0.01 gD4 m-3 h-1) and L3 (52.0 ± 0.6 %; EC = 0.23 ± 0.01 gL3 m-3 h-1) were observed in the BF packed with WC. The first section of the BFs (EBRT = 9 min), where toluene was (almost) completely removed, accounted for the majority (87.7 ± 0.6 %) of the total VMS removal. Microbial analysis revealed the impact of VMS and toluene in the activated sludge, showing a clear selection for certain genera in samples influenced by VMS in the presence (X2) or absence (X1) of toluene, such as Pseudomonas (X1 = 0.91 and X2 = 12.0 %), Sphingobium (X1 = 0.09 and X2 = 4.04 %), Rhodococcus (X1 = 0.42 and X2 = 3.91 %), and Bacillus (X1 = 7.15 and X2 = 3.84 %). The significant maximum EC values obtained by the BFs (0.58 gVMS m-3 h-1) hold notable significance in a combined system framework as they could enhance the longevity of traditional physicochemical methods to remove VMS like activated carbon in diverse environmental scenarios.


Assuntos
Biodegradação Ambiental , Siloxanas , Tolueno , Tolueno/metabolismo , Filtração/métodos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Microbiota
6.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893583

RESUMO

The growing interest in fermented dairy products is due to their health-promoting properties. The use of milk kefir grains as a starter culture made it possible to obtain a product with a better nutritional and biological profile depending on the type of milk. Cow, buffalo, camel, donkey, goat, and sheep milk kefirs were prepared, and the changes in sugar, protein, and phenol content, fatty acid composition, including conjugated linoleic acids (CLAs), as well as antioxidant activity, determined by ABTS and FRAP assays, were evaluated and compared. The protein content of cow, buffalo, donkey, and sheep milk increased after 24 h of fermentation. The fatty acid profile showed a better concentration of saturated and unsaturated lipids in all fermented milks, except buffalo milk. The highest content of beneficial fatty acids, such as oleic, linoleic, and C18:2 conjugated linoleic acid, was found in the cow and sheep samples. All samples showed a better antioxidant capacity, goat milk having the highest value, with no correlation to the total phenolic content, which was highest in the buffalo sample (260.40 ± 5.50 µg GAE/mL). These findings suggested that microorganisms living symbiotically in kefir grains utilize nutrients from different types of milk with varying efficiency.


Assuntos
Antioxidantes , Búfalos , Ácidos Graxos , Cabras , Kefir , Leite , Valor Nutritivo , Animais , Kefir/microbiologia , Kefir/análise , Leite/química , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/farmacologia , Ácidos Graxos/análise , Bovinos , Ovinos , Fermentação , Fenóis/análise , Fenóis/química , Camelus , Equidae
7.
BMC Plant Biol ; 24(1): 510, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844838

RESUMO

BACKGROUND: Optimum planting date and appropriate fertilizer module are essential facets of chrysanthemum cultivation, to enhance quality yield, and improve soil health. A field-based study was undertaken over multiple growing seasons in 2022 and 2023, where six different planting dates, viz., P1:June 15, P2:June 30, P3:July 15, P4:July 30, P5:August 15 and P6:August 30 and two fertilizer modules, FM1:Jeevamrit @ 30 ml plant-1 and FM2:NPK @ 30 g m-2 were systematically examined using a Randomized Block Design (factorial), replicated thrice. RESULTS: P6 planting resulted in early bud formation (44.03 days) and harvesting stage (90.78 days). Maximum plant height (79.44 cm), plant spread (34.04 cm), cut stem length (68.40 cm), flower diameter (7.83 cm), stem strength (19.38˚), vase life (14.90 days), flowering duration (24.08 days), available soil N (314 kg ha-1), available P (37 kg ha-1), available K (347 kg ha-1), bacterial count (124.87 × 107 cfu g-1 soil), actinomycetes count (60.72 × 102 cfu g-1 soil), fungal count (30.95 × 102 cfu g-1 soil), microbial biomass (48.79 µg g-1 soil), dehydrogenase enzyme (3.64 mg TPF h-1 g-1 soil) and phosphatase enzyme (23.79 mol PNP h-1 g-1 soil) was recorded in P1 planting. Among the fertilization module, minimum days to bud formation (74.94 days) and days to reach the harvesting stage (120.95 days) were recorded with the application of NPK @30 g m-2. However, maximum plant height (60.62 cm), plant spread (23.10 cm), number of cut stems m-2 (43.88), cut stem length (51.34 cm), flower diameter (6.92 cm), stem strength (21.24˚), flowering duration (21.75 days), available soil N (317 kg ha-1), available P (37 kg ha-1) and available K (349 kg ha-1) were also recorded with the application of NPK @300 kg ha-1. Maximum vase life (13.87 days), OC (1.13%), bacterial count (131.65 × 107 cfu g-1 soil), actinomycetes count (60.89 × 102 cfu g-1 soil), fungal count (31.11 × 102 cfu g-1 soil), microbial biomass (51.27 µg g-1 soil), dehydrogenase enzyme (3.77 mg TPF h-1 g-1 soil) and phosphatase enzyme (21.72 mol PNP h-1 g-1 soil) were observed with the application of Jeevamrit @ 30 ml plant-1. CONCLUSION: Early planting (P1) and inorganic fertilization (NPK @ 30 g m-2) resulted in improved yield and soil macronutrient content. The soil microbial population and enzymatic activity were improved with the jeevamrit application. This approach highlights the potential for improved yield and soil health in chrysanthemum cultivation, promoting a more eco-friendly and economically viable agricultural model.


Assuntos
Chrysanthemum , Fertilizantes , Microbiologia do Solo , Solo , Chrysanthemum/crescimento & desenvolvimento , Fertilizantes/análise , Solo/química , Estações do Ano , Biomassa
8.
Vet Ophthalmol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849703

RESUMO

OBJECTIVES: To determine normal ocular parameters of the MacQueen's bustard (Chlamydotis macqueenii) and describe ophthalmic lesions in a captive bred population. ANIMALS STUDIED: Captive breeding population of 257 Macqueen's bustards. METHODS: All birds were screened for ocular abnormalities using direct ophthalmoscopy. Abnormalities were photographed. Normative values for Schirmer tear test-1 (STT-1), applanation tonometry, aerobic and anaerobic bacterial culture, fungal culture, and transcorneal ocular ultrasonography were derived from multiple cohorts of clinically normal adult birds. Five birds with ocular pathology also underwent transcorneal ultrasonography. Statistical comparisons for normative values between OD and OS, and males and females were made using a paired t-test or Mann-Whitney U-test, with a significance level of p < .05. RESULTS: Mean tear production based on Schirmer tear test 1 (STT-1) was 10.16 ± 4.61 mm/min (3-21 mm/min). Mean intraocular pressure (IOP) was 12.42 ± 4.94 mm Hg (5-26 mm Hg). Staphylococcus species were the most isolated bacteria from the conjunctival surfaces of normal birds (85%). Significant differences were found in transcorneal ultrasonographic measurements between males and females for axial globe length (p = .032), vitreous body depth (p = .049) and lens thickness (p = .0428). Corneal fibrosis was the most observed ocular abnormality amongst eyes with pathological changes (39%). CONCLUSIONS: Schirmer tear testing, tonometry and transcorneal ultrasound can easily be utilized in MacQueen's bustards and provide reproducible results. Normal parameters for these tests were determined, and common pathological ocular changes were described in this species.

9.
Bioresour Technol ; 405: 130926, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824970

RESUMO

Volatile organic compounds emitted from landfills posed adverse effect on health. In this study, gaseous benzene was biologically treated using an in-situ biofilter without air pump. Its performance was investigated and the removal efficiency of benzene reached over 90 %. The decrease in the average benzene concentration was consistent with first-order reaction kinetics. Mycolicibacterium dominated the bacterial consortium (41-57 %) throughout the degradation. Annotation of genes by metagenomic analysis helped to deduce the degradation pathways (benzene degradation, catechol ortho-cleavage and meta-cleavage) and to reveal the contribution of different species to the degradation process. In total, 21 kinds of key genes and 13 enzymes were involved in the three modules of benzene transformation. Mycolicibacter icosiumassiliensis and Sphingobium sp. SCG-1 carried multiple functional genes critically involved in benzene biodegradation. These findings provide technical and theoretical support for the in-situ bioremediation of benzene-contaminated soil and waste gas reduction in landfills.


Assuntos
Benzeno , Biodegradação Ambiental , Poliuretanos , Benzeno/metabolismo , Poliuretanos/química , Filtração , Gases
10.
Elife ; 122024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647539

RESUMO

Warming and precipitation anomalies affect terrestrial carbon balance partly through altering microbial eco-physiological processes (e.g., growth and death) in soil. However, little is known about how such processes responds to simultaneous regime shifts in temperature and precipitation. We used the 18O-water quantitative stable isotope probing approach to estimate bacterial growth in alpine meadow soils of the Tibetan Plateau after a decade of warming and altered precipitation manipulation. Our results showed that the growth of major taxa was suppressed by the single and combined effects of temperature and precipitation, eliciting 40-90% of growth reduction of whole community. The antagonistic interactions of warming and altered precipitation on population growth were common (~70% taxa), represented by the weak antagonistic interactions of warming and drought, and the neutralizing effects of warming and wet. The members in Solirubrobacter and Pseudonocardia genera had high growth rates under changed climate regimes. These results are important to understand and predict the soil microbial dynamics in alpine meadow ecosystems suffering from multiple climate change factors.


Assuntos
Microbiologia do Solo , Tibet , Chuva , Mudança Climática , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Solo/química , Temperatura , Pradaria , Secas
11.
Saudi J Biol Sci ; 31(5): 103978, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38549841

RESUMO

Background: To increase crop productivity, modern agricultural practices comprises fertilizers, algaecides, herbicides and fungicides. Objective: The purpose of this study was to evaluate the effects of soil microbial population and soil enzyme activity by the use of fertilizer in maize and inorganic input in the rice ecosystem. Methods: A field experiment (2021 to 2023) was carried out using synthetic fertilizer doses with maize crops followed by rice crops using inorganic inputs. Soil microbial population and enzyme activities were examined. Results: Maize field experiment revealed that the plots treated with 75 % Standardized Dose of Fertilizer (SDF) of NPK had the highest populations of diazotrophs (124 × 105cfu / g), Phosphobacteria (66.33 × 105cfu / g), and Azospirillum (0.409 × 105 MPN / g) than 100 % and 150 % SDF of NPK. The soil enzyme activity was higher in the unfertilized control plot than fertilized plot. These experimental results revealed that a low amount of fertilizer and no fertilizers favour the growth of soil microorganisms and soil enzyme activities, respectively. Followed by the rice field experiment, revealed that the soil microbial population was decreased by the application of inorganic inputs viz., fertilizer, algaecide, herbicide and fungicide. However, the maximum soil microbial population was found in algaecide application followed by herbicide and fungicide. Conclusion: The field experiment concluded that soil microbial population and enzyme activity were affected by inorganic amendments. Less inorganic fertilizers and no fertilizers improve soil microbial activities and soil enzyme activities.

12.
Environ Monit Assess ; 196(3): 307, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407658

RESUMO

As the initial stage of the sewage treatment system, the degradation of pollutants inevitably involves an entropy change process. Microorganisms play a vital role, where they interact with pollutants and constantly adjust own ecosystem. However, there is a lack of research on the entropy change and external dissipation processes within the sewer system. In this study, considering the characteristics of microbial population changes in the biofilm within the urban sewage pipe network, entropy theory is applied to characterize the attributes of different microorganisms. Through revealing the entropy change of the microbial population and chemical composition, a coupling relationship between the functional bacteria diversity, organic substances composition, and external dissipation in the pipeline network is proposed. The results show that the changes of nutrient availability, microbial community structure, and environmental conditions all affect the changes of information entropy in the sewer network. This study is critical for assessing the understanding of ecological dynamics and energy flows within these systems and can help researchers and operation managers develop strategies to optimize wastewater treatment processes, mitigate environmental impacts, and promote sustainable management practices.


Assuntos
Ecossistema , Poluentes Ambientais , Entropia , Esgotos , Monitoramento Ambiental
13.
Biofilm ; 7: 100176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38322579

RESUMO

A polymicrobial biofilm model of Komagataeibacter hansenii and Pseudomonas aeruginosa was developed to understand whether a pre-existing matrix affects the ability of another species to build a biofilm. P. aeruginosa was inoculated onto the preformed K. hansenii biofilm consisting of a cellulose matrix. P. aeruginosa PAO1 colonized and infiltrated the K. hansenii bacterial cellulose biofilm (BC), as indicated by the presence of cells at 19 µm depth in the translucent hydrogel matrix. Bacterial cell density increased along the imaged depth of the biofilm (17-19 µm). On day 5, the average bacterial count across sections was 67 ± 4 % P. aeruginosa PAO1 and 33 ± 6 % K. hansenii. Biophysical characterization of the biofilm indicated that colonization by P. aeruginosa modified the biophysical properties of the BC matrix, which inlcuded increased density, heterogeneity, degradation temperature and thermal stability, and reduced crystallinity, swelling ability and moisture content. This further indicates colonization of the biofilm by P. aeruginosa. While eDNA fibres - a key viscoelastic component of P. aeruginosa biofilm - were present on the surface of the co-cultured biofilm on day 1, their abundance decreased over time, and by day 5, no eDNA was observed, either on the surface or within the matrix. P. aeruginosa-colonized biofilm devoid of eDNA retained its mechanical properties. The observations demonstrate that a pre-existing biofilm scaffold of K. hansenii inhibits P. aeruginosa PAO1 eDNA production and suggest that eDNA production is a response by P. aeruginosa to the viscoelastic properties of its environment.

14.
Trop Anim Health Prod ; 56(1): 43, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217627

RESUMO

The present experiment was conducted to investigate the effects of F. subpinnata powder (FSP) on the performance, carcass characteristics, blood parameters, immune system, microbial population, intestinal morphology, and percentage of fatty acids in the breast meat of broiler chickens. A total of 300 day-old male chickens from the ROSS 308 strain were used in the form of a completely random design with four treatments of five replicates (15 birds each). The experimental treatments were, respectively, (1) control with base diet (without additives), (2) base diet + 1% FSP, (3) base diet + 2% FSP, and (4) base diet + 3% FSP. The results showed that the feed intake and weight gain increased in the treatments containing 2% and 3% FSP when compared to the control (P < 0.05). Cholesterol and ALT levels in the treatment containing 3% FSP were lower that the control (P < 0.05), while the concentration of glutathione peroxidase enzyme in the treatment containing 3% FSP significantly increased (P < 0.05). Thymus weight and antibodies produced against AIV in all three levels of FSP increased significantly compared to the control (P < 0.05). The population of lactobacilli and coliforms in the treatments containing FSP increased and decreased significantly compared to the control (P < 0.05). The length and width of the intestinal villi of the chickens that were fed with 3% of FSP had a significant increase compared to the control (P < 0.05). The percentage of saturated fatty acids in the breast decreased significantly with the consumption of all three levels of FSP (P < 0.001). In general, the results showed that the use of 3% FSP in the broiler diet increased the efficiency of growth performance and enzyme activity, while strengthening the immune system, favorably altering the intestinal microbial population, and reducing the fat in breast meat.


Assuntos
Galinhas , Ácidos Graxos , Animais , Masculino , Fenômenos Fisiológicos da Nutrição Animal , Carne/análise , Sistema Imunitário
16.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255989

RESUMO

Chicken collagen is a promising raw material source for the production gelatins and hydrolysates. These can be prepared biotechnologically using proteolytic enzymes. By choosing the appropriate process conditions, such changes can be achieved at the molecular level of collagen, making it possible to prepare gelatins with targeted properties for advanced cosmetic, pharmaceutical, medical, or food applications. The present research aims to investigate model samples of chicken gelatins, focusing on: (i) antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-etylbenzotiazolin-6-sulfonic acid (ABTS); (ii) the distribution of molecular weights via gel permeation chromatography with refractometric detection (GPC-RID); (iii) functional groups and the configuration of polypeptide chains related to molecular-level properties using Fourier transform infrared spectroscopy (FTIR); (iv) the microbiological populations on sabouraud dextrose agar (SDA), plate count agar (PCA), tryptic soy agar (TSA), and violet red bile lactose (VRBL) using the matrix-assisted laser desorption ionization (MALDI) method. Antioxidant activity towards ABTS radicals was more than 80%; activity towards DPPH radicals was more than 69%. The molecular weights of all gelatin samples showed typical α-, ß-, and γ-chains. FTIR analysis confirmed that chicken gelatins all contain typical vibrational regions for collagen cleavage products, Amides A and B, and Amides I, II, and III, at characteristic wavenumbers. A microbiological analysis of the prepared samples showed no undesirable bacteria that would limit advanced applications of the prepared products. Chicken gelatins represent a promising alternative to products made from standard collagen tissues of terrestrial animals.


Assuntos
Benzotiazóis , Compostos de Bifenilo , Gelatina , Aves Domésticas , Ácidos Sulfônicos , Animais , Ágar , Antioxidantes , Galinhas , Amidas , Colágeno
17.
Animals (Basel) ; 13(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067076

RESUMO

The aim of this study was to investigate the effects of the in ovo feeding of green nanoparticles of silver (Nano-Ag), probiotics, and their combination on hatchability, carcass criteria and internal organs, biochemical parameters, and cecal microbial populations in hatched one-day-old chicks. On day 18 of incubation, 250 live embryo eggs were weighed and randomly assigned to one of five treatment groups: a negative control group, a positive control group consisting of chicks injected with 0.2 mL physiological saline, a group consisting of chicks injected with 0.2 mL Nano-Ag, a group consisting of chicks injected with 0.2 mL probiotics (Bifidobacterium spp.), and a group consisting of chicks injected with 0.2 mL combination of Nano-Ag and probiotics (1:1). The results showed that the in ovo injection of Nano-Ag or probiotics, alone or in combination, had no effect on hatchability, live body weight, or internal organs but improved (p < 0.05) chick carcass yield compared to the control groups. Furthermore, in ovo feeding decreased (p < 0.05) serum levels of cholesterol, triglycerides, urea, creatinine, alanine aminotransferase, and aspartate aminotransferase, as well as cecal E. coli, but increased Bifidobacterium spp. when compared to the control groups. Based on these findings, in ovo injections of green Nano-Ag and probiotics, either alone or in combination, have the potential to improve chick health and balance the microbial populations in hatched one-day-old chicks.

18.
J Anim Sci Technol ; 65(4): 804-817, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37970503

RESUMO

This study was conducted to evaluate the effects of co-dried fish protein hydrolysate (CFPH) on broilers performance, intestinal microbiology, and cellular immune responses. Five hundred one-day-old (Ross 308) male broilers were allocated to four treatments with five replicates of 25 birds in a completely randomized design. The experimental treatments included four levels of CFPH (0% as the control, 2.5%, 5%, and 7.5%) in the isonitrogenous and isocaloric diets. During the experiment, body weight (BW) and feed intake (FI) were periodically recorded in addition to calculating average daily gain (ADG), feed conversion ratio (FCR), liveability index, and European broiler index (EBI). In addition, cellular immune responses were evaluated at 30 days of age. On day 42, ileal contents were obtained to examine the microbial population. Based on the findings, Dietary supplementation of 5 and 7.5% CFPH increased the percentage of the thigh while decreasing the relative weight of the gizzard compared to the control group. The highest relative length of jejunum was observed in birds receiving 2.5 and 5% CFPH, and its highest relative weight belonged to birds fed with 5% CFPH. The number of coliforms, enterobacters, and total gram-negative bacteria in the intestines of birds receiving CFPH was less than that of the control group. In general, the application of CFPH in broiler nutrition can decrease the level of soybean meal in diet and it can be considered as a new protein supplement in poultry production. It is suggested to study the incorporation of this new supplement in other livestock's diets.

19.
PeerJ ; 11: e15993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780386

RESUMO

Soil microbial activity (SMA) is vital concerning carbon cycling, and its functioning is recognized as the primary factor in modifying soil carbon storage potential. The composition of the microbial community (MC) is significant in sustaining environmental services because the structure and activity of MC also influence nutrient turnover, distribution, and the breakdown rate of soil organic matter. SMA is an essential predictor of soil quality alterations, and microbiome responsiveness is imperative in addressing the escalating sustainability concerns in the Himalayan ecosystem. This study was conducted to evaluate the response of soil microbial and enzyme activities to land conversions in the Northwestern Himalayas (NWH), India. Soil samples were collected from five land use systems (LUSs), including forest, pasture, apple, saffron, and paddy-oilseed, up to a depth of 90 cm. The results revealed a significant difference (p < 0.05) in terms of dehydrogenase (9.97-11.83 TPF µg g-1 day-1), acid phosphatase (22.40-48.43 µg P-NP g-1 h-1), alkaline phosphatase (43.50-61.35 µg P-NP g-1 h-1), arylsulphatase (36.33-48.12 µg P-NP g-1 h-1), fluorescein diacetate hydrolase (12.18-21.59 µg g-1 h-1), bacterial count (67.67-123.33 CFU × 106 g-1), fungal count (19.33-67.00 CFU × 105 g-1), and actinomycetes count (12.00-42.33 CFU × 104 g-1), with the highest and lowest levels in forest soils and paddy-oilseed soils, respectively. Soil enzyme activities and microbial counts followed a pattern: forest > pasture > apple > saffron > paddy-oilseed at all three depths. Paddy-oilseed soils exhibited up to 35% lower enzyme activities than forest soils, implying that land conversion facilitates the depletion of microbiome diversity from surface soils. Additionally, reductions of 49.80% and 62.91% were observed in enzyme activity and microbial counts, respectively, with soil depth (from 0-30 to 60-90 cm). Moreover, the relationship analysis (principal component analysis and correlation) revealed a high and significant (p = 0.05) association between soil microbial and enzyme activities and physicochemical attributes. These results suggest that land conversions need to be restricted to prevent microbiome depletion, reduce the deterioration of natural resources, and ensure the sustainability of soil health.


Assuntos
Ciclo do Carbono , Carbono , Ecossistema , Microbiologia do Solo , Solo , Carbono/análise , Florestas , Solo/química , Enzimas , Índia
20.
Sci Total Environ ; 904: 166773, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689204

RESUMO

The gut microbes thrive by utilizing host energy and, in return, provide valuable benefits, akin to the symbiotic relationship. To study the mutualistic association between the gut microbiota and host, a range of gut microbe populations (85 %, 66 %, 45 % and 38 % at the normal level) with comparable structures were constructed in broiler model. The results revealed that reductions in gut microbial population led to decreased energy consumption, resulting in increased host weight (10.26 %, 30.88 %, 17.65 % and - 12.77 %, respectively). Fecal metabolome revealed that among 85 % and 66 % of the normal population level, the gut microbes downregulated the immune-associated pathways of tryptophan metabolism and catecholamine biosynthesis, while the level of fatty acid oxidation was upregulated at 45 %. In the host, the concentration of gut microbes contributed to regulate functions related to lipid biosynthesis (from glycerophosphoserines to glycerophosphoethanolamines (9.63 %, 12.20 %, 6.66 % and 47.75 %) and glycerophosphocholines (10.78 %, 36.51 %, 2.00 % and 87.11 %)) and inflammation responses (methionine and betaine metabolism). From 85 % to 45 % of gut microbes, broiler showed an inhibited immunity (thymus gland, spleen, SIgG and IgA) and increased low-level inflammation response (ALT and T-SOD). However, at 38 %, the immune indexes exhibited an increase (thymus gland, spleen, SIgG, and IgA increased by 8.67 %, 8.50 %, 20.87 %, and 29.43 %, respectively), indicating the host lipid accumulation and inflammation response were negatively correlated with the immune reaction. Collectively, the gut microbiota maintains a symbiotic relationship with the host through the secretion of beneficial substances to interact with the host.


Assuntos
Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/fisiologia , Galinhas , Inflamação , Lipídeos , Imunoglobulina A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...